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The lateral–torsional buckling (LTB) performance assessment of laminated glass (LG) beams is a remarkably critical issue because—
among others—it can involve major consequences in terms of structural safety. Knowledge of LTB load-bearing capacity (in terms of
critical buckling load Fcr and corresponding lateral displacement dLT), in this regard, is, thus, a primary step for more elaborated
design considerations. The present study examines how machine learning (ML) techniques can be used to predict the response of
laterally unrestrained LG beams in LTB. The potential and accuracy of artificial neural networks (ANN), based on ML methods, are
addressed based on validation toward literature data. In particular, to detect the best-performing data-driven ML model, the load-
bearing capacity of LG beams (i.e., Fcr and dLT) is set as output response, while geometric properties (length, width, thickness) and
material features (for glass and interlayers) are used as input variables. A major advantage is taken from a literature database of 540
experiments and simulations carried out on two-ply LG beams in LTB setup. To determine the best-performing ANN model,
different strategies are considered and compared. Additionally, the Bayesian regularization backpropagation (trainbr) algorithm is
used to optimize the input–output relationship accuracy. The suitability of present modeling strategy for LG beams in LTB is
quantitatively discussed based on error and performance trends.

1. Introduction

Soda–lime glass is increasingly used as structural material for
load-bearing components in buildings and constructed facil-
ities [1]. In this regard, it is widely known that specific
modeling techniques and verification methods are required
to analyze and maximize the robustness, ultimate resistance,
serviceability, and stability of glass members, which are typi-
cally made of a rather brittle/vulnerable material [2], but are
indeed expected to ensure safe and efficient load-bearing
structural performances (Figure 1). For this reason, espe-
cially in the last two decades, a wide set of literature studies
have been carried out to improve and support the structural
analysis and design of glass members or systems under vari-
ous loading and boundary configurations of technical signif-
icance, such as columns, beams, plates in compression
or shear [3–6], etc. Regardless the specific loading and

boundary configuration and the intrinsic brittleness of glass
material, a major attention goes to the design of laminated
glass (LG) because the thermoplastic polymers commonly
used to bond the glass sheets together are significantly tem-
perature and load–time sensitive [2].

The present investigation specifically focuses on the buck-
ling behavior assessment and on the load-bearing capacity
prediction of LG members with beam-like structural function
[7–12]. Among various relevant buckling collapse mechan-
isms for glass members [13–15], the attention of current study
is given to unrestrained LG beams in lateral–torsional buck-
ling (LTB), which is known to represent a possible condition
of sudden and premature failure. Differing from LG beams
with continuous adhesive [16–18] or discrete mechanical [19]
lateral restraints, unrestrained LG beams are in fact associated
to limited load-bearing capacity. For this reason, several ana-
lytical models have been elaborated in the years to capture and
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predict their LTB performance [20–23]. It was, thus, shown
that the critical buckling load of LG beams in LTB can be
roughly predicted based on simplified estimates in which the
secant–stiffness moduli for bonding interlayers is taken into
account, in comparison to more refined, time-consuming but
also more accurate viscoelastic finite element (FE) numerical
simulations [24, 25].

The concepts of artificial intelligence (AI), machine
learning (ML), and artificial neural networks (ANN) contin-
uously spread in the industrial and research sectors. Many
applications can be found for solving problems in civil and
structural engineering [26], for example, to support the esti-
mation of material properties and load-bearing parameters
for a multitude of structural members and systems [27–29].
In terms of load-bearing capacity of constructional members,
AI is particularly advantageous toward expensive campaigns
experimental and simulation studies, especially for compos-
ite systems whose performance is based on the mechanical
interaction of different materials [30–33].

The present investigation, in this regard, demonstrates
how AI could be efficiently used for glass engineering appli-
cations and in particular for the specific issue of LTB perfor-
mance assessment. To this aim, a database of 540 trials is
taken into account from literature, and both the critical load
Fcr and lateral displacement dLT are investigated for several
LG beam arrangements. A feedforward perceptron ANN
model [34] is trained to generalize the output (Fcr and dLT)
for two input parameters, over the prescribed ranges. Trial
and error approach is used to identify the optimal network
architecture. The presented results, more in detail, show that
a two-layer configuration with 10–14 neurons in the hidden
layer and the tansig function performs the best, compared to
other options, and can efficiently support the LTB design of
LG members.

To note that the current study may possibly contribute to
the development of new reliable analytical models for the
design and verification of glass structures, given that various
loading and boundary configurations of practical interest
could be efficiently taken into account in the choosen
ANN modeling strategy.

2. LTB Background and ANN Modeling Steps

2.1. Mechanical Behavior in LTB. A typical LG beam, as
shown in Figure 2(a), consists of minimum two glass sheets
bonded by a thermoplastic film (commonly poly (vinyl

butyral) or SentryGlas). Depending on the bond shear stiff-
ness that the interlayer can offer, the glass components can
mechanically interact and contribute to the critical buckling
load Fcr of the composite LG section. For a given LG beam in
LTB setup, as far as the interlayer is stiff, the torsional stiff-
ness of the LG section increases, and this minimizes the
lateral displacement dLT at midspan, under the imposed
load. Besides, practical configurations of LG members can
be hardly associated to a “rigid” bond condition [24, 25]. The
experimental setup schematized in Figure 2(b), in this regard,
was used in [24, 25] to study the LTB capacity of two-ply LG
beams subjected to concentrated midspan load F, which was
monotonically increased until buckling collapse. The LG
beam samples were characterized by:

(i) Glass thicknesses t1= t2 equal to 4, 10, or 19mm,
respectively.

(ii) Length L0 comprised between 1,000 and 6,000mm
(with step increment of 1,000mm).

(iii) Width h in the range of 120–300mm, thus resulting
in a length-to-width ratio L0/h equals to 8, 10, 12, 15,
19, or 25, respectively.

(iv) Isotropic, elastic material properties for glass
(with Young’s modulus E = 70GPa, shear modulus
G = 28.45 GPa, and Poisson’s ratio n = 0.23).

(v) A bonding interlayer with thickness tint, variable
shear modulus Gint (based on secant–stiffness equiv-
alent approach), and Poisson’s ratio nint= 0.49.

An extended analytical and FE numerical parametric
analysis was, thus, also carried out to assess the experimental
evidences in terms of Fcr, but also in terms of typical rela-
tionship between sustained load F and corresponding out-of-
plane/lateral displacement dLT [24, 25]. From an analytical
point of view, among the available approaches, the study in
[25] highlighted the rather good accuracy of modeling strategy
based on the concepts of equivalent bending stiffness EJy,eff and
equivalent torsional stiffness GJt for LTB analysis of LG beams.
To note that both the above stiffness terms should necessarily
account for the equivalent secant stiffness Gint of bonding inter-
layer, to reduce the scatter with viscoelastic simulations [25].

2.2. Bayesian Regularization Backpropagation Neural Network.
According to above literature evidences, the present research
study poses the attention on major LTB results from [25] in
terms of Fcr and dLT. A modeling strategy based on four key
steps, as shown in Figure 3, is taken into account. The support-
ing database is split into training and test sets, with an
80%–20% ratio, and the error/performance of different ML
models is compared using different accuracy metrics (Table 1).
Three different closed-form equation formats (M1, M2, and
M3, in the following) are taken into account, based on the
application of the Bayesian regularization backpropagation
algorithm (trainbr) to ANN modeling (see Figure 3 and
Section 3).

To note that for present study, according to step 2, as
shown in Figure 3, a dataset normalization approach is

FIGURE 1: Glass canopy in Tokyo, Japan (© 2023 Rafael Vinoly
Architects).
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FIGURE 2: View of the typical experimental setup taken into account for LG beams in LTB under concentratedmidspan load F: (a) cross-section and
layout; (b) side view of experimental stages; (c) experimentally measured load–displacement response and corresponding analytical predictions
(figures (b) and (c) reproduced from [25] with permission from Elsevier©, copyright license agreement no. 5516521056620, March 2023).
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considered to facilitate the comparison and analysis of dif-
ferent ML models, that is:

0 ≤ xi ¼
0:8

dmax − dmin
⋅ di − dminð Þ þ 0:1 ≤ 1; ð1Þ

where dmax is the maximum value, dmin is the minimum
value, and di is the i-th value of input and output data.

Feedforward backpropagation networks are trained in
this study by using Bayesian regularization by means of the
trainbr function of MATLAB® Neural Network Toolbox
[35] (see step 3, as shown in Figure 3). It represents a variant
of the conventional backpropagation method [36], which
accelerates learning by using existing variables with informa-
tion on the network parameters. The regularization settings,
network structure, and training data are all inputs [37]. The
trained network is subsequently given back and can be used
to make predictions. The advantage of trainbr function is to
reduce overfitting and enhance the network generalization

performance, making it beneficial when conventional back-
propagation procedures are not efficient.

For present investigation, various neural network config-
urations were preliminary studied. ANN, as known, is made
of a huge number of neurons and interconnections. Accord-
ing to the structure of connections, they are classified in
feedforward or recurrent. Feedforward networks have one-
way connections from the input to the output layer. They are
mostly (and often successfully) used for prediction and non-
linear function fitting, and many literature applications are
focused on the analysis and design of constructional ele-
ments and systems [38–45]. Each neuron output is deter-
mined by:

a nð Þ ¼ f ∑
n

i¼1
MiVi þ b

� �
; ð2Þ

where for present study, Mi represents Fcr and dLT, Vi is the
input vector, and b is the bias. The activation function in the
hidden layer, usually tangent sigmoid based, is given by:

Start Experiments
Step 1

Performance of a large
amount of LTB analyses

Dataset normalization!

ANN (trainbr) application

Error

Yes
and

No
Fcr dLT

End

Step 2

Step 3

Step 4

Step 5Results and discussion

FIGURE 3: Overview of the presently adopted ANN model evaluation process.

TABLE 1: Attributes of a typical dataset.

Parameters Information

ANN function Bayesian regularization backpropagation (trainbr)
Number of hidden layers 2
Layer function tansig, logsig
Output layer function Purelin
Number of training data 540
Error criteria Mean squared error (MSE), correlation coefficient (R)
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f nð Þ ¼ 1
1þ e−n

: ð3Þ

In the specific study, a selection of length/width ratios
(L0/h) and glass thicknesses (t1, t2) for two-ply LG beams as
in Section 2.1 is used as input layer parameters, and ANN
predictions are discussed in terms of critical buckling load
(Fcr) and corresponding lateral displacement (dLT).

2.3. ANN Model Performance Assessment. For similar applica-
tions, from amathematical point of view, one of crucial selection
criteria that significantly affect the prediction outcomes is the
number of neurons in the buried layer. Initially, a random num-
ber of neurons was considered to start training. Figure 4 sche-
matically depicts the input layer, the hidden layer, and output
layer. The dataset of 540 configurations was randomly divided
into training (80%) and testing (20%) data, in the proportions 7:
(10–14) : (6–14) : 2. To ensure that the chosen data could be able
to cover amultitude of practical configurations for LTB behavior
assessment of two-ply LG beams, the recurrence of similar com-
binations was avoided. As shown in Figures 3 and 4, it is to note
that once the network error is computed during training, the
weights are modified, and the next iteration begins.

Both mean squared error (MSE) and correlation coeffi-
cient (R) were preliminary selected as evaluation criteria
(step 4, as shown in Figure 3). MSE was determined as
reported in Equation (4) and considered as the performance
metric for training:

MSE ¼ ∑n
i¼1 di þ d0ð Þ

n
; ð4Þ

where in Equation (4), di and d0 represent the input and
output data. The used MSE value was set as 0.001, while
iterations were considered to possibly occur up to a maxi-
mum of 1.

Once all data were considered, the extra correlation coef-
ficient R was taken into account to quantify the accuracy of
ANN model to match the reference experiments. The corre-
lation coefficient R, most importantly, reveals how much of
response volatility the independent variable is able to account
for, that is:

R ¼ ∑xy − ∑xð Þ yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑x 2 − ∑xð Þ2½ � n∑y 2 − ∑yð Þ2

h ir : ð5Þ

3. Discussion of Results

3.1. Trained ANN. The performance graph, which displays
the fluctuation of MSE based on Equation (4) as a function of
training stages, is one of the most significant indices illustrat-
ing the training status of an ANN. Figure 5, in this regard,
shows the Fcr and dLT performance for the examined LG
beams in LTB. It compares the training iteration on the
horizontal axis to the corresponding MSE on the vertical
axis (epoch).

It can be seen that theMSE of network is maximum during
the first training phase, when random critical buckling load Fcr
(and the corresponding dLT) are estimated, but it progressively
decreases throughout multiple training rounds. The minimum
MSE for training models M1, M2, and M3 is also shown in
Figure 6 and appears significantly lower at the stop iteration.
This confirms that untrained fresh points have higherMSE rate
than trained points, and this is themost efficient result of early-
stop technique for preventing overlearning.

A summary of error values for different training models
(M1, M2, and M3) is also reported in Table 2, in terms of
correlation coefficient R. It is possible to see that R tends to
0.83818 at best, which suggests some possible limits of devel-
oped model/layers. The reason of such a result can be justi-
fied by the large number of irregularities in reference
experimental data, which is rather typical in structural glass
testing (i.e., due to variability in material properties, small
imperfections, tolerances, etc.).

For present investigation, this condition resulted—as it
can be seen from the examples, as shown in Figure 7—in a
rather unstable R value. This can be fixed by removing the
outliers from reference dataset. However, the original plan-
ning choice was to use the whole dataset as a reference,
irregularities included, in order to obtain a more generalized
ANN model, able to incorporate all the irregularities and
variabilities of input experimental data, and, thus, to account
for intrinsic uncertainties of structural glass design.

Hidden layer

Output

Fcr: Critical buckling load 

dLT: Lateral displacement 

Input

t1, t2

L0/h

L0

GJt

EJy, eff

Average

Standard deviation 

FIGURE 4: ANN multilayer model of input and output.
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Figure 8 shows the correspondence between actual net-
work outputs and goal values. The circle represents the ideal
stop time for the best performance, which has the lowest

MSE across all iterations. The network with the least MSE
is chosen as best solution to estimate Fcr and dLT for every
combination of inputs, given that 10 distinct ANNs were
utilized for each training scheme.

In this regard, many other performance indicators
should be taken into account to assess the accuracy of devel-
oped ANN models (Figure 9). Possible markers for deter-
mining the ANN training state include, for example, data
regression diagrams in terms of correlation coefficient
(Figure 10).

Of course, an ideal ANN model should possibly have the
same output as target value, and in this optimal condition,
both the correlation coefficient R value and slope should be
equal to 1, with the corresponding bias equal to 0. In the
presently proposed graphs (see an example, as shown in
Figure 10), it can be noted that the slope of regression is
not equal to 1, but—based on intrinsic uncertainties com-
mented, as shown in Figure 7—suggests a good potential and
accuracy of proposed ANN modeling strategy. It can be,
hence, deduced that current network output results have
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TABLE 2: Comparison of calculated error values from different training models.

Model/layers R (Equation (5)) Model/layers R (Equation (5)) Model/layers R (Equation (5))
M1 M2 M3

7-10-06-2 0.75909 7-12-06-2 0.66017 7-14-06-2 0.6815
7-10-08-2 0.76978 7-12-08-2 0.79352 7-14-08-2 0.79156
7-10-10-2 0.73444 7-12-10-2 0.73949 7-14-10-2 0.83818
7-10-12-2 0.71817 7-12-12-2 0.7873 7-14-12-2 0.73447
7-10-14-2 0.67867 7-12-14-2 0.68073 7-14-14-2 0.75961
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satisfactory accuracy and are sufficiently close to target
values. Moreover, the scattering style of points is at a mini-
mum level, and all the points are located on the plane bisec-
tor. To note, as also commented in Table 2, that the
presented error rate for trained ANNs is generally low, and

this result further confirms the potential of presented model-
ing strategy, but at the same time emphasizes the complexity
and intrinsic uncertainty of structural glass performance
assessment.

As shown in Figure 11, finally, error value histograms
represent another crucial indicator of a well-trained ANN.
The number of mistakes (frequency) in various error mar-
gins is herein reported as bar chart. The more near-zero
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frequencies, or counts of mistakes, are depicted on the verti-
cal axis as a function of various error margin values on the
horizontal axis, the more accurate the ANN is. The zero-
error line is also emphasized in orange. To note that the
majority of bins with a high frequency of mistakes are shown
to cluster around this line, which is a further conclusive
evidence of a good training technique selection and a suc-
cessful application of ANN modeling.

As a major outcome of present investigation, by using the
trainbr technique, a well-trained two-layer ANN was pro-
duced with 10 neurons in the inner layer and based on tansig
function. The calculatedMSE value for predicting the critical
buckling load Fcr and the lateral displacement dLT of two-ply
LG beams in LTB was measured as 0.0012186, with an asso-
ciated correlation coefficient R of 0.78961.

In this sense, further investigations will be undertaken to
further assess the potential of ANN tools for efficient struc-
tural design support in glass load-bearing members for
constructions.

4. Conclusions

Glass members are used for structural and load-bearing
applications, where they are safely design in mechanical
terms to resist ordinary design actions. In support of efficient
mechanical design, practical formulations in use are often
developed and calibrated with the support of extensive and
often complex/cost-consuming experimental tests. In this
regard, the use of ANN can offer robust support. This inves-
tigation focused on the LTB performance of laterally unre-
strained, two-ply LG beams. A major attention was spent for
the prediction of their critical buckling load Fcr and corre-
sponding out-of-plane/lateral displacement dLT, which both
represent crucial parameters for stability prevention and LTB
verification. A major advantage was taken, through the
numerical analysis, from a database of literature comprising
540 different configurations of technical interest.

The Bayesian regularization backpropagation (trainbr)
algorithm was used to calibrate and optimize the accuracy
of ANN model input–output relationships, by taking into
account various possibilities. Most importantly, using litera-
ture data, an ANN was trained to generalize the output for
two input parameters over the prescribed ranges. For this
reason, a feedforward ANN was utilized, which was charac-
terized by two outputs (Fcr and dLT) and six input parameters
(i.e., LG beam geometry). Trial and error approach led to the
discovery of the optimum ANN structure, which consisted of
two layers with 10 neurons in the hidden layer and the tansig
function. Also, 15 training models were employed to exam-
ine the impact of trainbr training algorithms on the effective-
ness of output prediction. At every test fraction combination,
the trained ANN was used to serve as prediction function in
terms of Fcr and dLT.

Overall, the rather good accuracy and potential of ANN
modeling and its suitability for determining the load-bearing
capacity of two-ply LG beams in LTB, as well as the compe-
tence of the employed training procedures, were demon-
strated by variation error diagrams and histograms. In this

sense, it is expected that the same modeling strategy could be
further extended in support of many practical applications of
interest for the structural glass optimization in buildings,
including several layouts, material properties, and even load-
ing/boundary configurations.
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