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With the increasing power demand in city development, the construction and application of transmission towers need to meet
higher requirements. Icing is an extreme meteorological condition in the world, and icing disasters cause various accidents such as
tower collapse and line disconnection of large-area lines every year. Therefore, it is of great significance to study the ultimate
bearing capacity of transmission towers under icing conditions. The structural bearing capacity under icing is greatly affected by
meteorological conditions and environmental factors, which has strong randomness and complexity, and brings a series of urgent
problems to the structural stability of transmission towers. In the paper, the ultimate bearing capacity analysis and failure path
research are conducted on the 500 kV linear cathead tower structure, and a structural bearing capacity prediction model based on
the fireworks algorithm (FWA) is established. In order to accurately predict the structural bearing capacity, reduce the adverse
effects of line icing, and ensure the structural stability of the transmission tower, the FWA is introduced into the neural network
model. The self-adjusting mechanism of the local search ability and global search ability of the FWA is used to optimize the
optimization process of weights and thresholds in the neural network, and a structural bearing capacity prediction model based on
the FWA improved backpropagation neural network (BPNN) is proposed. Through the analysis and calculation of the measured
data of the transmission tower in a certain area, and the comparative study with the traditional BPNN and the BPNN optimized by
other common algorithms, the analysis and calculation results of the FWA-BPNN model used in this paper are closer to the actual
value, the multiple indicators are more superior, and the model is more stable, which can realize the rapid and accurate analysis of
the axial stress of tower members and maximum displacement between member nodes of the transmission tower under the icing
condition.

1. Introduction

Social production and development cannot be separated from
the support of power engineering construction. Power system
is a large and complex lifeline system engineering, in which
the transmission and transmission links are an indispensable
part [1–3]. If there is a problem in the transmission link, it will
lead to the normal operation of the entire power supply sys-
tem, which will have a serious impact on the normal produc-
tion and living order of the people. At the same time, it will
have very serious consequences for the stable and sustainable
development of society, resulting in immeasurable economic

losses. Therefore, it is particularly important to study the
ability of transmission tower line system to prevent major
natural disasters. Moreover, with the increasing demand for
electricity, the level and scale of transmission lines also need to
be upgraded, which means that the span and height of trans-
mission lines will increase with the increase of demand [4].
Meanwhile, the engineering technology problem is that the
long-span high-voltage transmission tower line system struc-
ture will cause more serious damage under the action of icing
and other loads, resulting in a threat to the safety of people’s
lives and property [5]. Similarly, under meteorological disas-
ters, the damage of transmission lines is more significant.
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Transmission tower line system structure is a kind of
spatial steel structure with large overall span and high and
flexible structure. It is a complex coupling structure system
formed by the transmission tower as the spatial support part
and the transmission tower erecting the conductor line
through insulators and other hardware, so it is extremely
sensitive to lateral loads [6]. Compared with other high-
rise building structures, the dynamic response of transmis-
sion tower line system under external force load is very com-
plex due to its own tower line coupling effect [7]. Therefore,
when studying the overall structure of transmission tower
line system, the transmission tower structure cannot be stud-
ied alone, and the influence of transmission lines should be
considered at the same time. By means of theoretical analysis
and field measured data comparison and verification, the
establishment of a reasonable and sufficiently accurate trans-
mission tower line system bearing capacity prediction model
and dynamic calculation method is the basis for the study of
transmission tower line system structure. Moreover, it can
also provide corresponding reference for the study of other
high flexible and complex space coupled steel structure sys-
tems and other attached suspension structures.

Icing is an extreme meteorological condition, which
causes accidents such as line tripping, line breaking, tower
toppling, conductor galloping, insulator flashover, and com-
munication interruption in a large area all over the world
every year [8]. Power grid safety accidents due to icing dis-
asters have happened in Canada, Russia, the United States,
Japan, Finland, Britain, Iceland, and China, causing huge
economic losses. Since the 1940s, icing disaster has become
a concern of academic and engineering field in many coun-
tries all over the world.

Transmission tower line system is the main body of trans-
mission lines and the main carrier of long-distance power
transmission. The damage caused by icing to the transmission
tower line system is largely due to the excessive thickness of
icing, which causes the stress of conductors, fittings, insula-
tors, and towers to exceed their ultimate strength, or the tower
collapse accident caused by the uneven icing of adjacent spans
of the transmission tower and the unbalanced tension caused
by deicing at different stages [9]. Because the weight of trans-
mission tower is usually large, the foundation subsidence and
foundation burst caused by tower collapse also occur from
time to time. In addition, the tower falling and line breaking
accident in the first gear will exert an unbalanced force on the
other gear, and when it is serious, a downhill accident will
occur [10]. The transmission tower accounts for about 40% of
the total investment of the line, and its safety and reliability
have attracted increasing attention in modern society. There-
fore, it is very necessary to study and analyze the ultimate
bearing capacity of transmission towers, which has important
reference value for the design, operation, and disaster resis-
tance of transmission lines.

Affected by various meteorological conditions, transmis-
sion line icing disasters occur frequently in various countries,
and relevant personnel of scientific research and design units
have carried out a lot of research work [11–13]. The forma-
tion of transmission line icing is a complex physical process

with many influencing factors, and various meteorological
conditions have a great impact on icing. However, the
research on how to monitor these meteorological conditions
and obtain the exact meteorological parameters is not very
mature. With the in-depth study of the physical character-
istics of ice cover, researchers have developed many snow
cover prediction models, such as Ackley model, Lozowski
model, Pots model, Chain model, Jones model, and Makko-
nen model. The advantages of the above model are different
in different cases, but the physical parameters such as the size
of water droplets and the content of liquid water are not easy
to obtain.

The load of transmission tower caused by icing is divided
into transverse load, longitudinal load, and vertical load
according to the action direction. The transverse load is
the load along the cross-arm direction, the longitudinal
load is the load perpendicular to the cross-arm direction,
and the vertical load is the load perpendicular to the ground
direction [14]. Icing tower toppling is largely caused by the
unbalanced tension between the adjacent two gears caused
by uneven icing and different stages of deicing, which has
been studied by many scholars. In the design process of
transmission tower line system, the method of separate
design of iron tower and conductor is usually adopted. At
present, the research on the specific algorithm of the longi-
tudinal unbalanced tension of the transmission tower is not
mature. The common practice is to take the percentage of the
maximum use tension of the conductor according to the
specification for verification. The longitudinal unbalanced
tension is one of the important factors that lead to the col-
lapse of transmission towers and then threaten the safe oper-
ation of the power grid. Therefore, it is of great practical
significance to accurately calculate the longitudinal unbal-
anced tension.

The relevant researchmethods of transmission tower struc-
ture bearing capacity analysis have been constantly explored,
and some research results have been achieved [15–17]. The
integration of artificial neural network (ANN) with other soft
computingmethods, such as backpropagation (BP), imperialist
competitive algorithm (ICA), support vector regression (SVR),
backpropagation neural network (BPNN), genetic algorithms
(GA), and multilayer feed forward (MLFF) has been deeply
reviewed [18–21]. As a classical neural network algorithm,
BPNN has strong adaptability and fault-tolerant perfor-
mance. In recent years, it has been widely used in the analysis
of transmission tower line architecture [22–25]. To improve
the performance accuracy, researchers employ different ANN
methods to compare their effectiveness with different models
[26–29]. BPNN was used to forecast the slump and compres-
sive strength of composite geopolymers with its high preci-
sion and engineering applicability, the prediction results of
BPNN were also compared with random forest (RF) and k
nearest neighbors (KNN) algorithm model [30]. However,
BPNN model has some problems, such as low-prediction
accuracy, possible over fitting and easy to fall into local opti-
mization [31]. Among lots of intelligence algorithms [32–35],
fireworks algorithm (FWA) is a swarm intelligence algorithm
inspired by fireworks explosion in the night sky, which is
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mainly composed of explosion operator, mutation operation,
mapping rules, and selection strategy [36–38]. A novel
hybrid optimization algorithm named GPOFWA integrates
political optimizer (PO) with FWA to solve numerical
and engineering optimization problems [39–41]. Multimodal
multiobjective optimization problems (MMOPs) have
received increasing attention, which can be solved by FWA
[42–45]. Furthermore, FWA has been applied in many fields
since it was proposed, and has good performance in predic-
tion accuracy and local optimization prevention [46–50].

Therefore, this paper establishes a prediction model of
structural bearing capacity based on FWA by analyzing the
correlation between structural bearing capacity and temper-
ature, humidity, wind speed, terrain, altitude, condensation
height, and other factors. By using the FWA to optimize the
weights and thresholds of the BP neural network, the opti-
mization ability of the neural network is further improved,
which can more accurately predict the structural bearing
capacity of the transmission tower line system, identify the
weak parts of the transmission tower under icing conditions,
and effectively avoid the failure of the transmission tower
structural system, to prevent icing and tower collapse. The
research has necessary reference and value for the design and
reinforcement of transmission towers.

2. Data Preprocessing under Icing Condition

Among the obtained data, the main influencing factors
affecting the structural bearing capacity of the transmission
tower under icing are terrain, altitude, condensation height,
conductor diameter, conductor suspension height, tempera-
ture, humidity, wind speed, pressure, etc. Their collection
time interval is 20min, and these data are collected by data
collection equipment. Because the equipment may have
errors in the process of data collection and transmission,
there are incomplete and abnormal data in the massive orig-
inal data. The abnormality of historical data will have a great
impact on the prediction effect of structural bearing capacity.
On the one hand, the training of neural network depends on
historical data, and the inaccuracy of data will interfere with
the correct training of neural network model on the law of
structural bearing capacity, resulting in poor training effect
and inaccurate prediction accuracy; moreover, taking the
abnormal data as the actual value of the prediction result
of the verification neural network model will cause the wrong
estimation of the prediction result, so it is necessary to pre-
process the data and make it suitable for specific mining
algorithms.

2.1. Sample Abnormal Value Handling. Outliers refer to indi-
vidual values in the sample, whose values deviate significantly
from the rest of the observed values. The data of structural
bearing capacity and meteorological factors obey normal dis-
tribution, so 3σ is selected in this paper. In principle, abnor-
mal value detection shall be carried out. According to the
definition of normal distribution, the average distance is 3σ.
The probability outside is P ∣X−ð μ∣>3σÞ ≤ 0:003, which is a
minimum probability event. By default, it can be determined
that the distance exceeds the average value by 3σ. The sample

of does not exist, so if the difference between the observed
value and the average value exceeds three times the standard
deviation, it can be regarded as an abnormal value. After
detecting the abnormal value, it is necessary to select the
appropriate alternative value to replace the abnormal value
according to some selection criteria. Analyzing the structural
bearing capacity data and meteorological data, the structural
bearing capacity data at each time point has its role, so the
deletion method is not suitable. In this paper, the KNN
method of interpolation method is used to complete the out-
liers. In a given data sample, the algorithm obtains the average
value of the k data according to the data of the KNN near the
abnormal value, and then fills the average value into the
abnormal value. The algorithm is shown in Formula (1).

Xi ¼
xi−k þ⋯þ xi−1 þ xiþ1 þ⋯þ xiþk

2k
; ð1Þ

where xi−k is the kth data before the outlier, and xi+k is the
kth data after the outlier.

2.2. Normalization of Measured Data for Transmission Tower.
Different evaluation indicators often have different dimen-
sions and dimensional units, which will affect the results of
data analysis. In order to eliminate the dimensional impact
between indicators, data standardization is needed to solve
the comparability between data indicators. Among them, the
most typical is data normalization. The units of structural
bearing capacity and meteorological environment data are
different, and the values are also different. Taking them
directly as the input data of structural bearing capacity pre-
diction model will affect the prediction accuracy and cannot
guarantee the effectiveness of experimental results. The ANN
uses nonlinear activation function, and its output is limited to
[0, 1] or [−1, 1]. In order to prevent neuron saturation caused
by the use of original data, it is also necessary to normalize the
data, and uniformly scale the data of multiple variables to the
range of [0, 1]. The model uses Formula (2) to standardize
the data.

x ∗ ¼ x −min
max −min

; ð2Þ

where max is the maximum value of the original sequence
data, min is the minimum value of the original sequence
data, x is the value of the current point, and x ∗ is the value
calculated by the normalization conversion.

After the data is trained by neural network, the output
data of neural network is still within the range of [0, 1]. At this
time, it is also necessary to conduct inverse normalization
processing on the output data to make it become dimensional
data again. The inverse normalization formula is shown in
Formula (3).

y0 ¼ y × max −minð Þ þmin; ð3Þ

where y represents the output sequence data of the neural
network, max and min represent the maximum and
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minimum values of the original sequence data, respectively,
and y’ represents the data after inverse normalization.

The data standardization of all input data features elim-
inates the impact of different dimensions on the accuracy of
the prediction model, which is conducive to accelerating the
convergence speed of the model and improving the accuracy
of the model.

2.3. Correlation Analysis of Influencing Factors. Correlation
analysis refers to the analysis of two or more variable ele-
ments with correlation, so as to measure the correlation
degree of two variable factors. Pearson product moment
correlation coefficient is most commonly used to measure
the relationship between two variables. Pearson correlation
coefficient calculation formula is as follows:

r ¼ ∑N
i¼1 Xi − X
À Á

Yi − Y
À Á

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Xi − X
À Á

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1 Yi − Y
À Á

2
q : ð4Þ

(i) If r> 0, it indicates that there is a positive correlation
between the two variables, that is, when the value of
one variable increases, the value of the other variable
will also increase;

(ii) If r< 0, it indicates that there is a negative correla-
tion between the two variables, that is, when the
value of one variable increases, the value of the other
variable decreases;

(iii) If r= 0, it indicates that there is no linear correlation
between the two variables.

In addition, the absolute value of r reflects the strength of
correlation, many factors affect the structural bearing, and
there is coupling between them. If all the influencing factors
are considered in the actual structural bearing capacity pre-
diction, it will increase the difficulty of structural bearing
capacity prediction. Therefore, Pearson correlation coeffi-
cient is used to analyze the correlation between the structural
bearing capacity data and various influencing factors. The
correlation analysis results are shown in Table 1.

It can be seen from Table 1 that among the various factors
affecting the bearing capacity of the structure, the correlation
coefficient of temperature is the highest, while the correlation
coefficient of load current is the lowest. The first five charac-
teristic variables (temperature, humidity, member load, wind
speed, and geographical height) with the highest correlation
coefficient are selected as the input variables of the next algo-
rithm model. Through screening, the number of features is
reduced, which helps to reduce the calculation time and cost.
Hence, selecting features with higher correlation coefficient is
also conducive to improving the accuracy of power prediction
model.

3. Improved Algorithm Model

BPNN generally refers to a multilayer feed forward neural
network trained by error back propagation calculation
theory. Neural network has the ability of self-learning,

self-adaptive, and high-speed search for optimal solutions.
It does not need to establish complex mathematical and
physical models, but only needs to provide historical data,
and can get better prediction results. Therefore, it is widely
used in the field of prediction. The process of FWA generat-
ing normal Mars provides the algorithm with search ability,
and the process of generating special Mars and selection
process provide the algorithm with the ability to jump out
of local optimization. Because the icing bearing capacity of
transmission tower is a nonstationary random process, the
initial value of BPNN training is irregular. Using FWA to
optimize the initial weight and threshold of BPNN can make
BPNN better train and predict the data.

3.1. Setting of BPNN. Input layer, hidden layer, and output
layer are the basic structure of BPNN. The input variables of
BPNN are the temperature, humidity, member load, wind
speed, and altitude of the 2 days before the prediction day,
and the structural bearing capacity of the prediction day, that
is, the numbers of input nodes and output nodes of BPNN
are 5 and 2, which is to predict the axial stress of transmis-
sion tower members and maximum displacement between
member nodes of the transmission tower on that day. For the
determination of the number of hidden layer nodes, first, the
range of hidden layer nodes is obtained through empirical
Formula (5), and then after repeated tests, the number of
hidden layer nodes is set to 6.

s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p þ a; ð5Þ

where m and n represent the number of input layer nodes
and output layer nodes of the neural network, respectively,
and a is a constant between 0 and 10.

In the prediction model of neural network, sigmoid func-
tion is used for the activation function of input layer and
output layer, and gradient descent method is mainly used for
the training of neural network.

Network learning rate is one of the key parameters of
neural network. The lower the learning rate is, the slower the
change speed of loss function is, the longer the convergence
time is, and it is easy to fall into local optimization. The
learning rate is too large, which can accelerate the learning

TABLE 1: Correlation analysis results of structural bearing capacity
and influencing factors under icing.

No. Influence factor Correlation coefficient

1 Temperature −0.852
2 Humidity 0.836
3 Member load 0.728
4 Condensation height 0.471
5 Conductor suspension height 0.393
6 Wire diameter 0.284
7 Wind speed 0.842
8 Load current 0.279
9 Geographical height 0.823
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in the early stage of algorithm optimization, making the
model easier to approach the local or global optimal solution,
but there will be large fluctuations in the later stage, and even
the value of the loss function will hover around the optimal
solution. Momentum factor is mainly to accelerate the con-
vergence speed of the network. The selection of network
learning rate and momentum factor in this study is debugged
many times. The number of iterations mainly takes into
account the running time and whether the network is fully
iterated and updated. Too much iteration will lead to too
long running time, too little iteration, and fast running will
lead to insufficient iterations. The network still has room for
optimization. The number of iterations is generally 100–500,
depending on the operation. The details of parameter set-
tings are shown in Table 2.

3.2. Improved Fireworks Algorithm. In order to realize the
global and local ergodic search of FWA for the optimal value
of the explosion, the explosion amplitude identification
influence factor e is introduced into the explosion radius of
the FWA, as shown in Formula 6.

R0
i ¼ r − Rmax − Rminð Þ × g

T
× e

��� ���; ð6Þ

where Ri′ adopts the amplitude linear decreasing strategy,
which can realize both global search and local fine traversal
search; Rmin< r≤Rmax, r is a constant, which is used to
control the explosion amplitude of fireworks. Rmax and
Rmin are the maximum and minimum explosion amplitude
of fireworks, respectively; g is the current iteration number,
and T is the total number of iterations; e ¼ fzbest þ fbad−
f Xið Þ þε=f Xið Þ þε, fzbest is the current global optimal fit-
ness, and fbad is the current global worst fitness. When f(Xi)
= fzbest, e ¼ fbad=fzbest>1, then the fitness value is the best, the
search radius is the smallest, and local fine search is carried
out; when f(Xi) = fbad, e ¼ fzbest=fbad<1, the fitness value is
the worst, the search radius is the largest, and the global
search is a better value; When f(Xi) is other values,
fzbest=f Xið Þ ≤ e ≤ fbad=f Xið Þ, the optimization is carried out
in a linear decreasing manner from global to local with the
increase of the current iteration number g. When the explo-
sion search radius is from outside to inside, from Rmax (or r)
to Rmin (or 0), the global search is realized. When the search
radius is from inside to outside, from Rmin (or 0) to R′ or the
fine search is carried out near the explosion point, because
there are more high-quality sparks near the explosion point,
this can ensure the fine search near the explosion point. The
original explosion search takes the fitness value as the radius

and expands the search one by one. The search efficiency is
low and it is easy to fall into local optimization. The
improved explosion amplitude gradually shrinks with the
increase of the current iteration times, and the search effi-
ciency is greatly improved. The factor e can reflect the search
radius, which can not only achieve high-efficiency global
search, but also achieve local fine search, especially strengthen
the search near the origin.

According to the steps of the FWA, the key parameters
are set as follows: the population size determines the diver-
sity of sparks. The population size is generally selected as five,
and the number of sparks determines the number of sparks
generated by explosion. The more the number, the greater
the possibility of finding the optimal solution, but the longer
the time is required. In order to reduce the running time, the
value of spark number is smaller; the upper and lower limits
of sparks are used to limit the number of sparks, so that each
spark can explode a new number of sparks, and its value is
related to the spark adjustment constant. The variation spark
number is mainly used to enhance the ability of global explo-
ration, and the number of iterations is 100–500 generally. If
the number of iterations is large, the running speed is slow.
The number of iterations in this paper is set to 300. The
specific parameter settings are shown in Table 3.

3.3. Improved FWA-BPNN Model. BP neural network has
two obvious shortcomings: one is easy to fall into local mini-
mum, the other is slow convergence. FWA has the advan-
tages of simple mechanism and strong optimization ability.
In the paper, FWA is introduced into neural network model
to optimize the weight and threshold of neural network to
achieve the most effective learning and prediction of neural
network. The algorithm flow of optimizing BPNN based on
FWA is shown in Figure 1, and the architecture of proposed
network model is presented in Figure 2.

3.4. Validation of the Improved Model. To verify the optimi-
zation ability and effectiveness of the algorithm in this paper,
three benchmark functions are used for simulation test.

f1 xð Þ ¼ ∑
D

i¼1
x2i ; ð7Þ

TABLE 2: Key parameters of BP neural network.

Parameter Parameter description Parameter value

Lr Learning rate 0.02
Mc Momentum factor 0.09
Epochs Training maximum iterated algebra 300
Goal Minimum error of training target 0.001

TABLE 3: Key parameter selection of improved fireworks algorithm.

Parameter Parameter description
Parameter

value

D Size of firework population 5

M
Firework explosion spark number

adjustment constant
8

Lm
Upper bound of the number of

firework explosion sparks
5

Bm
Lower bound of the number of

firework explosion sparks
1

G Gaussian variation spark number 5
T Maximum iterated algebra 300
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f2 xð Þ ¼ −20 exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

∑
D

i¼1
x2i

s !
− exp

1
D

∑
D

i¼1
cos 2πxið Þ

� �
;

ð8Þ

f3 xð Þ ¼ ∑
D

i¼1
x2i − 10 cos 2πxið Þ þ 10ð Þ: ð9Þ

To further verify the prediction performance based on
FWA-BPNN, the same data sets are used to train the traditional
BPNN, GA improved BPNN (GA-BPNN) and particle swarm
optimization algorithm improved BPNN (PSO-BPNN). The
parameter setting of the GA algorithm is: population size
popu=30, genetic algebra gen=100, crossover probability
pcross=0.8, and mutation probability pmutation=0.05. For
PSO algorithm, the parameters are: speed update parameter
c1 = c2 = 1.49445, evolution times maxgen=150, population
size sizepop=30, individual maximum popmax= 7, individual
minimum popmin =−7, individual maximum speed vmax= 1,
and individual minimum speed vmin =−1. The parameters of
BPNN in BPNN prediction model optimized by different algo-
rithms are the same as those in FWA-BPNNmodel. The exper-
imental results are shown in Table 4.

From the above experiments, it can be seen that in the
optimization of the three test functions, the improved FWA
proposed in this paper is superior to other algorithms in
accuracy, running time, stability, and convergence speed.
Therefore, the FWA is very successful for the optimization
of BPNN, and the optimized model is more suitable for
engineering analysis and calculation.

3.5. Experimental Example Verification. In order to further ver-
ify the prediction performance of the FWA-BPNNmodel in the
bearing capacity prediction of transmission towers, under the
conditions of selecting the same training parameters and using
the same dataset, the BPNN, FWA, FWA-BPNN, PSO-BPNN,
and GA-BPNN prediction models for the bearing capacity of
icing structures are trained and tested, respectively. When mea-
suring the performance of the model, the following four error
indicators are usually selected: root-mean-square error (RMSE),
mean absolute error (MAE), and mean absolute percentage
error (MAPE). RMSE accumulates the squares of errors first
and then deduces the squares, which is sensitive to outliers.
MAE is a basic index to investigate the average of absolute
errors, and reflects the real errors. MAPE not only considers

Start

End

Y

N

Y

N

Determine the topology of BP neural network

Initialize neural network weight threshold

Release fireworks at n locations

Obtain explosive sparks and Gaussian sparks

Meet the termination conditions

Select n locations

Obtain optimal weights and thresholds

Calculate the errors

Update weight threshold

Meet the termination conditions

Simulation prediction

FIGURE 1: The flow diagram of the improved FWA-BPNN.
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Wij (t)
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∑, ∫, f
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Vjk

∑, g

∑, g

y1

y2

FIGURE 2: The architecture of proposed network model.
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the error between the predicted value and the real value, but
also shows the ratio of the error to the real value.

Assume that the predicted value is x= {x1, x2,…, xn}, and
the true value is y= {y1, y2,…, yn}. The calculation formulas
for the four indicators are as follow:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
xi − yið Þ2

r
; ð10Þ

MAE ¼ 1
n
∑
n

i¼1
xi − yij j2; ð11Þ

MAPE ¼ 100%
n

∑
n

i¼1

xi − yi
yi

����
����: ð12Þ

In addition to the indicators of the above three evaluation
models, training error and test error are also used as indica-
tors for model evaluation. The training error is the average
error of the model in the training set, which is used to mea-
sure the fitting of the model to the training set. Large training
error indicates insufficient learning of training set character-
istics, while too small training set indicates over learning of
training set characteristics and easy over fitting. The test
error is the average error of the model on the test set, which
is used to measure the generalization ability of the model.

In this section, the measured data of power transmission
tower monitoring over the years are used, and the 2019
annual data are intercepted for analysis. The dataset includes

the temperature, humidity, member load, wind speed, geo-
graphical height, and the historical bearing capacity of the
corresponding transmission tower every 15min. Select the
first 80% of the dataset as the training dataset to train the
prediction model, and the last 20% of the data are set as the
test data to test and verify the model. The experiment results
are listed in Table 5.

From the above experiments, it can be seen fromTable 5 that
although the errors of different models for the prediction results
of the bearing capacity of the transmission tower structure fluc-
tuate, the error fluctuation of the prediction model based on the
FWA-BPNN is smallest, and the error fluctuation of the tradi-
tional BPNNmodel and the traditional FWAmodel is large. The
GA-BPNNmodel and the PSO-BPNNmodel have higher accu-
racy for bearing capacity prediction than the traditional BPNN
model and the traditional FWA model, and are lower than the
FWA-BPNN prediction model. Hence, the FWA-BPNNmodel
proposed in this paper can be applied to the structural analysis
of transmission towers under icing conditions.

4. Axial Stress and Maximum Displacement
Prediction Calculation Based on FWA-BPNN
Prediction Model

4.1. Research Object of the Transmission Tower. 500 kV
straight-line cathead tower is common in southwest, north-
west, and central of China. The main material of the trans-
mission tower is Q345 steel, and the inclined material and

TABLE 4: Comparison of optimization results of three benchmark functions by each algorithm.

Benchmark function Algorithm name Mean value Standard deviation Optimization time (s)

f1

BP NN 1.7281× 10−12 5.6198× 10−13 48.5694
FWA 3.1572× 10−17 9.3641× 10−18 50.0481

GA-BP NN 0.0024 0.0138 47.8787
PSO-BP NN 4.5293× 10−7 4.4127× 10−7 49.5428
FWA-BPNN 2.4031× 10−41 8.9402× 10−42 41.4849

f2

BP NN 1.5295× 10−6 1.1327× 10−7 48.5752
FWA 1.3026× 10−5 1.2084× 10−6 55.2036

GA-BP NN 0.0071 0.0025 64.0014
PSO-BP NN 0.0094 0.0026 48.8123
FWA-BPNN 8.9563× 10−16 0 45.9563

f3

BP NN 4.5948× 10−10 9.8526× 10−11 48.2761
FWA 2.6798× 10−11 5.5296× 10−12 48.5982

GA-BP NN 0.0044 0.0003 49.1628
PSO-BP NN 16.5288 3.3219 46.3562
FWA-BPNN 0 0 39.6229

TABLE 5: Comparison of model prediction error indicators.

Index BP NN FWA GA-BP NN PSO-BP NN FWA-BPNN

RMSE 0.83 0.76 0.74 0.71 0.59
MAE 0.65 0.64 0.59 0.58 0.53
MAPE/% 119.21 118.35 33.87 31.94 6.18
Training error 0.0128 0.0126 0.0124 0.0123 0.0130
Test error 0.0149 0.0147 0.0158 0.0145 0.0134
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auxiliary material are Q235 steel, which is within 1,000m
above sea level. The design wind speed is 30m/s, and the
conductor is 4× LGJ-400/35 single circuit iron tower. The
nominal height of the transmission tower is 48m, the hori-
zontal span is 500m, the vertical span is 700m, and the
representative span is 400m. In the southwest and central
of China, the average temperature is almost higher than 0°C,
but affected by the Siberian cold current and the warm and
humid climate of the Pacific Ocean, short-term rime and
rime icing meteorological conditions occur almost every
winter. The average number of rime days is 3–15 days. The
short-term rime icing has caused huge losses to the power
system. The structural diagram of the transmission tower is
given in Figures 3–6.

4.2. Structural Bearing Capacity Analysis of Transmission
Tower Steel Members Based on Improved FWA-BPNN Model.
Using the BP neural network model optimized by the FWA
proposed in this paper, the axial stress of tower members and
maximum displacement between member nodes of the trans-
mission tower under the icing condition calculations are car-
ried out for this transmission tower, and the node number of
the rod starts from the top left. Some calculation results are
listed in Tables 6–10, and Pd is the design load in the tables.

By analyzing the failuremember load stress in Tables 6–10
of the above transmission tower under icing conditions, it can
be seen that under the design load, four inclined beams above
the transverse septum of the neck were damaged. Supposing
the load step is 1.14Pd, the failure bars of the transmission
tower spread to the symmetrical sides of the tower top and
tower head, respectively. Once the load step is 1.28Pd, the
failure part does not spread, but when the load is 1.44Pd,
the number of failed members continues to increase. As the
load step is 1.61Pd, the tensile strength of two inclined mate-
rials on the leeward side of the middle of the tower head is
damaged.When the load step is 1.79Pd, two damaged inclined
materials are added on one side of the cross arm of the middle
conductor. If the load step is 1.98Pd, the damaged inclined
material spreads to the other side of the middle conductor
cross arm, and the tensile strength of two inclined materials

on the windward side in the middle of the tower head is
damaged. When the load is 2.18Pd, two damaged diagonal
members are added above the cross arm of the middle con-
ductor, and at the same time, the number of damaged diago-
nalmembers above the neck diaphragm is increased. Once the
load is 2.40Pd, the number of damaged diagonal members
above the neck diaphragm continues to increase. When the
load is 2.62Pd, the number of failed members continues to
increase. If the load is 3.11Pd, two damaged diagonal members
are added under the cross arm of themiddle conductor.When
the load is 3.50Pd, the main material above the middle con-
ductor cross arm is damaged, the tensile strength of two main
materials below the middle conductor cross arm is damaged,
the mainmaterial on the neck diaphragm is damaged, and the
main material above the neck diaphragm is damaged. If the
ice thickness reaches 36mm, the overall stiffness matrix of
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FIGURE 4: Vertical view of transmission tower (along the line).

FIGURE 3: Schematic of the transmission tower.
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the structure is singular, and the program exits, and the trans-
mission tower structure reaches the ultimate bearing capacity.

5. Conclusions

(i) In order to ensure the stability of themechanical struc-
ture of the transmission tower and further improve the
accuracy of bearing capacity prediction, this paper
proposes a BP neural network prediction model based
on FWA optimization. Through data processing and

algorithm model experimental analysis, it shows that
through the calculation and analysis of data normali-
zation and correlation, the dimension of the data is
reduced, thus reducing the calculation cost, and mak-
ing relevant preparations for improving the accuracy
of the model in the later stage.

(ii) For the sake of realizing the global and local ergodic
search for the optimal value of the explosion, the explo-
sion amplitude judgment factor e is introduced into the
explosion radius of FWA, which greatly improves
the search efficiency. By introducing FWA to optimize
the weight and threshold of BP neural network, the
shortcomings of BP neural network easy to fall into
the minimum and slow convergence speed are solved,
and the prediction accuracy is improved.

(iii) The experiment compares FWA-BPNN model with
traditional BP neural network and other neural net-
work models. The results show that the prediction

FIGURE 6: Load diagram of transmission tower under icing condition.
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48
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FIGURE 5: Transverse elevation of transmission tower.
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TABLE 6: Transmission tower member stress list (I).

Member no.
1.00Pd 1.14Pd 1.28Pd

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

258 −143.53 −47.73 −143.43 −54.12 −144.53 −56.99
260 −144.54 46.57 −144.21 53.41 −144.65 60.77
270 292.78 108.47 292.85 119.66 292.67 134.11
275 294.01 104.03 294.05 115.32 294.67 126.03
289 −138.96 −54.18 −138.75 −59.12 −140.03 −65.56
296 −154.98 59.16 −155.77 65.30 −155.98 73.07
297 −155.86 55.04 −154.86 61.10 −157.01 68.01
678 −126.43 31.01 −126.46 33.98 −126.01 38.77
685 −197.48 74.91 −199.02 83.00 −200.04 90.88
1,147 −60.04 −25.14 −60.12 −28.11 −60.04 −29.46
1,161 −49.63 −7.03 −49.02 −7.04 −49.01 −7.98
1,163 200.35 120.14 200.15 133.22 200.43 145.67
1,164 −109.12 −109.01 −109.12 −119.67 −109.23
1,165 −104.52 −74.07 −104.57 −82.05 −104.05 −91.13
1,166 −64.65 −56.95 −64.14 −63.01 −64.56 −69.12
1,168 −65.06 −74.15 −64.11 −64.99
1,170 −74.37 −56.97 −74.77 −63.32 −74.56 −69.33
1,172 −76.85 −74.67 −76.68 −81.30 −76.78
1,175 −105.41 −74.17 −104.37 −82.02 −104.09 −91.08
1,176 200.43 120.02 200.15 133.04 200.65 145.98
1,177 −130.01 −107.57 −127.98 −119.82 −127.89 −133.33
1,198 −84.14 −33.44 −84.32 −36.72 −84.32 −39.12
1,199 −83.98 −33.08 −84.64 −36.60 −84.09 −39.06
1,202 −84.15 −44.13 −84.17 −49.03 −84.25 −54.34
1,203 −84.18 −44.39 −84.18 −49.53 −84.15 −54.61
1,224 −141. 73 −81.92 −141.17 −91.17 −141.75 −99.89
1,235 −149.98 −81.96 −149.77 −91.27 −149.98 −100.09
1,337 −115.98 −110.02 −116.05 −122.41 −116.07
1,338 200.05 143.03 200.61 158.13 200.43 171.99
1,339 −105.50 −89.51 −105.51 −98.54 −105.65 −108.10
1,342 −89.16 −92.02 −89.14 −89.16
1,348 −89.14 −91.98 −89.16 −89.16
1,350 −67.22 −73.09 −67.35 −67.54
1,351 −104.97 −89.15 −104.93 −98.51 −104.99 −108.13
1,352 −118.14 −110.09 −118.11 −123.23 −118.16
1,353 199.98 142.11 200.05 157.23 199.97 173.14
1,355 −49.42 −8. 55 −48.99 −9. 37 −49.51 −9.79
1,389 −70.04 −25.02 −70.15 −28.54 −70.14 −32.04
1,419 −119.61 −74.56 −119.59 −82.31 −119.60 −90.12
1,430 −119.59 −74.51 −119.60 −82.28 −119.58 −90.23
1,443 −114.53 −45.26 −114.61 −50.19 −114.52 −55.26
1,444 −126.57 −60.50 −126.60 −66.80 −126.59 −73.70
1,455 −84.88 −44.14 −84.98 −48.86 −85.18 −53.87
1,456 −85.01 −44.21 −84.99 −48.90 −85.03 −53.79
1,458 −84.96 −33.28 −84.89 −36.76 −85.05 −40.67
1,467 −65.03 −25.22 −64.97 −28.10 −65.06 −30.98
1,472 −49.92 −18.71 −49.99 −20.05 −50.02 −22.89
1,487 −49.98 −22.69 −50.02 −25.16 −50.04 −27.75
1,492 −44.78 −20.99 −44.91 −23.15 −44.89 −25.17

10 Advances in Civil Engineering



TABLE 7: Transmission tower member stress list (II).

Member no.
1.44Pd 1.61Pd 1.79Pd

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

258 −146.26 −65.64 −144.44 −69.35 −146.27 −76.98
260 −146.67 64.36 −144.74 73.35 −147.74 80.09
270 294.27 145.64 295.26 164.53 295.74 175.66
275 295.52 140.46 294.86 155.53 294.85 166.63
289 −140.52 −73.66 −140.96 −80.35 −140.58 −86.03
296 −155.52 79.35 −155.86 85.35 −155.99 95.56
297 −155.25 72.53 −155.59 82.53 −155.96 90.63
678 −125.25 43.97 −126.75 45.35 −127.69 53.66
685 −200.11 99.64 −200.77 113.53 −200.69 123.55
1,147 −60.53 −34.64 −60.57 −37.53 −59.69 −44.55
1,161 −49.53 −7.14 −49.75 −8.09 −50.69 −8.64
1,163 200.74 165.60 200.55 179.85 200.69 196.66
1,164 −109.47 −109.85 −109.96
1,165 −105.75 −100.46 −105.77 −109.70 −105.56
1,166 −64.77 −65.77 −65.35
1,168 −64.56 −66.57 −64.53
1,170 −74.27 −77.64 −74.46 −74.53
1,172 −76.85 −76.56 −76.53
1,175 −105.86 −99.86 −105.67 −111.86 −104.47
1,176 200.85 165.64 200.76 180.86 200.55 194.66
1,177 −127.78 −130.68 −128.57
1,198 −84.25 −45.86 −84.56 −47.97 −84.55 −52.55
1,199 −83.63 −44.44 −84.54 −48.46 −83.57 −53.03
1,202 −84.53 −60.64 −83.64 −65.64 −84.75 −73.55
1,203 −84.15 −59.01 −84.28 −63.17 −84.28 −67.31
1,224 −141.73 −111.09 −141.74 −121.15 −141.56 −133.03
1,235 −149.69 −109.86 −149.68 −119.79 −149.66 −131.90
1,337 −116.05 −116.03 −116.07
1,338 200.55 190.05 200.63 207.31 200.61
1,339 −105.57 −105.48 −105.63
1,342 −89.16 −89.14 −89.17
1,348 −89.15 −89.16 −89.16
1,350 −67.59 −67.46 −67.55
1,351 −105.01 −104.97 −104.99
1,352 −118.16 −118.21 −118.14
1,353 199.95 190.03 200.01 207.45 200.05
1,355 −48.99 −10.16 −49.32 −11.73 −49.45 −18.24
1,389 −69.97 −33.60 −70.13 −37.30 −70.15 −48.13
1,419 −119.61 −99.46 −119.57 −109.34 −119.61 −121.59
1,430 −119.57 −99.51 −119.61 −109.28 −119.60 −121.71
1,443 −114.47 −60.14 −114.51 −66.52 −114.61 −72.87
1,444 −126.59 −81.26 −126.66 −89.41 −126.78 −97.78
1,455 −85.08 −59.16 −84.98 −65.49 −85.15 −72.21
1,456 −84.96 −59.21 −84.87 −65.61 −85.06 −72.26
1,458 −84.97 −45.75 −85.05 −49.69 −84.98 −53.95
1,467 −65.03 −32.10 −64.97 −35.20 −65.03 −38.60
1,472 −49.99 −24.85 −50.02 −27.42 −49.96 −29.79
1,487 −49.95 −30.15 −49.92 −32.71 −50.04 −34.68
1,492 −44.91 −28.37 −44.87 −30.54 −44.95 −33.31
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TABLE 8: Transmission tower member stress list (III).

Member no.
1.98Pd 2.18Pd 2.40Pd

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

258 −144.46 −85.36 −146.47 −94.85 −146.74 −101.42
260 −144.85 89.36 −146.47 100.08 −146.47 109.05
270 295.26 195.46 295.47 212.28 295.28 231.02
275 295.24 185.08 295.47 204.71 295.27 222.25
289 −140.66 −95.45 −140.84 −103.34 −140.67 −112.42
296 −155.76 106.05 −155.47 115.06 −155.73 125.05
297 −155.64 98.43 −155.74 108.76 −155.36 117.05
678 −127.64 59.66 −127.85 65.86 −127.36 70.72
685 −200.63 135.06 −200.53 145.63 −200.33 160.52
1,147 −60.42 −45.47 −60.57 −55.63 −60.36 −62.55
1,161 −49.74 −14.09 −49.75 −19.09 −49.63 −24.75
1,163 200.46 208.67 200.85 200.63
1,164 −109.47 −109.64 −109.89
1,165 −105.75 −105.67 −105.46
1,166 −65.74 −64.46 −65.64
1,168 −66.59 −66.54 −66.54
1,170 −74.21 −74.66 −74.61
1,172 −76.64 −76.56 −76.56
1,175 −105.15 −105.16 −105.14
1,176 200.65 208.75 200.76 200.64
1,177 −130.15 −130.16 −130.46
1,198 −84.53 −57.47 −84.56 −63.53 −85.46 −68.86
1,199 −84.35 −58.47 −84.55 −63.75 −85.56 −68.86
1,202 −84.42 −79.07 −84.42 −84.64 −84.53 −85.28
1,203 −84.28 −70.90 −84.24 −76.34 −84.28 −81.10
1,224 −141.73 −147.55 −141.71 −141.73
1,235 −149.88 −144.97 −149.78 −157.89 −149.68
1,337 −116.04 −116.05 −116.08
1,338 200.55 200.74 200.69
1,339 −105.57 −105.61 −105.63
1,342 −89.16 −89.13 −89.17
1,348 −89.14 −89.16 −89.15
1,350 −67.57 −67.59 −67.61
1,351 −105.07 −104.89 −105.03
1,352 −118.16 −118.21 −118.13
1,353 199.95 200.05 200.03
1,355 −49.42 −25.14 −48.98 −32.02 −49.37 −37.34
1,389 −70.09 −58.25 −69.99 −66.69 −70.11 −74.43
1,419 −119.56 −119.60 −119.57
1,430 −119.60 −119.58 −119.61
1,443 −114.51 −79.80 −114.53 −87.65 −114.61 −95.90
1,444 −126.60 −107.53 −126.59 −117.71 −126.64 −129.53
1,455 −84.99 −77.90 −85.05 −87.12 −85.08
1,456 −85.05 −77.90 −85.01 −87.10 −85.01
1,458 −84.98 −58.60 −85.05 −65.21 −84.96 −70.10
1,467 −65.06 −44.32 −65.03 −47.54 −64.97 −51.22
1,472 −49.97 −33.17 −50.04 −34.42 −50.02 −37.31
1,487 −50.02 −38.56 −49.98 −40.23 −50.04 −42.45
1,492 −44.87 −35.18 −44.92 −38.63 −44.89 −41.49
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TABLE 9: Transmission tower member stress list (IV).

Member no.
2.62Pd 3.11Pd 3.50Pd

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

Failure stress
(MPa)

Actual stress
(MPa)

258 −144.85 −110.24 −146.26 −133.52 −146.44 −150.16
260 −144.65 121.28 −146.67 136.19 −146.47 150.87
270 294.74 253.55 295.47 285.23 295.52 310.64
275 294.86 244.65 295.27 276.87 295.47 303.18
289 −140.52 −120.53 −140.67 −137.22 −140.85 −145.65
296 −155.76 135.11 −155.73 153.45 −155.98 168.48
297 −155.59 126.70 −155.71 144.86 −155.96 160.03
678 −126.71 79.65 −127.51 98.41 −127.89 136.85
685 −200.53 176.34 −200.75 193.51 −200.81 196.62
1,147 −60.45 −60.51 −60.57
1,161 −49.79 −32.56 −50.32 −55.95 −49.72
1,163 200.43 200.63 200.75
1,164 −109.81 −109.75 −109.85
1,165 −105.45 −105.56 −105.75
1,166 −64.74 −64.85 −65.35
1,168 −66.59 −66.54 −66.57
1,170 −74.37 −74.53 −74.56
1,172 −76.79 −76.85 −76.68
1,175 −105.17 −105.41 −105.56
1,176 200.15 200.65 200.64
1,177 −130.09 −130.13 −130.18
1,198 −84.46 −75.61 −84.58 −87.90 −84.58
1,199 −83.98 −74.19 −84.46 −86.73 −84.54
1,202 −84.42 −84.25 −84.53
1,203 −84.18 87.28 −84.28 −84.24
1,224 −141.73 −141.56 −141.75
1,235 −149.68 −149.77 −149.78
1,337 −116.08 −116.05 −116.07
1,338 200.43 200.61 200.55
1,339 −105.63 −105.57 −105.61
1,342 −89.16 −89.18 −89.14
1,348 −89.14 −89.16 −89.17
1,350 −67.49 −67.31 −67.54
1,351 −104.99 −104.97 −105.03
1,352 −118.20 −118.13 −118.16
1,353 200.05 199.98 200.05
1,355 −49.92 −53.86 −48.99 −49.32
1,389 −69.99 −70.04 −70.14
1,419 −119.57 −119.61 −119.63
1,430 −119.56 −119.58 −119.57
1,443 −114.63 −105.03 −114.49 −119.31 −114.67
1,444 −126.47 −126.60 −126.73
1,455 −85.18 −84.89 −84.98
1,456 −84.97 −85.01 −85.05
1,458 −84.89 −77.35 −85.05 −87.64 −85.11
1,467 −65.03 −55.96 −65.04 −64.42 −65.06 −72.17
1,472 −49.96 −39.34 −50.03 −55.78 −50.02
1,487 −49.95 −53.51 −49.92 −50.04
1,492 −44.92 −46.67 −44.82 −44.79
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TABLE 10: Displacement under different icing thickness.

Icing thickness
(mm)

Displacement in X direction
(mm)

Displacement in Y direction
(mm)

Displacement in Z direction
(mm)

Total displacement
(mm)

10 ≤0.001 65.25 −15.77 67.23
10.5 ≤0.001 65.89 −16.57 68.33
11 ≤0.001 66.54 −17.24 69.86
11.5 ≤0.001 68.01 −18.03 70.72
12 ≤0.001 69.85 −18.85 72.47
12.5 ≤0.001 70.11 −19.11 73.56
13 ≤0.001 71.27 −19.53 74.08
13.5 ≤0.001 73.01 −19.89 75.63
14 ≤0.001 74.42 −20.84 77.05
14.5 ≤0.001 75.32 −20.91 78.65
15 ≤0.001 76.35 −21.14 80.57
15.5 ≤0.001 77.97 −22.57 81.38
16 ≤0.001 79.04 −23.67 82.33
16.5 ≤0.001 80.47 −24.02 83.45
17 ≤0.001 81.95 −24.24 85.36
17.5 ≤0.001 82.11 −25.36 86.73
18 ≤0.001 83.55 −26.18 88.95
18.5 ≤0.001 84.98 −26.79 89.55
19 ≤0.001 86.25 −27.15 91.36
19.5 ≤0.001 88.04 −28.43 92.58
20 ≤0.001 89.52 −29.89 94.37
20.5 ≤0.001 90.85 −30.07 95.35
21 ≤0.001 92.95 −30.36 97.85
21.5 ≤0.001 94.12 −31.43 99.17
22 ≤0.001 95.73 −32.96 101.36
22.5 ≤0.001 97.04 −34.16 103.44
23 ≤0.001 98.55 −35.04 105.07
23.5 ≤0.001 99.56 −36.55 106.72
24 ≤0.001 100.35 −38.53 108.40
24.5 ≤0.001 101.51 −40.74 111.06
25 ≤0.001 103.91 −43.07 113.74
25.5 ≤0.001 104.79 −45.32 114.79
26 ≤0.001 106.25 −47.33 116.34
26.5 ≤0.001 107.31 −48.83 118.44
27 ≤0.001 108.75 −51.28 120.47
27.5 ≤0.001 109.52 −53.55 123.54
28 ≤0.001 111.54 −55.26 125.57
28.5 ≤0.001 113.64 −57.33 129.05
29 ≤0.001 115.12 −60.47 131.55
29.5 ≤0.001 117.42 −62.55 134.25
30 ≤0.001 120.74 −64.56 137.93
30.5 ≤0.001 122.76 −68.32 141.68
31 ≤0.001 125.53 −70.07 145.46
31.5 ≤0.001 128.33 −72.69 149.27
32 ≤0.001 131.63 −75.36 152.68
32.5 ≤0.001 134.78 78.23 157.59
33 ≤0.001 137.75 −81.96 160.75
33.5 ≤0.001 140.03 −85.24 163.98
34 ≤0.001 142.53 −88.78 168.05
34.5 ≤0.001 145.51 91.49 173.66
35 ≤0.001 148.69 −95.44 177.90
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result of FWA-BP neural network is closer to the
actual value, the error is smaller, and the model is
more stable. The improved FWA-BP neural network
is applied to the structural bearing capacity analysis
of transmission tower line under icing, which rea-
lizes the accurate prediction of bearing capacity
under complex meteorological conditions, and pro-
vides a reference for the study of transmission tower
engineering mechanics.

By using the FWA to analyze the ultimate bearing capacity and
study the failure path of the 500 kV linear cathead tower struc-
ture, the weak parts of the transmission tower under icing
conditions are accurately identified. Obviously, this method
can effectively predict the damage of the transmission tower
structure and the results are highly reliable. In the future, fur-
ther in-depth research will be conducted on the damage
prediction of transmission tower structures under different
transmission tower types, voltage levels, and design conditions.
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