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Pollution from many different sources severely affects the quality of our water supply. Over the past few years, a large number of online
water quality monitoring stations have been used to gather time series data on water quality monitoring. These numbers are the
foundation for deep learning techniques for forecasting water quality. In particular, typical deep learning approaches struggle to accurately
estimate water quality in the presence of net promoter system (NPS) contamination. To overcome this shortcoming, a new deep learning
model called long short-term memory (LSTM)–gray wolf optimization (GWO)–fish swarm optimization (FSO) was developed to
enhance the precision of water quality prediction with NPS pollution. The well-established model may remedy the mechanism models’
inability to foretell changes in water quality on a minute-by-minute basis. Thamirabarani river watershed was used for the model’s
application. Based on experimental data, the suggested model outperformed the mechanism model and the LSTM model in predicting
extreme values. Maximum relative errors in anticipated against observed dissolved oxygen, chemical oxygen demand, andNH3─N values
were 7.58%, 18.45%, and 22.25%, respectively. In comparison to the artificial neural network (ANN), back propagation neural network
(BPNN), and recurrent neural network (RNN) models, the created LSTM–GWO–FSO model was shown to have greater computa-
tional performance (RNN). LSTM–GWO–FSO outperformed ANN, BPNN, and RNN regarding R2 of 3.1%–38.4% improvements.
The suggested approach may provide a fresh perspective when predicting water quality in the presence of NPS contamination.

1. Introduction

Water pollution is the contamination of water bodies, such as
lakes, rivers, oceans, and groundwater, by various substances,
including chemicals, pathogens, and physical debris. Water
pollution can occur naturally or as a result of human activi-
ties. Human existence depends on surface water, yet it is a
finite and nonrenewable resource. However, human industry
and urbanization growth are wreaking havoc on the natural
environment. Threats to human health posed by the persis-
tent contamination and degradation of the surface water
environment are significant [1, 2]. Additionally, the issues

above are made much worse by the degradation of the sur-
face water ecosystem [3]. Thus, monitoring and making pro-
jections about surface water quality is crucial. Based on the
water quality prediction exercise results, we may deduce that
we must look to past environmental indicators to warn us of
impending ecological contamination [4]. It is challenging to
reliably anticipate future water quality indicator values owing
to the nonlinearity and nonstationarity of water quality data.
As a promising new avenue for improving water quality fore-
casting, artificial intelligence (AI) technology is worth explor-
ing. The use of AI to improve human lives is spreading to
more and more disciplines [5, 6]. The main areas of interest
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for water quality prediction using the gray system theory,
neural networks, statistical analysis techniques, and time
series models are lakes, rivers, reservoirs, estuaries, and other
vast expanses of water.

Machine learning has been used for various water treat-
ment and management issues, such as real-time monitoring,
forecasting, locating the source of pollutants, estimating their
concentrations, allocating water resources, and improving
water treatment technologies. The wastewater from cities
and industries is the primary cause of water pollution in urban
areas [7]. Machine-learning applications in surface water
quality studies have recently emerged as a focal point [8, 9].
Several approaches for analyzing and forecasting surface
water quality have been developed. Many attempts have
been made to enhance the accuracy of predictions made by
machine-learning models. Gathering relevant data is a cor-
nerstone of creating effective machine-learning models
[10–12]. It is possible to utilize data from integrated and
periodic water quality monitoring as reference points for
managing the water system. Environmental authorities com-
monly use conventional ecological monitoring techniques.
Traditional methods of in situ monitoring have practical lim-
itations [13]. The demands of continuous, widespread water
quality monitoring are within the capabilities of remote sens-
ing technology. In addition, they may provide light on the
elusive migratory and dispersion patterns of contaminants,
which are detectable only by these means.

As Sagan et al. [14] discovered that experiment-based
machine learning paves the way for advanced optimization using
real-time sensor and satellite data monitoring. Standard models
were outperformed by those based on partial least squares regres-
sion, support vector regression (SVR), and deep neural networks.
Some water quality indicators, such as pathogen content, are not
optically active and do not have high-spatial-resolution hyper-
spectral data. Still, they may be approximated indirectly using
other measurable data. Wu et al. [15] created an attentional
neural network built on top of a convolutional neural network
(CNN) to distinguish between uncontaminated and contami-
nated water. They validated the efficiency of their attentional
neural network by conducting many comparison tests using a
collection of images of the water’s surface. CNN’s use of the
reflectance picture as the only input eliminates the need for
feature engineering andfine-tuning, which is a significant benefit.

In recent years, multivariate statistical approaches have
found widespread use in groundwater quality analysis. Stan-
dard methods include principal component and cluster anal-
ysis [16]. Support vector machines, Decision tree, random
forest (RF), and artificial neural network (ANN) are just
some machine-learning techniques used to evaluate ground-
water quality. Research in this area has focused chiefly on
evaluating the efficacy of various machine-learning algo-
rithms for assessing groundwater quality to select the most
appropriate algorithms for a given set of circumstances. It is
common to practice building mechanism models for water
quality prediction by first gaining knowledge of the relevant
physical processes and components. Parameters of mecha-
nism models have rigorous physical interpretation [17],
implying its usefulness. Challenges in parameter calibration,

complex modeling frameworks, uncertain model parameters,
and high computing cost limit their use in watershed water
quality prediction. In addition to being cumbersome to install
and calibrate, mechanismmodels have a poor reputation. Using
mechanistic models, the reduction in water quality caused by
net promoter system (NPS) pollution is difficult to anticipate
in real-time or over short periods [18].

To evaluate the fundamental factors impacting semiarid
groundwater and how they affect areas of high-quality
groundwater in Tabriz City, Iran, Jeihouni et al. [19] exam-
ined the performance of five data mining algorithms: RF,
chi-square automatic interaction detector, iterative dichoto-
mized, and regular decision tree. Self-organizing neural net-
works and fuzzy c-means clustering are combined. Lee et al.
[20] assessed the geographical pattern of urban groundwater
quality in Seoul, South Korea. Using a self-organizing map
technique, they separated the groundwater samples into three
categories depending on their contamination level. Then, they
used this information to examine the pollution-driven process
in terms of its geographical manifestation. Geographic
information system methods have been widely employed
to improve groundwater pollution detection to create qual-
ity maps of underground water [14, 21–23].

This work aims to predict water quality metrics with high
precision, introducing a hybrid model using deep learning
and optimization methods. The Thamirabarani river basin
was used as the study’s focal point. The high-precision pre-
diction methods of several water quality indices (WQIs) were
examined and proposed; these included pH, dissolved oxygen
(DO), chemical oxygen demand (COD), NH3─N, and water
quality guidelines. Finally, an long short-term memory
(LSTM)–gray wolf optimization (GWO)–fish swarm optimi-
zation (FSO) model was developed to address the problem of
WQI prediction over the long term.

2. Materials and Methods

An important river in southern India, the Thamirabarani
flows through the state of Tamil Nadu. Several potential
influences on the Thamirabarani river’s water quality must
be evaluated to provide an accurate prediction of the river’s
water quality. Researchers and officials may take water sam-
ples from the Thamirabarani river and test them for nutrient,
bacterial, metal, and other pollution levels to make educated
predictions about the river’s water quality. Changes in land
use, weather patterns, and other variables may all be modeled
and simulated to determine their potential future effects on
water quality. Thamirabarani river water quality may be
protected and enhanced with the help of this data, which
will be used to guide policy decisions. The study area of
the Thamirabarani river basin is shown in Figure 1.

2.1. Method. The water quality evaluation down to the
molecular level uses a WQI, which considers a wide range
of physical, chemical, and biological factors. Typically, the
index will offer a single score to sum up the water quality,
making it more straightforward for policymakers, research-
ers, and the general public to comprehend and discuss the
status of the water. Location, water source, and end-use all
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have a role in determining WQI values. While some indices
are developed with drinking water in mind, others are used
on lakes, rivers, and other open water bodies. WQIs may be
calculated using a wide range of factors and scoring methods,

all depending on the individual situation and the end users
relying on the index. The methodology adopted in the study
is shown in Figure 2. The testing and training data of the
study are presented in Figure 3.

FIGURE 1: Thamirabarani river basin study area.
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FIGURE 2: Methodology adopted in this study.
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2.2. GWO. The social structure and hunting techniques of gray
wolves in the wild inspired the GWO algorithm, which opti-
mizes throughout a population. The GWO method is a meta-
heuristic optimization approach with several potential applica-
tions outside traditional optimization settings. The GWO algo-
rithm begins by seeding the world with a group of search agents
that stand in for gray wolves in the wild. A search agent, also
known as a wolf, is given a location in the search space corre-
sponding to a particular feasible answer to the optimization
issue. A social hierarchy similar to that of a pack ofwolves, alpha,
beta, delta, and omega members governs the search agents’
interactions. The GWO method is fast, efficient, and successful
in solving various optimization problems. It is easy to implement
and does not require familiarity with the optimization issue.

2.3. FSO. FSO is a population-based optimization technique
based on observations of schooling fish. Individual learning,
social learning, and global learning all play a role in deter-
mining where each fish goes in the search space. The social
learning component depicts the fish’s propensity to observe
and mimic the actions of its peers. In contrast, the individ-
ual learning factor shows the fish’s tendency to explore the
search area independently. The global learning factor
reflects the fish’s propensity to stick with the best answer
it’s discovered so far in the search space. The FSO method
quickly and efficiently finds optimum or near-optimal solu-
tions to various optimization problems. It is easy to imple-
ment and does not require familiarity with the optimization
issue.
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FIGURE 3: Testing and training dataset of the study.
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3. Result and Discussion

The term “heat map” refers to a specific kind of graphical
representation used in data analysis and presentation that
uses color to denote numerical values. Machine learning and
AI programs often use heat maps to help visualize the distribu-
tion of data values and spot patterns and trends. Figure 4 shows
the correlation plot of the features in the Thamirabarani river
basin area. The study analyzed the water quality predictions.

In this section, the constructed LSTM–GWO–FSOmodel’s
performance is evaluated using water quality indicators such as
DO, COD, and ammonia nitrogen (NH3─N). Hourly DO,
COD, and NH3─N concentration values were projected from
May 2021 to December 2022. we were using online monitoring
data collected between May 2021 and December 2022. Before
being fed into the model, the input data underwent a series of
preparation steps. During this phase, we eliminated outliers
using the three principles, replaced missing data with average
daily values, and removed incorrect information. As a bonus,
the input dataset was normalized using the Z-score standardi-
zation approach to speed up training and boost the model’s
prediction accuracy. Figure 5 shows actual and LSTM–GWO
predicted values of (a) DO, (b) COD, and (c) NH3─N.

The best possible LSTM–GWO–FSO model was achieved
after training and convergence. The test dataset was utilized
for model assessment to ensure the best model prediction
performance. Figure 6 compares the model’s predicted values
and the corresponding observed values between June 15,
2022, and June 28, 2022. DO, COD, and NH3─N had the

highest relative errors of 7.58%, 18.45%, and 22.25%, respec-
tively. Some businesses’ hidden or leakage emissions may not
have been accounted for in the original model, leading to
unexpected shifts in water quality and a substantial TP fore-
cast error. Figure 7 shows actual and LSTM–FSO predicted
values of (a) DO, (b) COD, and (c) NH3─N.

When the concentration of NPS pollutants suddenly
shifts due to harsh weather, standard deep learning algo-
rithms are constrained by past data. They cannot adequately
anticipate extreme values, whereas physical models can guar-
antee that the predictions are within a manageable range.
The suggested model, LSTM–GWO–FSO, was evaluated on
data not included in the training set to gauge its ability to
predict outlying values. We compared the projected, observed,
and calculated values for severe DO, COD, and NH3─N con-
centrations during 30 days, and the findings are shown in
Figure 6. The well-established LSTM–GWO–FSO model has
attained high prediction accuracy after the linking mechanism
model to forecast the extreme values daily. Previous research
has shown that geographical features might affect the transit
and dispersion process of NPS contamination in the water-
shed. However, conventional deep-learning approaches have
largely ignored the effect of spatial factors on the transport-
diffusion process of NPS contamination. The results of 60-
hr predictions for DO, COD, NH3─N, and TP from the
LSTM–GWO–FSO model with geographical information
and the LSTM model. We found that the LSTM–GWO–FSO
model outperformed the LSTM model.

1pH

Solids

Chloramines

Sulfate

Conductivity

Organic carbon

Trihalomethanes

Turbidity

Potability

Hardness

pH

So
lid

s

Ch
lo

ra
m

in
es

Su
lfa

te

Co
nd

uc
tiv

ity

O
rg

an
ic

 ca
rb

on

Tr
ih

al
om

et
ha

ne
s

Tu
rb

id
ity

Po
ta

bi
lit

y

H
ar

dn
es

s

1

1

1

1

1

1

1

1

1

0.076 –0.082 –0.032 0.014 0.017 0.04 0.0031 –0.036 –0.003

–0.014–0.014–0.0130.0036–0.024–0.093–0.03–0.0470.076

–0.082 –0.047 –0.07 –0.15 0.014 0.01 –0.0088 0.02 0.034

0.0240.00240.017–0.013–0.020.024–0.07–0.03–0.032

0.014 –0.093 –0.15 0.024 –0.014 0.027 –0.026 –0.0098 –0.02

0.0058 –0.0081

–0.0081

0.00120.021–0.014–0.02

–0.020.0240.034–0.014–0.003 –0.03

0.014–0.0240.017

0.04 0.010.0036 –0.013 0.027 0.021 –0.027–0.013 –0.03

0.0069

0.0069

-0.021-0.0130.0012–0.026–0.0088 0.017–0.0130.0031

–0.036 –0.014 0.02 0.0024 –0.0098 0.0058 –0.027 –0.021 0.0016

0.0016

10

0.8

0.6

0.4

0.2

0.0

FIGURE 4: Correlations plot of the feature selections.

Advances in Civil Engineering 5



By incorporating new state variables into time series data.
In a recurrent neural network (RNN), the input to the hid-
den layer is composed of the previous output of the hidden
layer as well as the current output of the network layer. Each
of the hidden layer’s nodes connects to every other node.
This ensures that the preceding layers’ results may impact
the current concealed layer’s output. This means that time
series data is no problem for the RNN model. This investi-
gation found that an RNN with three hidden layers and 30
neurons per layer was themost effective configuration. Table 1
displays the root mean squared error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE)
for four different models. A statistical analysis of the various
models shows that the suggested sediment oxygen demand

(SOD)–LSTM–GWO–FSOmodel provides the most accurate
predictions. Out of four cutting-edge prediction models,
ANN performed the poorest statistically. While the back
propagation neural network (BPNN) model improved upon
the ANN model regarding water quality prediction, it still
lacked reliable forecasts. The model’s performance might be
enhanced by using neural networks like RNN and
LSTM–GWO–FSO, which are optimized for processing
sequence data. Table 2 shows that the well-tested models
are trustworthy and consistent.

Figure 6 displays the ANN, BPNN, and RNNmodels and
LSTM–GWO–FSO predictions for the DO, COD, and
NH3─N. While both the ANN and BPNN models could
capture the overall upward trend in pollution levels over
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FIGURE 5: Actual and LSTM–GWO predicted values of (a) DO, (b) COD, and (c) NH3─N.
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time, they each had their own unique set of limitations when
predicting outliers. Possible explanation: the ANN model
uses autoregression and sliding averages. The ANN model’s
projections were not too far from the norm. When there was
not a great deal of variation in the real value, ANN may be a
better fit. A possible drop in extreme value prediction preci-
sion resulted from SVR’s failure to account for the influence
of time series data on prediction outcomes (the effect of

one time period on the next). However, RNN and
LSTM–GWO–FSO models performed well in predicting
water quality. The water quality prediction accuracy of the
LSTM–GWO–FSO model, which integrated a mechanical
model with spatial data, was superior to that of the RNN
model. Based on the assessment, LSTM–GWO–FSO outper-
formed ANN, BPNN, and RNN with an improved R2 of
3.1%–38.4%.
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FIGURE 6: Actual and LSTM–GWO–FSO predicted values of (a) DO, (b) COD, and (c) NH3─N.
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FIGURE 7: Actual and LSTM–FSO predicted values of (a) DO, (b) COD, and (c) NH3─N.

TABLE 1: Performance metrics of the variable methods.

Features Method RMSE MAE MAPE R2

Dissolved oxygen

ANN 0.247 0.199 0.175 0.91
BPNN 0.179 0.139 0.119 0.90
RNN 0.135 0.092 0.079 0.89

LSTM–GWO–FSO 0.083 0.055 0.044 0.94

COD

ANN 0.059 0.038 0.291 0.902
BPNN 0.049 0.029 0.191 0.91
RNN 0.039 0.021 0.142 0.93

LSTM–GWO–FSO 0.016 0.011 0.080 0.95

NH3─N

ANN 0.015 0.014 0.598 0.92
BPNN 0.013 0.011 0.219 0.915
RNN 0.008 0.007 0.149 0.925

LSTM–GWO–FSO 0.0055 0.0045 0.128 0.94
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4. Conclusions

A deep learning model composed of LSTM–GWO–FSO
modules was developed for the research. The training set
consisted of hydrometeorological data, pollutant parameters,
an error sequence, and geographical features. LSTM’s inac-
curacy and water quality prediction resulted from incorrect
pollutant concentrations. In addition to overcoming the dif-
ficulty of predicting extreme outcomes, the developed model
also considered the impact of spatial components on water
quality at different times and places. To measure how well
the established model performed, it was compared to three
state-of-the-art prediction models: ANN, BPNN, and RNN.
The constructed LSTM–GWO–FSOmodel outperformed the
ANN, BPNN, and RNN models in terms of computational
performance (RNN). With an improved R2 of 3.1%–38.4%,
LSTM–GWO–FSO beat ANN, BPNN, and RNN. Improve-
ments. In the context of estimating water quality in the face of
NPS pollution, the proposedmethodmay provide a new point
of view.
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