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Slope stability estimation is an engineering problem that involves several parameters. The problems of low accuracy of the model
and blind data preprocessing are commonly existent in slope stability prediction research. To address these problems, 10 quanti-
tative indicators are selected from 135 field cases to improve the accuracy of the model. These indicators were analyzed and
visualized to examine their reliabilities after preprocessing. Combined with random forest (RF), particle swarm optimization
(PSO), and least squares support vector machine (LSSVM) algorithms, a hybrid prediction model that the RF–PSO–LSSVMmodel
is proposed for identifying slope stability, and its reliability is verified by other prediction models that SVM, logistic regression,
decision trees, k-nearest neighbor, naive Bayes, and linear discriminant analysis. Besides, the importance score of each indicator in
the prediction of slope stability is discussed by employing the RF algorithm. The research results show that the proposed hybrid
model exhibits the best accuracy and superiority in slope stability prediction than other models in this paper, which its values of the
best fitness, area under the curve, T-measure, and accuracy are 98.15%, 96.4%, 96.55%, and 95.82%, respectively. The most
influential factors affecting slope stability are precipitation and gravity, and the slope type and pore water ratio are identified as
the least significant factors in this paper. The results provide a novel approach toward slope stability prediction in the field of
geotechnical engineering.

1. Introduction

Landslides, resulting from highway slope instability, are one
of the profoundly destructive natural disasters that threaten
the operation of highways and the safety of people’s lives
[1–3]. Timely and accurate slope stability analysis and pre-
diction are of great importance in highland mountain high-
way construction and maintenance to prevent or reduce the

occurrence of landslides, ensure the safe and stable passage of
highways, and reduce highway maintenance costs [4].

Slope engineering is often considered an uncertain, non-
linear, complex, dynamic system, and its stability is affected
by many factors [5, 6]. Although the traditional slope stabil-
ity determination methods (e.g., the Swedish slice method
[7], the Bishop method [8–10], and the Janbu slices method
[11]) can obtain more accurate determination results, the
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complexity of the material parameters of the slope body makes
these methods require large and complicated calculation pro-
cesses [12]. Furthermore, these methods often focus on analyz-
ing specific types of slope stability influencing factors, making it
challenging to capture the nonlinearity among influencing fac-
tors of slope stability. To reflect the nonlinear problem between
the slope stability influencing factors and prediction results,
nonlinear machine learning methods are applied to slope sta-
bility analysis [13–16]. These machine learning methods over-
come the shortcomings of the traditional methods but require a
large amount of slope sample data to learn the training model,
thus they have certain limitations. To overcome these limita-
tions, a least squares support vector machine (LSSVM) model
[17, 18], which is suitable for small sample machine learning
models, has been widely applied in slope stability prediction
due to its advantages of better prediction accuracy and gener-
alization ability [19–21]. The accuracy of LSSVM is determined
by its penalty terms and kernel functions. To address these
problems, optimization algorithms such as the genetic algo-
rithm [22], firefly algorithm [23], metaheuristics [24], and ger-
minal center optimization [25], among others, have been
proposed to obtain the optimal combination of parameters.
These algorithms can optimize the LSSVM model well, but
they are prone to fall into the local optimal solution [26–28].
Slope stability identification requires a comprehensive, repre-
sentative, and practical set of influencing factors. However, this
does not imply that every evaluation factor must be included or
incorporated into the evaluation process [29]. The inclusion of

excessive factors in the evaluation process may reduce the effi-
ciency and accuracy of the evaluation model, as these factors
often exhibit linear correlations that could result in erroneous
results [30].

To address the above problems, this paper proposed the
random forest (RF)‒particle swarm optimization (PSO)‒
LSSVM model for predicting slope stability and studying the
suitability of this model. The RF algorithm is employed to
calculate the importance score of slope stability influencing
factors, which effectively reduces the dimensionality of factors
and eliminates certain linear correlations among influencing
factors of slope stability. The PSO algorithm is employed for
obtaining the optimal parameter combination of the LSSVM
model. Section 2 displays that the research methods and the
data processing and data analysis of slope data are briefly intro-
duced. Section 3 presents the process of the predictionmodel of
slope stability based on the RF, PSO, and LSSVM algorithms.
Section 4 displays the results and discussion discusses of this
study. Section 5 presents the conclusion of this study.

2. Data Sources and Methods

2.1. Data Sources and Processing

2.1.1. Study Area. The Sichuan–Tibet Highway (G318) has
2,142 km long and starts from Chengdu in Sichuan Province
and ends at Lhasa of Tibet [31] (Figure 1(a)). The collision
between the Indian and Eurasian tectonic plates has resulted
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FIGURE 1: (a) Field data investigation area. (b–d) Field investigation of slopes.
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in intensive tectonic activity in the area, leading to a high
frequency of geological hazards in the region [32]. In this
paper, the study area is the Sichuan–Tibet Highway (G318)
from Jinsha River to Lhasa (Figure 1(a)).

In this paper, from June 2019 to July 2021, a comprehen-
sive investigation of slopes along 1,365 km of the Jinsha River
to the Lhasa Qushui portion of the Sichuan–Tibet Highway
was conducted. A total of 250 sets of slope data were col-
lected along the highway. By data preprocessing (eliminating
missing data items and data collection error samples), the
final valid slope data for the remaining 153 sets of slope data.
The slope data investigation area is shown in Figure 1. The
investigated slopes are distributed along the Sichuan–Tibet
Highway and are mainly concentrated in mountainous can-
yons with abundant precipitation. The slope is mostly
between 30° and 40°, which is relatively unstable (Figure 1
(b)–1(d)).

2.1.2. Selection of Influencing Factors. Selecting influencing
factors is necessary to identify slope stability. In this paper,
through field investigation and a review of relevant literature,
the main factors affecting the stability of slopes are screened
and divided into four main categories, namely, topographic
features, geological conditions, precipitation, and other fac-
tors (vegetation, hydrogeology, etc.). The 10 selected factors

affecting slope stability from these four categories are input
into the RF–PSO–LSSVMmodel as independent variables for
slope stability prediction, namely, slope type (X1), precipita-
tion (X2), vegetation coverage (X3), slope height (X4), slope
gradient (X5), slope shape (X6), groundwater (X7), weather-
ing degree (X8), dense degree of soil (X9), and human factors
(X10). Due to space limitations, the raw data of slope are
shown in the supplementary material.

The slope gradient and height indicate the topographic
condition of the slope, and the slope shape and slope type
represent the geological condition of the slope to some
extent. Precipitation is one of the main factors that induce
landslides [33]. The vegetation coverage could represent the
forest vegetation of affection for slope stability identification
[34]. Understanding the density and strength of the soil is
necessary for slope stability studies, and the dense degree of
soil indirectly represents these soil characteristics [35].
Human factors have a substantial impact on slope stability,
such as deforestation, and slope cutting, which will accelerate
the deformation and instability of the slope, hence have been
considered. The slope stability is calculated based on the
qualitative characteristics of the site slope, which include
encompassing observations such as the presence of substan-
tial debris accumulation at the slope’s base, the occurrence of
landslide scars on the surface, and the visibility of fissures
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along the slope. The results of the slope stability (I1) are
divided into two types, stable and failure, represented by 1
and 0, respectively, as the dependent variable for the
RF–PSO–LSSVM model.

2.1.3. Data Preprocessing. The primary purpose of data pre-
processing is to eliminate the potential influence of features with
larger numerical ranges over those with smaller numerical
ranges, thus enabling the extraction of comprehensive and valu-
able information from the raw data [29]. Since the evaluation
indices are of different magnitudes, they are normalized, and all
data are normalized to between [0,1]. The main advantage of
normalization processing is preventing calculation difficulties
caused by different dimensions and improving LSSVM model
accuracy [36]. Due to space limitations, the quantitation and
standardization of influencing factors of slope stability and the
quantified slope sample data are shown in the supplementary
material.

2.2. Research Methods. In this study, a hybrid model that the
RF–PSO–LSSVM was employed predicting slope stability.
The workflow of the RF‒PSO‒LSSVM model is illustrated
in Figure 2. In this paper, firstly, the collected slope data from
the field undergo an initial preprocessing and are normalized
to eliminate the impact of different data scales on the pre-
diction model. Then, exploratory data analysis is conducted
to gain a deeper understanding of the data. The objectives of
exploratory data analysis include the following: (1) conduct-
ing a comprehensive review of the data’s integrity and valid-
ity; (2) analyzing the correlations among the characteristic
and post-processing the highly relevant characteristic with
an RF algorithm. The PSO algorithm is employed to opti-
mize the LSSVM model, which is then utilized to predict
slope stability. Finally, the effectiveness of the proposed
model is validated by an analysis and comparison with the
slope stability prediction results obtained from other models.

2.2.1. RF Algorithm. Slope stability estimation is an engineer-
ing problem that involves several parameters. Given that the

influence factors that the prediction of slope stability are
generally high dimensional and include a vast number of
irrelevant features. Therefore, it becomes crucial to select
the feature of influence factors. The RF algorithm is exten-
sively employed to extract nonlinear structure information
and dimensionality reduction.

The RF algorithm is an integrated machine-learning
algorithm proposed by Breiman [37]. RF can avoid overfit-
ting by sampling both samples and their features, is suitable
for handling high-dimensional data, and can simultaneously
give variable importance scores in the decision‒making pro-
cess [36, 37]. In this study, we use the variable importance
score of RF to feature extraction from influencing factors of
slope stability. The process is to calculate the ground contri-
bution of each decision tree (DT) in an RF for each evalua-
tion index and then take the average and compare and rank
the contribution between each feature [38, 39].

2.2.2. LSSVM Algorithm. The LSSVM algorithm is an
improved method proposed by Suykens and Vandewalle [40]
based on SVM. Since the traditional SVM requires a
quadratic solution for inequality constraints, the LSSVM
converts inequality constraints into equation constraints
for a solution, turning the quadratic solution into a linear
system of equation solutions. This improvement simplifies
the computation process and reduces the computation time.
Therefore, the LSSVM has SVM characteristics and the
advantages of a shorter model training time and more
accurate results. Since the slope data are multidimensional
nonlinear data, LSSVM is selected as the slope stability
prediction model for a more accurate prediction of slope
stability [41]. Using different kernel functions will
constitute different LSSVM models, and the accuracy of the
models may also vary. Therefore, kernel function selection is
discussed in this paper.

2.2.3. PSO Algorithm. The PSO algorithm, developed by Ken-
nedy and Eberhart [42], is an influential optimization algo-
rithm. In contrast to traditional optimization algorithms, the
PSO algorithm demonstrates remarkable proficiency in
global search, enabling it to efficiently find the global optimal
solution [40, 41]. Furthermore, it exhibits notable advantages
in terms of achieving rapid convergence and calculating the
global optimal solution.

The selection of hyperparameters significantly affects the
accuracy of the results in the LSSVM model. Traditionally,
these parameters are set empirically, which can lead to a
locally optimal solution. To overcome this limitation, this
study employs the PSO algorithm to adjust the hyperpara-
meters and address this issue effectively.

The inertia factor ω is a crucial parameter that controls
the balance between global and local search within the algo-
rithm, making it highly significant [43]. Setting a fixed value
of ω restricts the algorithm’s ability to achieve global opti-
mization and convergence speed. To resolve this problem,
this paper employs Equation (1) to dynamically and non-
linearly adjust ω to enhance the performance of the PSO
algorithm.
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ω¼ ωmax − ωmax − ωminð Þ ⋅ arcsin t
tmax

⋅
2
π

� �
; ð1Þ

where ωmax is the upper weight factor, ωmin is the lower
weight factor, and tmax is the upper limit of iterations.

3. Results

3.1. Exploratory Data Analysis. Before establishing the slope
stability prediction models, it is crucial to conduct preliminary
data analysis. This aims to unveil fundamental information,
assess data integrity, examine the distribution characteristics
of slope data, and explore factor correlations that these crucial
steps form the foundation for the selection of an appropriate
prediction model.

3.1.1. Data Integrity. To directly verify the integrity of the
data processing for a total of 153 slopes, a data integrity
analysis was performed and visualized using a violin chart.
In Figure 3, the median of the character is represented by a
white circle in each violin chart. In each blue box of the violin
chart, the range represents the lower quartile and the upper
quartile, while the thin red line inside the box indicates the
95% confidence interval. The shape of each violin in the plot
depicts the kernel density estimation of the characteristic of
the influencing factor. Based on the results, it can be indi-
cated that the slope data after data preprocessing are inte-
grated and obey the normal distribution.

3.1.2. Data Distribution Characteristics. Normalizing the
data does not alter the characteristics of the data distribution.
Therefore, the normalized data can be assessed to determine
the reasonability of the dataset. The distributions of these
data characteristics for the influencing factors on slope sta-
bility are shown in Figure 4. To visually demonstrate the
normal distribution of different indices, a combination of a
box plot and a normal distribution curve is plotted for these
features, as depicted in Figure 5. According to Figures 4 and
5, it can be observed that a few features exhibit a right-
skewed distribution, while the remaining features demon-
strate a reasonable normal distribution. The results indicate
that the quantification of the raw slope data is deemed rea-
sonable, and the resulting quantified data exhibits a certain
level of generalizability and predictability.

3.1.3. Data Correlation Analysis. Before the ultimate estab-
lishment of prediction models for slope stability, it is crucial
to conduct a comprehensive analysis of the correlation
among the characteristics of 10 influencing factors of slope
stability. The existence of a strong correlation among the
characteristics has the potential to significantly influence
the precision of the prediction models and may result in
erroneous conclusions that contradict the facts [44]. Pear-
son’s correlation coefficient is commonly employed to quan-
tify the correlation between two factors, which can be
calculated by Equation (2) as follows:

P m1;m2ð Þ ¼ cov m1;m2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var m1½ �Var m2½ �p ð2Þ

where m1 and m2 present independent factors; P (m1,m2) pre-
sents the Pearson’s correlation coefficient of m1 and m2; cov
(m1, m2) denotes the covariance of m1 and m2 and Var [m1]
and Var [m2] denote the variances of m1 and m2, respectively.

Pearson’s correlation coefficient takes values within the
range of −1 to 1. Figures 6 displays the correlation matrix of
the influencing factors of slope stability. When Pearson’s
correlation coefficient approaches +1, it indicates a strong
correlation between two factors. Conversely, if the correla-
tion coefficient is far from +1, it suggests a weak correlation
between the two factors. From Figure 6, it can be shown that
the groundwater (X7) and the slope shape (X6) exhibit the
strongest correlation, with a Pearson’s correlation coefficient
of 0.86. Furthermore, the slope type (X1) and the human
factors (X10) also display a strong correlation, which is
0.608. Conversely, the remaining factors exhibit weak correla-
tions, as evidenced by their lower values of Pearson’s correla-
tion coefficient. For a more direct representation of the
distributions and correlations among the variables, Given
the presence of strong correlations among certain factors, it
becomes essential in subsequent chapters to employ the RF
algorithm to identify the significant factors and their corre-
sponding eigenvalues in the analysis of slope stability.

3.1.4. Determination of Influencing Factors on Slope Stability.
The selection of high-quality and highly correlated datasets
plays a crucial role in training model accuracy. To obtain a
high-quality slope stability dataset, we employ the RF algo-
rithm to calculate the importance score of 10 evaluation indi-
ces (153 sets of slope data) and rank the importance score.
The out-of-bag (OOB) error is often employed as a measure
of generalization error in RFs. In this paper, OOB is used to
evaluate the performance of the RF algorithm. The influenc-
ing factors on slope stability with low importance scores can
be eliminated, resulting in a high-quality dataset. In this study,
the RF algorithmwas trained by using the training set, and the
training results are depicted in Figures 7(a) and 7(b).

As observed from theOOBerror rate depicted in Figure 7(a),
it can be inferred that the model exhibits a strong generalization
ability. It stabilizes with an error of approximately 0.21% when
theDT is 600 trees. The correlation coefficient (R2) is 0.91 for the
training set in Figure 7(b), demonstrating that the model is
well-trained and meets the training requirements. Combined
Figures 7(a) and 7(b) illustrate that the importance scores of
the RF for the slope stability influencing factors have high confi-
dence and meet the requirements.

The ranking of importance scores for the slope stability
influencing factors was obtained through eigenvalue calcula-
tion employing the RF algorithm (as in Figure 7(c)), which
are precipitation, slope gradient, slope height, dense degree
of soil, weathering degree, vegetation cover, human factors,
slope shape, groundwater, and slope type. In this paper, the
six influencing factors with the top importance scores are
selected as the dataset for slope stability prediction of the
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PSO‒LSSVM model and the remaining four influencing fac-
tors are excluded. After the RF analysis, the dimension of the
influencing factors is decreased from 10 to 6, eliminating the
linear correlation present in the raw data.

3.2. Selection of the Kernel Function for the LSSVM Model.
The accuracy of the LSSVM model depends not only on the
quality of the selected input data but also on factors such as
the penalty term (c) and the kernel function along with its
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parameters within the LSSVM model. The LSSVM basic
principle is as follows:

min J ω; ζð Þ ¼ 1
2

ωk k2 þ 1
2
c∑

n

i¼1
ζ2i

subject to yi ¼ ωTφ xið Þ þ bþ ζii¼ 1; 2;⋯; n

8<
: ; ð3Þ

where ||ω|| is the normal constant of the hyperplane, b is a
scalar basis, and c is a penalty term.

To succinctly expound upon the optimization principle
governing kernel function parameter (σ) and penalty term
(c) in the LSSVM model, we employ a simplified figure as
depicted in Figure 8. For the multidimensional nonlinear
multiclassification problems, the penalty term (c) in the
LSSVM model is employed to determine the optimal deci-
sion boundary, aiming to effectively distinguish between the
different samples to the greatest extent possible, namely, the
location of the red dotted line in Figure 8(a)–8(c). The kernel
function parameter (σ) determines the level of refinement of
the decision boundary, namely, the complexity of the red
dotted line in Figure 8(d)–8(f). Deviation from the optimal
value, whether excessively large or too small, can signifi-
cantly impact the accuracy of the LSSVM model. Thus, a
suitable penalty term (c) and the kernel function are crucial
for an LSSVMmodel. To assess the impact of kernel function
selection on the accuracy of the LSSVM model, four distinct
kernel functions are chosen for a comparison test while keep-
ing other parameters consistent [45]. These kernel functions
include linear, polynomial (poly), and Gaussian (RBF) kernel
functions, and their formulas and kernel parameters are
shown in Table 1.

The process is as follows: the data of each of the six
evaluation indices are used as a single training dataset for

the model and input to the LSSVM model for learning. The
LSSVM model’s penalty factors and kernel function param-
eters were optimized by employing the PSO algorithm. In the
PSO algorithm, the parameters were uniformly configured as
follows: the swarm size was set to 20, the inertia weight
coefficient was 1, the personal and social learning factors
(c1 and c2) were 1.0 and 1.5, respectively, and the maximum
number of iterations was limited to 200. To evaluate the
accuracy of the LSSVM model with different kernel func-
tions, the evaluation indicators employed are the mean abso-
lute error RMAPE (Equation (4)) and the correlation
coefficient R2 (Equation (5)). RMAPE is a commonly used
model evaluation metric that quantifies the magnitude of
the error between predicted and actual values, reflecting
the accuracy of the prediction model. R2 indicates the corre-
lation coefficient, with higher values indicating better regres-
sion performance and evaluation accuracy.

RMAPE ¼
1
n
∑
n

i¼1

yi − yi
^

yi

�����
����� × 100 ð4Þ

R2 ¼ 1 −
∑n

i¼1 yi − yi
^� �

2

∑n
i¼1 yi − yiÞ2:ð

ð5Þ

In Equations (4) and (5), yi and y
^
i are the actual and

predicted values in the test set data samples, respectively. n
is the number of test set samples.

Figure 9 illustrates the comparison of the test results of
the three selected kernel functions. The RMAPE curves show
that the linear kernel function has a high error for the six
evaluation indicators, while the polynomial kernel function
has a low error for rainfall and vegetation cover but a high
error for the other evaluation indices. The RBF kernel func-
tion shows a low error for all six evaluation indices. Addi-
tionally, from the correlation coefficient R2, it can show that
the regression value of the RBF is closer to the actual value.
Therefore, the RBF has been adopted as the kernel function
for the LSSVM model in this study. Where σ denotes the
width parameter.

3.3. Parameter Adjustment of Hyperparameters. The predic-
tive accuracy of the LSSVM model is determined not only
solely by the raw data but also largely depends on the
hyperparameters of the optimization algorithm [46]. The
particle size significantly impacts the PSO algorithm of
suitability, identification accuracy, and convergence rate.
The search stability and accuracy improve with increasing
particle size, but the convergence rate decreases [45, 46].
There is currently no reliable method to accurately select
the proper particle size. In this paper, the fitness function
is employed to evaluate the optimal combination of
parameter values for the LSSVM model. The definition of
the fitness function is provided as follows:
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fFitness ¼
1
n
∑
n

i¼1

Fi − F
0
i

Fi

����
����; ð6Þ

where Fi represents the actual slope stability degree, Fʹi repre-
sents the validation slope stability degree, and n denotes the
swarm size.

In this paper, we adopt particle sizes of 10, 20, 25, 30, 40,
and 60 (as shown in Figure 10). All other hyperparameters of
the PSO are the same, namely, the maximum number of
iterations is 200, the inertia weight coefficient is 1, and the
personal and social learning factors are 1.0 and 1.5, respec-
tively. Additionally, the value of c is set to 2.0, σ is set to 4.0,
and the selected kernel function is RBF. The results showed
that the identification accuracy was 74% for the particle size
of 10. Moreover, when the particle size exceeds 20, the

identification accuracy has a slight variation. Furthermore,
the particle size influences the average fitness, thereby affect-
ing the optimal parameter combination. As shown in the
figure below, the average fitness obtained from different par-
ticle sizes is different, while the highest average fitness is
obtained when the particle size is 20, and the average fitness
is, however, lower as the particle size increases. Therefore,
the optimal particle size chosen in the RF‒PSO‒LSSVM
model is 20.

3.4. Parameter Optimization of LSSVM Based on PSO. The
study demonstrated the influence of the parameters c and σ
of the RBF kernel function on the predictive accuracy of the
LSSVM model to a certain extent [46]. The methods such as
the enumeration method and the genetic algorithm are used
to solve such problems. However, these methods exhibit
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some defects, such as computationally complex and unsolvable
optimal solutions. Therefore, PSO is implemented to search for
the optimal combination of parameter values for the LSSVM
model. The following choices are made for the parameters of
the model: the parameters c and σ are varied within the ranges
of (10‒2, 10‒4) and (10‒1, 10‒5), respectively. Furthermore, the
initial parameters of the PSO are as follows: the swarm size is
set to 20, the inertia weighting factor (ω) is set to 0.6, and
improvement ω according to Equation (1), personal and
social learning factors c1 and c2 are 1.2 and 1.6, respectively,
and the maximum number of iterations is 200.

The search results of PSO for the optimal combination of
parameter values for the LSSVMmodel are c= 2.89, σ= 4.89,
and the best fitness is 98%, while the average fitness is 90%,
which is shown in Figure 11. This demonstrates that the RF‒
PSO‒LSSVM model shows excellent performance in slope

stability discrimination. Therefore, the RF‒PSO‒LSSVM is
feasible and effective for identifying slope stability in this
study area.

3.5. Reliability Evaluation Indicators of the Prediction Model.
Evaluating machine learning algorithms is crucial for addres-
sing practical problems. It is only through accurate evalua-
tion that algorithms can be optimized in later stages. The
commonly employed evaluation indicators for prediction
models include accuracy, precision, recall, the receiver oper-
ating characteristic (ROC) curve, and the area under the
curve (AUC) value [44]. In this paper, these evaluation indi-
cators are also utilized to evaluate and gauge the performance
of the model. In Equations (7)–(12), TP represents true pos-
itive, FP denotes false positive, TN denotes true negative, and
FN denotes false negative.
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Equation (7) is employed to calculate the accuracy.

Accuracy ¼ TPþ TN
TPþ FPþ FNþ TN

ð7Þ

Precision is calculated by Equation (8).

Precision¼ TP
TPþ FP

ð8Þ

Recall, which is the opposite of precision and can be
calculated by Equation (9).

Recall¼ TP
TPþ FN

ð9Þ

The F-measure serves as a valuable metric for evaluating
and comparing the predictive performance of two models. It

overcomes the limitations of solely considering precision or
recall individually. Equation (10) provides the mathematical
expression for calculating the F-measure.

F −measure¼ 2 × Precision × Recall
Precisionþ Recall

¼ 2 × TP
2 × TPþ FNþ FP

ð10Þ

When constructing the ROC curve, the true positive rate
(TPR) is denoted on the vertical axis, and the false positive
rate (FPR) is represented on the horizontal axis. The AUC
value, which represents the area under the ROC curve, serves
as a valuablemetric for comparing the predictive performance
of two models. When evaluating prediction models, a higher
AUC value indicates superior performance. TPR and FPR are
calculated by Equations (11) and (12), respectively.
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FIGURE 8: Penalty parameter (c) and kernel function parameter (σ) of the LSSVM model: (a) Underestimation of c value; (b) optimal c value;
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TABLE 1: Kernel functions of the LSSVM model and their parameters.

Kernel name Kernel function Kernel parameters

Linear K xi;ð xjÞ¼ xi;h xji None

Poly K xi;ð xjÞ¼ 1
σ2

xi; xj

 �þ r

À Á
d σ>0ð Þ d, r, σ

RBF K xi;ð xjÞ¼ exp −ð 1
σ2 ∥xi − xj∥2Þ σ>0ð Þ σ
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TPR ¼ TP
TPþ FN

ð11Þ

FPR ¼ FP
FPþ TN

ð12Þ

3.6. Slope Stability Prediction Results and Model Performance
Analysis. In the RF–PSO–LSSVM model, RF is employed to
extract nonlinear feature information and resolve the linear
correlations within the input data. PSO is implemented to
optimize the selection of the penalty term (c) and the kernel
function parameter (σ) of the LSSVM classifier in the solution
space. The extracted new features and the optimal parameters
for the LSSVM classifier are employed to predict the test data.
Compared to other existing models, the proposed model
could prevent blindness in data processing, more effectively
select the primary influencing factors of slope stability from
slope data, and improve prediction accuracy.

To verify the reliability of the RF‒PSO‒LSSVM model
for slope stability identification, three models, the GA‒SVM
model, PSO‒SVM, and PSO‒LSSVM model, were con-
structed in this paper for comparison testing. The SVM
and LSSVM models use RBF as their kernel function, and
the maximum number of iterations and the swarm size in the
GA algorithm are the same as the PSO algorithm. In this
study, the 153 sets of slope data are applied to the GA‒SVM,
PSO‒SVM, PSO‒LSSVM, and RF‒PSO‒LSSVM models,
respectively, each containing ten evaluation indices, of which
sets 1–129 are employed as the training set to train the

model, and sets 130–153 are adopted as the testing set to
verify the model, as shown in Table 2.

Table 3 lists the accuracy, F-measure, and AUC values
obtained using Equations (6)–(11) for the four models on the
training and testing sets. From the aspect of accuracy, both
the PSO‒LSSVM and RF‒PSO‒LSSVM models have 100%
training accuracy. The RF‒PSO‒LSSVM model exhibits the
best prediction performance, which is 96.55% in testing sets,
while the PSO‒LSSVM model also demonstrates good pre-
diction results, with an accuracy of 89.66% in testing sets.
These results demonstrate the strong generalization capabil-
ity of the LSSVM. Accuracy serves as one of the fundamental
indicators for evaluating the performance of a model. How-
ever, it may not be reliable when evaluating imbalanced
samples. Therefore, to assess the performance of prediction
models effectively, it is crucial to consider both the values of
F-measure and AUC. As can be shown in Figure 12, the
models of RF‒PSO‒LSSVM and PSO‒LSSVM are closer to
the upper left part of the coordinate axis, indicating their
higher overall performance compared to other models. The
AUC values of the two models in the testing sets are also
the highest, which values of 0.964 and 0.944, respectively.
The RF‒PSO‒LSSVMmodel achieved the best scores in test-
ing sets for all three metrics: an accuracy of 95.82%, an F-
measure of 96.55%, and an AUC of 0.964. Furthermore, the
performance of the RF‒PSO‒LSSVM model remained con-
sistent between the training and testing sets, which indicates
that the model has a strong generalization ability without
overfitting or underfitting. Based on the results presented
in Table 3 and Figure 12, it is observed that the RF‒PSO‒
LSSVM model exhibits the highest F-measure value and
AUC value. Consequently, the RF‒PSO‒LSSVM model is
considered to possess the best prediction performance
among the other models evaluated.

By comparing the fitness curves of four models, GA‒SVM,
PSO‒SVM, PSO‒LSSVM, and RF‒PSO‒LSSVM (Figure 12),
as can be shown that the RF‒PSO‒LSSVM is significantly
better than the other three models in terms of algorithm con-
vergence speed and accuracy. The RF‒PSO‒LSSVM model
converged at six times of evolution, and the tested fitness values
were above 92.5% overall. The GA‒SVM, PSO‒SVM, and
PSO‒LSSVM models were all clearly at local extremes,
and the final maximum fitness obtained was 74.3%, 84.1%,
and 85.5%, respectively. The average fitness of the RF‒PSO‒
LSSVMmodel tends to have a stable fluctuation range after six
evolutions. While GA‒SVM, PSO‒SVM, and PSO‒LSSVM
need to evolve: 120, 51, and 45 times, respectively, to reach
this condition, the RF‒PSO‒LSSVM model outperforms the
other three models in terms of convergence speed and accu-
racy. Hence, the RF‒PSO‒LSSVMmodel has been deemed the
most effective approach for slope stability prediction.

By comparing the prediction results of four model test
sets, which are shown in Figure 13, GA‒SVM, PSO‒SVM,
PSO‒LSSVM, and RF‒PSO‒LSSVM, it can be found that in
the 24 test sets, the RF‒PSO‒LSSVM model had only one
slope grade identification error, while the GA‒SVM model,
PSO‒SVM model, and PSO‒LSSVM model have 6, 4, and 3
identification errors, respectively. The RF‒PSO‒LSSVM
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exhibits superior identification accuracy compared to the
other three models. Therefore, the RF‒PSO‒LSSVM model
is the best in slope stability prediction.

4. Discussion

4.1. Comparison ofModel Identification Results with Field Data.
The training and prediction results of the RF–PSO–LSSVM
model are presented in Table 3 and Figure 13(d). Compared

with the field survey results, it is evident that the
RF–PSO–LSSVM model demonstrates a high level of predic-
tion accuracy, achieving an accuracy of 95.7%. Only no. 10
(group 140) slope exhibits ordinary correspondence; namely,
the stable (“1”) is classified as failure (“0”).

The determination of the slope stability condition is
based on field investigations, which include evaluating fac-
tors such as the presence of slope fissures, accumulation at
the foot of the slope, and whether it has collapsed. The
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TABLE 2: Data from 24 test samples were used for the GA‒SVM model, PSO‒SVM, PSO‒LSSVM, and RF-PSO-LSSVM models.

Sample X1 X2 X3 (%) X4 X5 X6 X7 X8 X9 X10 I1

1 0.81 640.1 88 38 41 0.61 0.12 0.12 0.13 0.61 1
2 0.64 244.3 35 20 35 0.87 0.64 0.31 0.68 0.32 1
3 0.32 414.1 71 87 29 0.35 0.34 0.10 0.48 0.13 0
4 0.21 542.1 54 43 32 0.45 0.25 0.36 0.24 0.51 0
5 0.35 504.4 24 56 18 0.67 0.34 0.23 0.47 0.34 0
6 0.42 612.3 41 31 25 0.51 0.42 0.15 0.52 0.42 0
7 0.29 462.1 48 38 29 0.45 0.38 0.29 0.63 0.48 1
8 0.33 524.4 53 28 21 0.37 0.29 0.27 0.39 0.34 0
9 0.35 601.9 18 42 36 0.56 0.31 0.32 0.45 0.53 1
10 0.24 445.1 82 36 28 0.42 0.36 0.31 0.58 0.44 0
11 0.41 536.8 59 49 58 0.31 0.35 0.39 0.48 0.33 1
12 0.40 472.5 42 29 35 0.26 0.47 0.28 0.34 0.21 1
13 0.34 509.1 35 27 39 0.41 0.25 0.43 0.58 0.29 0
14 0.28 374.7 68 23 27 0.79 0.58 0.49 0.67 0.21 0
15 0.34 492.5 33 45 41 0.39 0.32 0.50 0.51 0.56 0
16 0.43 489.3 20 42 38 0.47 0.14 0.46 0.31 0.43 0
17 0.78 379.5 17 25 28 0.63 0.27 0.62 0.18 0.38 1
18 0.53 403.6 59 38 34 0.81 0.70 0.67 0.58 0.82 0
19 0.37 602.4 23 54 29 0.47 0.39 0.43 0.38 0.52 0
20 0.24 535.2 29 48 38 0.32 0.44 0.38 0.28 0.41 0
21 0.21 505.2 21 32 25 0.22 0.49 0.18 0.18 0.11 0
22 0.16 127 10 17 32 0.42 0.13 0.56 0.37 0.31 0
23 0.93 387 41 128 27 0.83 0.68 0.86 0.10 0.59 1
24 0.41 444 51 45 35 0.91 0.70 0.65 0.63 0.81 1
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FIGURE 12: Continued.

TABLE 3: Comparison of the performances of the different algorithms on the training and testing sets.

Dataset Model Model parameters Accuracy (%) F-measure (%) AUC

c σ

Training

GA‒SVM 0.1 0.01 93.74 94.12 0.937
PSO‒SVM 0.1 14.46 95.12 94.85 0.941
PSO‒LSSVM 4.77 93.74 100 100 1.00

RF‒PSO‒LSSVM 2.48 4.89 100 100 1.00

Testing

GA‒SVM 0.1 0.01 70.83 75.86 0.865
PSO‒SVM 0.1 14.46 83.33 86.67 0.887
PSO‒LSSVM 4.77 93.74 87.50 89.66 0.944

RF‒PSO‒LSSVM 2.48 4.89 95.82 96.55 0.964
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selection of the 10 influencing factors in this study may
reflect slope stability. Proper selection and discrimination
could reflect a given influencing factor of slope stability to
a certain extent. However, in practice investigation, field
investigation data is often processed using average proces-
sing methods [48]. Moreover, some infrequently noted local
field data are ignored, for example, the depth of slope fissures
and the presence of retaining walls, which leads to errors in
identifying slope stability situations due to subjective factors.
In the following paragraphs, slope no. 10 is analyzed to
determine the causes of such inaccuracies.

The slope gradient of slope no. 10 is 42°, the slope height
is 22m, the slope width is 114m, the slope length is 22m, the
slope shape is flat and straight, the main composition of the
slope body is gravel soil, the dense degree of soil is medium,
and the vegetation coverage is relatively high. Based on the
site survey, the slope body exhibits the following deformation
characteristics: there is a landslide scarp near the top of the
slope, spanning the width of the slope. In the middle posi-
tion, localized sliding is observed, and the trees on the slope
are leaning or tilted. The above situation indicates that the
stability of slope no. 10 should be a failure, that is, “0.”
Compared with the field investigations conducted in May
2020 and October 2019, it can be observed that there is no
significant deformation in slope no. 10 (Figure 14). There-
fore, the slope remained relative stability throughout this
period of almost a year, that is “1”. Slope no. 10 had experi-
enced a collapse before the field survey, resulting in the
recorded slope data representing the postcollapse condition
rather than the precollapse state, to lead to the slope data
being inconsistent with slope stability. Therefore, this may be
the reason for the error in model identification.

4.2. Model Applicability Validation Analysis. In this study, we
have chosen 26 groups of data from the slope data provided by
Lin et al. [49] to verify the suitability and applicability of the

RF–PSO–LSSVM model in other studies areas, as shown in
Table 4. In Table 4, r presents gravity, C presents cohesion, φ
denotes internal friction angle, β presents slope angle,H presents
slope height, and ru presents pore water pressure ratio.

By employing the RF to calculate the variable importance
of the six influencing factors of slope stability in Table 4. The
weight of each indicator is depicted in Figure 15(a); it is
evident from the results that gravity exerts the most signifi-
cant influence on slope stability, followed by cohesion, while
the pore water ratio exhibits the least significance, which is
0.0014. This conclusion aligns with the sensitivity analysis
conducted on various factors during slope stability analysis
using the limit equilibrium method. Therefore, excluding the
influencing factor of pore water ratio, the data of the other
five influencing factors are implemented to validate the
trained PSO‒LSSVM model.

To further verify the accuracy and reliability of the
RF–PSO–LSSVM model, compared and analyzed its predic-
tion performance with other models, including SVM, logistic
regression (LR), DT, k-nearest neighbor, naive Bayes, and
linear discriminant analysis (LDA). The outputs of all mod-
els, which is “1” indicates stable status, and “0” indicates
failure status. The predictive performance of the seven pre-
diction models is illustrated in Figure 15(b). Through the
comparison, it is evident that the RF–PSO–LSSVM model
proposed in this study exhibits outperforms other models in
predicting slope stability, and the worst-performing method
is the LDA. Furthermore, it can also be seen that the
RF–PSO–LSSVM, SVM, and DT models have relatively sta-
ble performance, as their values of accuracy, F-measure, and
AUC show slight discrepancies. Therefore, in this study,
we have demonstrated the feasibility of employing the
RF–PSO–LSSVM model for identifying the slope stability
of the Sichuan–Tibet Highway and its potential for generali-
zation to slopes in other geological backgrounds. Practical
engineering applications have shown that the proposed
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FIGURE 13: Test set identification results of four models: (a) GA‒SVM model; (b) PSO‒SVM model; (c) PSO‒LSSVM model; (d) RF‒PSO‒
LSSVM model.

16 Advances in Civil Engineering



TABLE 4: Slope stability prediction database.

No. r (kN/m3) C (kPa) φ (°) β (°) H (m) ru Status Location

1 20.41 33.52 11 16 10.67 0.35 Stable Seven Sisters Landslide, UK
2 21.82 8.62 32 28 12.8 0.49 Failure Selset Landslide, Yorkshire, UK
3 20.41 33.52 11 16 45.72 0.2 Failure Saskatchewan Dam, Canada
4 18.84 14.36 25 20 30.5 0.45 Failure Sudbury Slide, UK
5 22 29 15 18 400 0 Failure Qing River Area Landslide, China
6 23 24 19.8 23 380 0 Failure Qing River Area Landslide, China
7 20 8 20 10 10 0 Failure Slope in Tailie Elementary School
8 27 32 33 42.6 301 0.29 Failure Heishe Landslide, China
9 27.3 10 39 41 511 0.29 Stable Shijiapo Landslide, China
10 27.3 10 39 40 470 0.29 Stable Tanggudong Landslide, China
11 25 46 35 47 443 0.29 Stable Tianbao Landslide, China
12 18.8 8 26 21.8 40 0.4 Failure Lingli Reservoir, China
13 27 27.3 29.1 21 565 0.26 Failure Guzhang Gaofeng Slope, China
14 20.45 16 15 30 36 0.25 Stable Baijiagou Earth Slope, China
15 22.4 10 35 45 10 0.4 Failure Rockfill Slope
16 20.5 6.5 12.5 42 70 0 Failure Yuan‒Mo Highway
17 21.4 7.1 16.7 44 70 1 Failure Yuan‒Mo Highway
18 21.5 9.5 11.5 40 75 0 Failure Yuan‒Mo Highway
19 20.6 6.7 9.4 45 30 0 Failure Yuan‒Mo Highway
20 21.96 34.77 14.15 28 60 0 Stable Yuan‒Mo Highway
21 22.93 32.33 19.73 30 50 1 Stable Yuan‒Mo Highway
22 19.18 12.8 9.45 45 20 0 Failure Yuan‒Mo Highway
23 17.8 22.2 6.05 40 51.6 1 Failure Yuan‒Mo Highway
24 19.6 15.53 15.88 35 97 1 Failure Yuan‒Mo Highway
25 19.81 33.75 19.46 20 120 1 Stable Yuan‒Mo Highway
26 17.96 24.01 28 40 60 1 Failure Yuan‒Mo Highway

(a)

(c)

(b)

(d)

FIGURE 14: Actual field view of slope no. 10: (a) and (b) are the field survey of slope no. 10 in October 2019; (c) and (d) refer to the field survey
of slope no. 10 reviewed in May 2020.
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model could effectively reduce the risk of engineering acci-
dents and has instructional importance for identifying slope
stability. However, it cannot be considered the standard for
assessing slope stability.

From a statistical standpoint, the stability states of slopes,
namely stable and failure, are not absolute and can transform
between states as the slope evolves. Consequently, a previous
assessment of slope stability as stable may not be entirely
inaccurate, but this result is of informative value. For slopes
exhibiting failure of stability, it is crucial to conduct field
investigations to accurately determine their stability status.

5. Conclusions

In this study, a hybrid model of RF‒PSO‒LSSVM was pro-
posed to solve the low accuracy of the model and blind data
preprocessing in the slope stability study. We investigate the
slopes located along the Sichuan–Tibet highway in China as
our research example. The processed data demonstrated sci-
entific soundness and predictability, and conformed to a
normal distribution through data preprocessing and explor-
atory data analysis of the slope data. Through a comparative
analysis between the prediction outcomes of our proposed
model and the GA–SVM, PSO–SVM, and PSO–LSSVM
models, we validate the effectiveness of our approach. The
values of the RF–PSO–LSSVM model for the best fitness,
AUC, T-measure, and accuracy are 98.15%, 96.4%, 96.55%,
and 95.82%, respectively. To demonstrate the practicality of
the model, we employed 26 diverse sets of slope data
obtained from various regions. The research results show
the RF–PSO–LSSVM model still exhibits high accuracy.
Thus, the proposed model could become a practical tool
for predicting slope stability in limited samples in the future.

It is worth noting that there are other qualitative factors,
such as existing joints and pore pressure, which also have
significant effects on slope stability. Transforming these

qualitative factors into quantitative ones presents a greater
challenge. Thus, the future focus and difficulty in further
studies lie in selecting more objective and reasonable indica-
tors for evaluating slope stability.
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