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There has been a noticeable rise in the construction of lightweight stress-ribbon pedestrian bridges. In regions with a high risk of
seismic activity, it is crucial to employ advanced seismic control technology to mitigate the impact of earthquakes and improve the
bridge’s performance and durability. The objective of this study is to investigate the effect of tuned mass dampers (TMDs) on a steel-
plated stress-ribbon bridge using the finite element method. The study aims to analyze the performance of various TMD designs
focusing on both vertical and torsional modes. Multiple TMD configurations are considered and numerically compared. The results
indicate that TMDs offer both a tuning effect and a static mass effect for stress-ribbon bridges. The tuning effect is most pronounced
when the mass ratio falls between 2% and 4%. Installing a single TMD with a mass ratio of 0.05 can decrease vertical displacement
along the entire span by up to 36%. Furthermore, a torsional TMD effectively reduces both the torsion of stress ribbons and the pier
forces. As a recommendation, the combination of a single vertical displacement TMD and a torsional TMD can be considered the
most appropriate scheme for earthquake response control. Moreover, the addition of TMDs reduces the bridge’s sensitivity to the
direction of earthquake excitation. These findings contribute to a broader understanding of the earthquake performance of stress-
ribbon bridges and assist designers in selecting appropriate control schemes to address vibrational issues.

1. Introduction

The stress-ribbon bridge is a prototype of a bridge with a rich
history of successful applications. It employs high-strength
cables or plates that facilitate vertical load support of the
deck slabs, resulting in a need for high horizontal resistance
force from the abutment. Given the typically flexible nature
of tensioning cables, the bridge has a beautifully curved cat-
enary shape, which enhances its esthetic appeal. As a result,
there has been a growing trend toward the construction of
the stress-ribbon pedestrian bridge. Recent renowned pro-
jects include the Lignon-Loex Bridge in Switzerland, the
Slinky Spring to Fame in Germany, and the IGA North
Bridge in Germany [1]. While most of the previous stress-
ribbon bridges were constructed through a prestressed con-
crete band, recent advances in high-strength steel materials
have prompted the application of steel plates as supporting

members of the bridge. These bridges consist of only slender
steel bands onto which individual concrete panels are placed,
and thus, they are much flexible and lively in their dynamics
compared to the prestressed concrete band type.

Stress-ribbon bridges are expected to experience consid-
erable displacement under external dynamic excitations or
even asymmetric static loadings. The displacement includes
kinetic displacement due to shape changes in the suspension
cable and the strain displacement from variations in the
material stress, and the former accounts for a large ratio.
Some innovative designs of the ribbons have been proposed
to advance the applications of new structures and materials.
Juozapaitis et al. [2] proposed to use “H” shape section to
obtain a bending-stiff ribbon. They demonstrated that a
more sustainable deformation behavior of the innovative
flexural-stiff ribbons can be achieved compared to the flexi-
ble bands of the same axial stiffness. New structural
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materials, such as carbon fiber-reinforced polymer, have also
been proposed for use in stress-ribbon bridges [3].

On the other hand, the increase of vibration problems of
stress-ribbon bridges has been recorded. The estimation,
monitoring, and controlling the vibration under dynamic
excitations has been a major concern. Moutinho et al. [4]
analyzed the vibrational properties of the stress-ribbon foot-
bridge within the University of Porto and proposed to use of
an active mass damper to suppress the vibration induced by
pedestrians. The AMD was purposely used to overcome the
disability of passive TMD tuning to the frequencies of mul-
tiple modes; particularly, the structural frequencies them-
selves may vary with the environmental temperature and
operational factors [5–7]. The testing results showed that
even with a very small mass ratio (0.15% used in the test),
the AMD system can lead to a significant reduction in the
acceleration response. Further, Moutinho et al. [8] per-
formed monitoring of the bridge’s vibration over several
years, with the TMD set to be a passive device and a semi-
active device, respectively. It was shown that the passive
TMD led to a reduction of vibrations even it was not opti-
mally tuned to any natural frequency, and comparatively,
AMD was more effective in attenuating the vibrations. Blei-
cher et al. [3] proposed to use of a pneumatic muscle actuator
to implement active control to the stress-ribbon bridge and
conducted a full-scale experiment. The control system can
provide sufficient control force while it causes almost no
variation in the structural frequency because it is extremely
light. Xiao et al. [9] proposed an eddy-current TMD and its
parameter optimization method for reducing the excessive
vibrations of stress-ribbon bridges under moving vehicle
loading.

In view that a single TMD is sensitive to the frequency
and multiple modes of a structure maybe triggered, multiple
TMD (MTMD) system has been proposed to solve the prob-
lem. MTMD has been proposed early by Igusa and Xu [10],
where a single TMD was split into several light TMD with
frequency ranging around the target value, so that the
robustness of the TMD can be improved. The work was
intended for solving the single-mode problem, and it has
been extensively applied in various scenarios. Another appli-
cation of multiple TMD is for multimodal control. Multiple
TMDs are designed with different vibrational frequencies
targeting different modes. Caetano et al. [11] used MTMDs
to solve the multimodal vibration problem of a pedestrian
bridge in Coimbra, Portugal. Multiple lateral and vertical
modes were selected for control. Luo et al. [12] and Chen
and Wu [13] successfully allocated MTMDs within struc-
tures by using different optimization or search techniques.
Daniel et al. [14] investigated the MTMD for multimodal
control of pedestrian bridges under pedestrian traffic loading
and proposed an iterative analysis/redesign procedure to
determine the parameters for a given vibration response
limit. Debnath et al. [15] proposed a frequency response
function-based strategy, which can be simultaneously
applied to multiple modes. Xu et al. [16] proposed a meth-
odology to design a distributed tuned mass damper inerter
(TMDI) to obtain the optimized multimode control

performance for large-span bridges. In the field of earth-
quake engineering, Chen and Wu [13] proposed a design
strategy of multimode TMD for the control of building struc-
tures under earthquake excitation.

Response control technique for stress-ribbon bridge has
been mainly focused on the pedestrian and wind loadings
[17–21]. However, earthquake is a crucial environmental
excitation that stress-ribbon bridges must withstand to
ensure structural safety and durability, particularly in areas
with higher seismic risk [22]. Although occurring not as
frequently as walking or wind loads, earthquakes can cause
significantly larger responses than walking or wind-induced
responses. Usually, earthquake forces are still the most criti-
cal excitation that determines the bridge configuration and
member sections. In most cases, stress-ribbon bridges have
been designed to withstand static earthquake load. However,
this approach is insufficient for designers to fully compre-
hend the actual dynamic behavior of the bridges during
earthquakes. This is especially true for multispan stress-
ribbon bridges, which exhibit asymmetric geometries and
closely spaced modal frequencies. These characteristics can
have a critical impact on the dynamic responses of the
bridges [23–28].

TMDs have been widely recognized as one of the most
effective methods for controlling structural vibrations
[5, 8, 11, 29, 30]. In this study, we aim to evaluate the effec-
tiveness of TMDs in mitigating earthquake-induced vibra-
tions of a stress-ribbon bridge. This specific stress-ribbon
bridge stands out due to its utilization of two continuous
high-strength steel plates as ribbons, which enhances its
vibrational characteristics. To achieve our objectives, a finite
element model is developed to analyze the dynamic proper-
ties of the bridge. Subsequently, various TMD schemes,
including single-mode TMD and multimode TMD, are
designed and compared. Section 2 of this study presents
the modal characteristics of the stress-ribbon bridge. Section
3 investigates the impact of TMDs on the modal frequencies,
demonstrating that the location and mass of the TMDs result
in different variations in the modal frequencies. These varia-
tions can be attributed to both the static mass effect and the
tuning effect. Moving on to Section 4, we present the results
of the time history analysis performed on the bridge with
different TMD schemes. A comparison is made between the
displacements and forces of the bridge with and without
TMDs. Moreover, we explore how the responses of the con-
trolled bridges vary when the orientation of the earthquake
input is changed.

2. Modal Characteristics of Stress-
Ribbon Bridge

2.1. Configuration of the Bridge. This study focuses on the
analysis of a two-span pedestrian stress-ribbon bridge. In
Figure 1(a), the elevation and geometric dimensions are dis-
played. Figure 1(b) provides detailed sections of the stress
ribbon, while Figure 1(c) illustrates the saddle supporting the
stress ribbons. The overall length of the bridge is 88.1m, with
the longer span and shorter span measuring 63.8 and 24.3m,
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respectively. Under self-weight, the longer span’s initial sag is
1.5m, and the shorter span’s initial sag is 0.3m. The bridge
consists of two steel-plate ribbons, with each ribbon 0.75m
wide and 0.04m thick. The steel plate is made of high-
strength steel material (brand Q690D). Previous researches
have verified the performance of Q690D steel as a structural
material, which can effectively reduce the structural system’s
weight owing to the high strength [31, 32]. Above the two
steel-plated ribbons, the precast concrete deck slabs are
installed by using bolts. The bridge is supported by a pier
positioned near the high abutment. The pier was constructed
at an angle to enhance the bridge’s esthetics, and the inclined
pier also provides extra tension to balance the axial force’s
horizontal component at the pier. In the initial stage, the
shorter span’s horizontal force balances the longer span’s
horizontal force and the pier’s horizontal force component
supporting the longer span, as recommended by Strasky’s
analysis of the bridge’s static equilibrium [33].

2.2. Modal Properties of the Bridge. A numerical model of the
bridge is established by the finite element program. Figure 2
shows the finite element model and the global coordinate
system. In the model, the steel ribbons between the supports
are simulated by the beam elements, and the ribbons on the
saddle are simulated by the plate element. The beam element
is adopted so that the bending stiffness of the ribbon, which
is an important influencing factor [34], is taken into account.
The saddle on the top of the pier was designed with a curved
surface and partially welded with the steel plate. Contact

effect exists between the saddle and the steel plate within
the nonwielding region. A surface-to-surface contact pair
with a friction coefficient of 0.6 is set between the two bodies.
The curved saddle was set to be the “target surface” and
simulated by the TARGE170 element; the ribbon was set to
be the “contact surface” and simulated by the CONTA174
element.

The vertical stiffness of the stress ribbons is greatly influ-
enced by the axial force. A vertical displacement resulting
from the vertical loading may cause an increase of the axial
force and, thus, the stiffness. It is essential to correctly simu-
late such a stress-stiffening effect in the numerical model. For
stress-ribbon bridge structures made of steel plates, the
bending stiffness is small compared to axial stiffness, result-
ing in a regular nonlinear stiffness matrix produced by large
displacement [35, 36]. Such a geometrical nonlinear behavior
is modeled by the stress-stiffening function embedded in the
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FIGURE 1: Configuration of the stress-ribbon bridge (unit: mm): (a) the elevation of the bridge; (b) section of the stress ribbon; (c) details of the
saddle.
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FIGURE 2: Finite element model of the bridge.
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program. The stiffness matrix of geometrical nonlinear
structure is represented by a regular material stiffness matrix
Km and an additional stiffness matrix KsðσÞ, the latter being a
function of the stress state. In the program, iteration calcula-
tion is carried out to generate the stress stiffness matrix to
solve the stress-stiffened problem [37].

Based on the FE model, the modal properties are obtained
from the eigenvalue analysis. Figure 3 shows the mode shape
and frequencies of the first 20 modes. The frequency ranges
between 0.8939 and 4.9505Hz. Some important vibrational
features can be observed. The longer and shorter spans vibrate
independently because the obtained vibrational modes are
either from the longer or the shorter span. Comparatively,
the number of the vibrational modes of the longer span is
much more than that of the shorter span. Second, vertical
bending is the most frequent pattern of vibration, which
includes nine modes of the longer span and three modes of
the shorter span. In particular, the first two modes are vertical
bending modes resulting from the longer span, which are sym-
metric and asymmetricmodes, respectively. Third, torsion is an
essential vibration pattern, and eight modes exhibit apparent
torsional motion. The modal frequencies are generally low and
close to the neighboring frequencies. The dense modes in the
frequency domain suggest that multiple modes may contribute
significantly to the responses of the bridge during earthquakes.
Based on the vibrational shapes of the first five modes, six
locations numbered A, B1, B2, C1, C2, and D, as shown in
Figure 1, are defined. Point A is at the center or the two-fold
point of the longer span, which experiences the largest ampli-
tude in mode 1 and mode 2. B1 and B2 are the four-fold points
of the longer span, and C1 and C2 are the eight-fold points of
the longer span, corresponding to the largest amplitude loca-
tions of mode 3 and mode 4, respectively. Point D is the center
of the shorter span. These locations are considered potential
locations for installing TMD.

Previous research has established theoretical formula-
tions for mode frequencies of stress-ribbon bridges. del

Arco et al. [38] developed a procedure to calculate the fre-
quencies of vertical bending modes with symmetric or asym-
metric shapes, assuming the bridge is approximated by pin-
supported suspension cable and neglecting bending stiffness.
Cacho-Perez et al. [39] derived a technique to obtain the
frequency of torsional modes, approximating torsional behav-
ior under clamped–clamped boundary conditions with Saint-
Venant torsion theory, which does not incorporate bending
or axial effects. Using these procedures, the frequencies of the
first ten modes (except for the sixth-order mode) were com-
puted and compared with the FEM-based frequencies in
Figure 4. The sixth-order mode is influenced by both torsion
and translational vibrations, making its frequency difficult to
obtain using existing theoretical formulas for pure bending or
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FIGURE 3: The first 20 vibrational modes of the bridge.
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torsion modes. Figure 4 highlights a good agreement between
the mode frequencies obtained from the FEM model and the
theoretical formulas.

2.3. Transfer Functions of Displacement Responses. To better
understand the dynamic responses of the bridge, transfer func-
tions under white noise excitations were derived. A Gaussian
white-noise signal was generated using an embedded function
in the MATLAB program and inputted in the longitudinal (x),
transverse (y), and vertical (z) directions, respectively. The
displacement transfer functions were plotted in Figure 5,
where the vertical axis jHðiωÞj represents the complex
frequency response function, and the horizontal axis
represents the frequency f ð¼ω=2πÞ. The responses included
vertical displacement and torsional angle at point A and vertical
displacement at points D, B2, and B1. Comparing the transfer
functions obtained from the three input directions, it is evident
that the structure responds across a wide frequency range with
multiple peaks. For vertical displacement, including points A, D,
B2, and B1, the stress-ribbon bridge is more sensitive to z-
direction excitation, demonstrated by the large amplitude of
the transfer function. However, the torsional response at point
A is more sensitive to y-direction excitation. Depending on the
location, the response may be excited by multiple vibrational
modes, such as vertical displacement at B1 and torsional
response at A, as demonstrated by multiple peaks of the
transfer function curves in Figures 5(c) and 5(e), respectively.
Different locations may be contributed by different vibrational
modes since the local peak of the transfer function occurs at
multiple frequencies. These results suggest that the control
strategy may vary for different control targets of the stress-
ribbon bridge.

3. Effect of TMD on Modal Properties

3.1. Determination of the TMD Parameters. Despite the geo-
metric nonlinearity of the stress-ribbon bridge, modal anal-
ysis provides crucial references for identifying dominant
frequencies. Furthermore, transfer functions show that
dynamic actions excite multiple vibrational modes. While
TMDs are effective for controlling systems with fixed fre-
quencies, their response control effect is significantly reduced
when there is an inconsistency between the frequencies of the
main system and the TMD. Therefore, multiple TMDs with
different tuned frequencies need to be used to control multi-
ple modes. For each single vibrational mode, TMD parame-
ters can be calculated via the fixed-point theory. The theory
establishes two invariant frequency points for a single-
degree-of-freedom undamped structure, where the response
remains independent of the attached TMD’s damping value.
According to the fixed-point theory, the optimal frequency
ratio Rf,opt and damping ratio ξopt can be determined by
Equations (1) and (2), respectively, where μ represents the
mass ratio between the TMD and the main structure [40].

Rf ;opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=2ð Þp
1þ μ

; ð1Þ

ξopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3μ
8 1þ μð Þ 1 − μ=2ð Þ

r
: ð2Þ

The above analysis has shown that both the vertical
bending and torsional modes are potential modes that sig-
nificantly contribute to the responses. Aiming at a vertical
bending mode, for a given modal mass ratio μb, the required
stiffness kb of the TMD can be calculated by Equation (3),
and the damping coefficient cb is calculated by Equation (4).

kb ¼mtbωtb
2 ¼ μbMsbωsb

2 1 − μb=2ð Þ
1þ μbð Þ2 ; ð3Þ

cb ¼ 2mtbωtbξopt ¼
2μbMsbωsb

1þ μb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μb

8 1þ μbð Þ

s
; ð4Þ

where kb, mtb, ωtb, and cb denote the stiffness, mass, fre-
quency, and damping coefficient of the TMD for a vertical
bending mode, andMsb and ωsb denote the general mass and
frequency of a vertical bending mode. In case the torsional
mode is controlled, let μT denote the ratio of the moment of
inertia between the TMD and the structure, and it can be
represented by Equation (5).

μt ¼
Jtt
Jst

¼ 2mttr2

Jst
; ð5Þ

where Jtt and Jst denote the moment of inertia of TMD and
structure, respectively, and mtt and r denote the mass of
TMD and the tuning radius of TMD. Similarly, according
to Equations (1) and (2), the required stiffness kt and damp-
ing coefficient ct of the torsional TMD can be calculated by
Equations (6) and (7).

kt ¼
μtmttωst

2 1 − μt=2ð Þ
1þ μtð Þ2 ; ð6Þ

ct ¼
2μtmttωst

1þ μt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μt

8 1þ μtð Þ

s
; ð7Þ

where ωst is the circular frequency of the structural tor-
sional mode.

3.2. TMD Arrangement Schemes. Since the addedmass causes
variations in the natural frequencies and a significant mass
can alter the bridge’s initial shape; therefore, it is recom-
mended to design a TMD with a limited mass. Additionally,
the bridge exhibits multiple lower-order modes with closely
spaced frequencies, which necessitates further investigation
into the distribution of mass for different modes and loca-
tions. To meet this requirement, multiple TMD schemes are
proposed for numerical comparison. In all of the schemes, an
equal mass of TMDs for vertical modes is considered to eval-
uate the performance of different schemes. The TMD is
placed at the location with the highest vibrational amplitude
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FIGURE 5: Transfer functions for displacement under different input directions: (a) A: vertical displacement; (b) D: vertical displacement; (c)
A: torsional angle; (d) B2: vertical displacement; (e) B1: vertical displacement.
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for the targeted mode. Specifically, for mode 1 and mode 3,
point A is preferred, while for mode 2, points B1 and B2 are
preferred. Figure 6 illustrates the six schemes, with the TMDs
arranged as follows:

(1) Scheme no. 1: multimodal TMDs are designed for
mode 1 and mode 3. The mass ratio and moment
of inertia ratio are both set to 0.05. All TMDs are
placed at point A. The torsional TMD consists of a
pair of small TMDs, each with a mass equal to 0.39 t,
symmetrically suspended on both sides of the
section.

(2) Scheme no. 2: a single vertical TMD with a concen-
trated mass targeted for mode 2 is placed at point B2.

(3) Scheme no. 3: a single vertical TMD with equally
distributed mass targeted for mode 2 is placed at
points B1 and B2. The scheme allows for a compari-
son with scheme 2 to understand how the mass dis-
tribution affects the performance.

(4) Scheme no. 4: a single vertical TMD with a concen-
trated mass targeted for mode 5 is placed at point D.
While the other schemes focus on the mode of the
longer span, this scheme is proposed to evaluate the
performance of a TMD placed at the shorter span.

(5) Scheme no. 5: a single vertical TMD with concen-
trated mass targeted for mode 1 is placed at point A.

(6) Scheme no. 6: multimodal TMDs are used with a
distributed mass proportion of 1 : 2 : 1 for points
B1, A, and B2, respectively. The scheme is designed
to target mode 1 and mode 2.

The stiffness and damping coefficients of each scheme are
determined in accordance with the target modes. All the
schemes, except scheme 1, have TMDs with the same mass.

These schemes were designed to compare the efficiency of con-
centrated TMD versus distributed TMDs along the bridge.

3.3. Effect of TMD on Modal Frequency. Due to the geometric
nonlinearity of the stress ribbon bridge, TMD can produce
two control effects: the first is the tuning effect that generating
control force that is counter phase to the velocity of the main
structure, and the second is the increase in the steel-band
stiffness due to additional static mass, which also possibly
leads to the variation in dynamic characteristics and displace-
ment reduction of the structural system. To distinguish
between these two effects, two working conditions were sim-
ulated: TMD locked (infinite stiffness) and TMD unlocked.
When the TMD is locked, only the static mass of the TMD is
effective, without any tuning control effect. When the TMD is
unlocked, it works as a general TMD device; both additional
mass effect and tuning effect are active. In order to investigate
the influence, modal analysis was conducted on the bridge
structure with TMD designed for vertical bending and torsion
modes in both working and locked states.

Figure 7 shows the variation of the modal frequencies of
the first four modes with a TMD targeting bending or torsion
at point A, and the TMD in the working state and locked
state are, respectively, considered. The ratios between the
modal frequency with TMD and the modal frequency with-
out TMD are presented. Figures 7(a) and 7(b) present the
frequencies obtained from a TMD-targeted mode 1. When
the TMD is locked, the static mass effect caused a decrease in
the frequency of mode 1 from 0.89 to 0.79Hz, with the mass
ratio increased from 0 to 0.1, represented by the ratio
decreased from 1 to 0.88. If the TMD is unlocked, the
decrease in the frequency of mode 1 is more significant,
and the frequency ratio reaches 0.73 for a mass ratio equal
to 0.1. Mode 2 and mode 4 are also influenced by the TMD
by different degrees; however, mode 3 is almost not affected.

MTMD
μ = 0.05

31.9 m

ðaÞ

47.7 m

TMD
μ = 0.05

ðbÞ

31.9 m 15.9 m

TMD
μ = 0.025

TMD
μ = 0.025

ðcÞ

79.8 m

TMD
μ = 0.05

ðdÞ

31.9 m

TMD
μ = 0.05

ðeÞ

TMD
μ = 0.0125 TMD

μ = 0.0125

TMD
μ = 0.025

15.9 m15.9 m 15.9 m

ðfÞ
FIGURE 6: TMD arrangement schemes: (a) no. 1 scheme; (b) no. 2 scheme; (c) no. 3 scheme; (d) no. 4 scheme; (e) no. 5 scheme; (f ) no. 6
scheme.
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Figures 7(c) and 7(d) present the frequency variation result-
ing from the TMD-targeted mode 3. The frequency ratio of
mode 3 decreased to 0.91 and 0.81 for TMD locked and
TMD unlocked states, respectively. At the same time, the
frequencies of other bending modes are also changed due
to the static mass effect. Mode 1 and mode 4 are symmetric
modes; their frequencies are decreased due to the added
TMD. Mode 2 is an asymmetric mode; adding TMD at the
center provides additional constraints to the center and thus
leads to an increase in its frequency.

The analysis indicates that the addition of TMD to the
flexible stress-ribbon bridge results in significant variation in
modal frequencies. The sensitivity of frequency to TMD
depends on factors such as the location of TMD, modal
shape, and mass ratio or moment of inertia ratio. This varia-
tion arises due to the tuning effect and the static mass effect

of the TMD. Hence, designers should consider such effects
when searching for optimal parameters during TMD design.

4. Earthquake Response of Stress-Ribbon
Bridge with TMDs

4.1. Tuning Effect of TMD in Earthquake Response. The pre-
vious section analyzed the impact of additional TMD on the
vibrational frequencies. To investigate the control effect of
the TMD system under seismic excitation, a TMD was added
at point A to control vertical displacement and different
mass ratios were analyzed. The damping and stiffness of
the corresponding TMD were calculated according to the
fixed-point theory, with the effect of TMD on the vibrational
frequency was considered. The stiffness and damping of
TMD were simulated using the Combin14 unit, and the
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mass was simulated using the Mass21 unit. In the numerical
model, the inherent damping is simulated by Rayleigh damp-
ing, and the damping ratios of the first two modes are set to
0.02. Soria et al. [7] conducted an identification of the damp-
ing ratio of a stress-ribbon bridge based on its operational
conditions and found it to be approximately 1%. Since larger
amplitudes can potentially be excited during earthquakes,
resulting in an increase in the damping ratio, a value of
0.02 is assumed in the current study. The RSN978 record
from the PEER [41] strong ground motion database was
selected as the seismic excitation, with a peak acceleration
of 0.25 g.

Figure 8 compares the displacement reduction ratio of
point A varying with mass ratio. The tuning effect of the
TMD was calculated by subtracting the damping reduction
rate of the TMD locked from that of the TMD unlocked. It is
observed that when the mass ratio is less than 2%, the addi-
tional mass did not cause the dynamic displacement to
decrease but rather caused a slight increase. When the
mass ratio exceeds 3%, the additional mass generates a con-
trolling effect on the dynamic displacement, and the
response reduction ratio increases with the mass ratio.

The tuning effect of the TMD was obtained by dividing
the reduction ratio of unlocked TMD by that of locked TMD.
The tuning effect increased first and then decreased with the
mass ratio, with the optimal tuning effect reaching 31.83%
when the mass ratio was 0.04. These results confirm that
TMD for stress-ribbon bridges will produce two effects: static
mass and dynamic tuning effect. Static mass changes the
stiffness of the bridge, and depending on the relative propor-
tion of increased mass and stiffness, the added static mass
may cause either a positive or negative control effect. A very
small static mass may cause an increase in displacement,
while a large mass can decrease the displacement. On the
other hand, the tuning effect can produce a good control
effect even under a small mass ratio. When the mass ratio
is between 2% and 4%, the tuning effect reaches the best. The

previous research has shown that a greater mass ratio of
TMD leads to a better control effect. However, the benefit
of increasing mass becomes insignificant as the mass
becomes large. Considering the influence of installation
and cost, a mass ratio between 2% and 5% is commonly
recommended for large structures. For the stress-ribbon
bridge, increasing the mass of TMD always leads to a better
control effect on the dynamic displacement. However, it does
not mean that increasing the mass necessarily leads to an
improved tuning effect. Thus, selecting an appropriate
mass ratio is important. Based on the results of Figure 8, a
mass ratio of 2%–4% is preferred.

4.2. Comparison of Control Effects of Different TMD Schemes.
Time history analysis was performed on the bridge with and
without TMDs. Four earthquake records with the record
sequence number (RSN) of 956, 978, 1004, and 6889 were
downloaded from the PEER strong motion database [41] and
used in the analysis. For the two horizontal components of
each record, the peak acceleration of the stronger component
is scaled to 0.4 g, and the other horizontal component and
the vertical component were then scaled with the same pro-
portion. The horizontal component with a large PGA was
inputted in the Y-direction of the bridge, while the other was
for the X-direction. The maximum vertical displacement of
points A, B1, B2, and D and the maximum torsional angle of
point A were determined from the dynamic response histo-
ries. The vertical accelerations and displacements at points
A, B1, B2, and D resulted from scheme 1 are compared with
the responses without TMD, as shown in Figure 9. Adding
TMD significantly reduces both the displacement and accel-
eration. On average, the maximum displacement at point A
was reduced by 40%, and the root mean square of the time
history was reduced by 46%; correspondingly, the maximum
and the root mean square of the vertical acceleration were
reduced by 46% and 43%, respectively. It is also of interest to
compare the responses at points B1, B2, and D. The current
TMD design leads to a reduction in vertical displacement
and acceleration at B1 by an average of 21% and 18%; B2
by 15% and 21%, and D by 11% and −1%, respectively.
Obviously, the TMD brings a control effect for B1 and B2,
and even the displacement at D, but caused a light increase in
the acceleration at D.

Figure 10 shows the control ratios for all the schemes,
where the horizontal axis denotes the scheme number. The
responses include the torsional angle at point A and the
vertical displacements at points A, D, B1, and B2. The blue
bar indicates that the response is reduced after adding TMD,
while the red one indicates the response is amplified. The
first column shows the torsional response at point A, which
demonstrates that the torsion can only be effectively reduced
by a torsional TMD (scheme no.1), and a moment of inertia
ratio of 0.05 leads to a reduction in the torsion response by
about 25%.

Scheme no. 4, which incorporates a single TMD located
at point D, demonstrates no noteworthy impact on the
response of the longer span. Conversely, all the other
schemes that position the TMD at the longer span exhibit
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a reduction in the vertical displacement at point D. These
findings suggest that the control of lower-order modes pro-
vided by the longer span produces a more comprehensive
effect, encompassing the entire bridge. In contrast, a TMD
intended for higher-order modes associated with the shorter

span is less effective in mitigating the responses of the lon-
ger span.

Both schemes no. 2 and no. 3 are designed to target mode
2, but they differ in their implementation. Scheme no. 2
utilizes a concentrated mass, while scheme no. 3 utilizes a
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distributed mass. When implemented with a concentrated
mass, scheme no. 2 leads to a reduction at the TMD location
but causes an increase at point B1. On the other hand,
scheme no. 3, which employs symmetrically distributed
masses, demonstrates better control performance, resulting
in a reduction along the entire span, particularly an average
reduction of about 20% at points B1 and B2. These results
indicate that a TMD with distributed mass may outperform a
TMD with a concentrated mass. When targeting a vibra-
tional mode with multiple peaks, it is crucial to simulta-
neously consider these peak locations as potential sites for
placing TMDs.

Schemes no. 3, no. 5, and no. 6 can be compared as they
incorporate either a single TMD or a multimodal TMD. All
of these schemes are capable of generating reductions along
the entire longer span, with minimal variation in the

reduction ratio across different locations. However, a notable
finding is that a single TMD proves to be the most effective
for the target mode. For instance, scheme no. 5 demonstrates
superior effectiveness in controlling the vertical displacement
at point A by a reduction ratio of 36%, while scheme no. 3
performs best at points B1 and B2, with an average reduction
ratio of 20%. On the other hand, the use of a multimodal
TMD results in a moderate response reduction across all
locations.

Aside from displacement, member forces play a vital role
as critical indicators in seismic design. To comprehensively
illustrate the effects of TMD schemes, Figure 11 compares
the maximum forces acting on various structural members,
including the tension force of the stress ribbons, the axial
force of the pier, and in-plane (bending axis: x-direction) and
out-of-plane (bending axis: y-direction) bending moments at
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the pier base. The horizontal axis represents the scheme
numbers, with “0” denoting the scenario without a TMD.
From the observation, it is clear that the variation in struc-
tural member forces after the incorporation of a TMD is not
as significant as the displacements. In comparison to the case
without a TMD, all schemes, except for no. 1, result in an
increase of up to 10% in the member forces. By comparing
scheme no. 1 and no. 5, it is found that a torsional TMD can
effectively reduce the pier forces, which also implies that the
pier force is significantly related with the torsion response of
the stress ribbons.

In addition to the factors mentioned earlier, the stroke of
the TMD is another crucial consideration when selecting
TMDs. A larger stroke requirement necessitates a larger
space to accommodate the TMD. To illustrate this, Figure 12
showcases the hysteretic curves of TMDs for bending modes
in various schemes under the excitation of the RSN956
record. In scheme no. 1 and no. 5, the vertical TMD at point
A exhibits a similar displacement of approximately 0.09m.
On the other hand, scheme no. 6 demonstrates a significantly
smaller amplitude of 0.025m. Comparing schemes no. 2 and
no. 3, it can be observed that distributed TMDs require a
larger stroke compared to the concentrated mass. The ampli-
tude for scheme no. 2 is approximately 0.07m, while for
scheme no. 3, it is approximately 0.055m.

Upon careful analysis, it appears that a single TMD posi-
tioned at the center of the longer span can effectively control
the displacement of the entire span. This placement offers
the advantage of a straightforward installation process and
meets acceptable stroke requirements. Therefore, for optimal
displacement control, we recommend a scheme that includes
this single TMD. Furthermore, in order to address pier
forces, we suggest the addition of a torsional TMD. This

additional TMD will enhance the mitigation of pier forces
and further improve the overall performance of the bridge
under seismic events. Taking these factors into consider-
ation, we recommend implementing scheme no. 1, which
includes a single TMD for displacement control and an addi-
tional torsional TMD for addressing torsion and pier forces.

4.3. Comparison of Responses from Different Input
Orientations. The current approach to earthquake response
analysis involves arbitrarily inputting two horizontal ground
motions to structures without considering the direction of
the input. However, studies have indicated that this method
may underestimate seismic fragility, particularly in bridges
[42, 43]. It has been shown that the horizontal component of
earthquake excitation significantly affects the torsional
response of stress-ribbon bridges. To explore the effect of
input direction, an earthquake record (RSN978) was input
again into the bridge with varying input angles of the hori-
zontal components, and the impact of the vertical compo-
nent was also investigated. The analysis considered four
settings: (a) controlled structure with tri-directional input,
(b) controlled structure with bi-directional input, (c) uncon-
trolled structure with tri-directional input, and (d) uncon-
trolled structure with bi-directional input. The input angle
was varied from 0° to 90°, with an increment of 10°, where 0°
denotes that the stronger horizontal component (with larger
PGA) is inputted to the X-direction, and the weak compo-
nent is inputted to the Y-direction, while 90° signifies a
perpendicular input angle to that of 0°.

Figure 13 illustrates the displacement responses, includ-
ing the vertical displacement at A, B1, and C2, and the tor-
sional angle at A. The black and gray symbols represent the
responses of the uncontrolled bridge and controlled bridge
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under bi-directional horizontal excitations, respectively, while
the red and purple symbols represent the forces obtained from
tri-directional excitations. The vertical displacements at A,
B1, and C2 are significantly increased by the vertical compo-
nent of the earthquake record, emphasizing its crucial role in
estimating the vertical displacement of the bridge. Regarding
the torsional response, the maximum response is more than
twice the minimum response resulting from different input
directions. These results underscore the significance of con-
sidering the earthquake input direction in structural analysis.
Responses derived from an arbitrary input direction may not
accurately reflect the critical response experienced by the
structure due to earthquake excitations. Additionally, the dis-
placement can be effectively reduced by adding a TMD, and
the disparity in responses arising from different input direc-
tions is also minimized.

5. Conclusions

To provide structural designers with a better understanding
of the dynamic performance of stress-ribbon bridges under
earthquakes, this study conducted a finite element analysis to
examine the earthquake response of a steel-plated stress-
ribbon bridge controlled by TMDs. The study evaluated six
configuration schemes with equal mass of vertical TMDs.
The following conclusions were drawn:

(1) The stress-ribbon bridge exhibits multiple vibra-
tional modes closely spaced in frequency. The addi-
tion of TMDs to the bridge introduces both static
mass and tuning effects on the modal frequency.
When a TMD with a mass ratio of 0.1 is added, the
fundamental frequency decreases by 12% due to the
static mass effect and by 27% when considering the
tuning effect as well.

(2) TMDs aimed at controlling the vertical displacement
are effective in reducing vertical displacement but
less effective in reducing torsional response and
member forces. On the other hand, torsional TMDs
can effectively reduce both torsional response and
member forces simultaneously.

(3) Increasing the mass of the TMD always leads to a
larger reduction in the earthquake response. The tun-
ing effect is most significant when the mass ratio falls
between 2% and 4%. Installing a single TMD for
mode 1 with a mass ratio of 0.05 can decrease vertical
displacement along the entire span by up to 36%.

(4) For mode 2, which has an asymmetric shape, a TMD
with distributed mass outperforms one with concen-
trated mass.

(5) Based on the displacement and force control require-
ments, it is recommended to use a combination of a
single TMD for mode 1 and a torsional TMD for
mode 3 for earthquake response control.

(6) The vertical displacement and torsional response of
stress-ribbon bridges are sensitive to vertical and
transverse excitation, respectively. The orientation of
earthquake excitation can significantly influence the

bridge’s response. However, after adding TMDs, the
response dispersion resulting from the input orienta-
tion is reduced.
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