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Smoking is responsible for ninety percent of all premature deaths worldwide. Its prevalence is increasing in developing countries
such as Bangladesh. Road trafc accidents (RTAs) have risen dramatically in recent years, with tobacco use accounting for 4–5
million fatalities each year.Tis trend will likely continue as more bus and truck drivers smoke in Bangladesh.Terefore, our study
attempts to identify predictors that may be directly related to the frequency of RTAs and smoking.Te study included 424 bus and
truck drivers and ten key informant interviews (KIIs). Ten, a linear regression (LR) analysis model was used to determine how
various smoking-related predictors contribute to the frequency of accidents. Furthermore, a binary logistic regression (BLR)
model was used to examine the likelihood of a driver being involved in an accident related to various smoking-related predictors.
Tis study demonstrates a strong association between the incidence of accidents and the number of times a person smokes, smokes
while driving, and uses smokeless tobacco (SLT) daily. Te result has been taken from the second BLR model, which fts with the
data more than the LR model. According to that model, a driver is more likely to be in an accident if the number of days per year
that he smokes cigarettes increases and if he smokes while driving. Additionally, it stresses the need for more research to make
a more accurate forecast.

1. Introduction

In developed nations, smoking is the leading preventable
cause of death and disability. Moreover, smoking is injurious
to health, especially cigarette smoking. According to Chen
et al. [1], cigarette smoking is an addictive behavior causing
diferent health, social, and behavioral problems. Despite
these problems, developing countries’ smoking rate is rising
fast [2]. Currently, tobacco use results in 4–5 million

fatalities worldwide, with 2 million deaths occurring in
developed nations and 2–3 million in developing countries
[3]. Among the fatalities, smoking-related motor vehicle
crashes are highly positively correlated [4]. Furthermore,
previous research found that smoking is associated with
higher rates of motor accidents [5]. So, this study contributes
to identifying the predictors for road trafc accidents (RTAs)
regarding smoking and SLT use in a developing country for
better trafc safety and drug control policies. Moreover,
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a new modeling approach is incorporated to predict the
likelihood of accidents due to smoking and smokeless to-
bacco, which was previously ignored.

Te South-East Asia region has high tobacco use rates
among adults and youth, with a complex consumption
behavior [6]. However, only a tiny percentage of young
adults quit smoking [3]. Because tobacco products are
generally less expensive than cigarettes for almost all de-
mographic categories, many teens and adults prefer them to
cigarettes. As a result, smokeless and smoked tobacco
products produced domestically are relatively prevalent
among adults (more than 43.3% in Timor-Leste, 43.3% in
Bangladesh, 34.6% in India, and 34.6% in Tailand) [6].
With such a high smoking rate and SLTusage, the impact of
driving behavior on drivers is critical for this region, par-
ticularly Bangladesh, as driving is a strenuous activity that
needs continual focus and rapid processing of a large
amount of data to arrive at quick decisions and actions. Te
ability, speed, and quality of decision making, in which brain
functions, judgment, preference, and choice are integrated
to shape the fnal decision and quickly put it into action, are
all greatly infuenced by one’s mental, emotional, and
physical state [7]. So, the research on human behavior in
trafc accidents has been extensive, particularly in recent
years, as intelligent autos and automotive control technol-
ogies have advanced for developed countries [8]. However,
there is minimal literature on the efects of smoking on
decision making and the impact of trafc accidents in de-
veloping countries.

Most studies have demonstrated that human driving
behavior increases the risk of an accident [9]. Te number of
RTAs has increased recently, and smoking rates among bus-
truck drivers in Bangladesh are rising. A study by Talukder
et al. [10] reveals that RTAs and smoking while driving are
statistically signifcantly associated (p� 0.003). Tey also
demonstrate that with a trust period ranging from 1.12 to
13.72, unlicensed drivers are around 3.8 times more likely to
be in RTAs than licensed drivers. Other fndings from this
study show that drivers are hooked to smoking and that
smoking habits, smoking knowledge, driving privileges,
personal income, and education afect RTAs signifcantly.
Another study by Goon and Bipasha [11] shows that bus
drivers smoked 93% of the time on average and spent 20% of
their daily salary on cigarettes in Bangladesh. Althoughmost
drivers (32.3%) began smoking before entering the driving
profession, excessive smoking was encouraged by workplace
and environmental stress brought on by a demanding work
schedule. However, to the authors’ knowledge, there is little
research on the impact of smoking and the use of smoked
and smokeless tobacco on road safety. However, Talukder
et al. [10] tried to show the pattern of smoking and SLT use
among drivers with RTAs. However, developing models in
any studies have not identifed associated smoking-related
predictors and parameters. Tis study has also covered this
gap for better RTA prediction and safety policy implication.

Our study attempted to identify predictors that may be
directly related to the frequency of RTAs and smoking. In
this regard, we investigated the impact of smoking and SLT
on trafc accidents in Bangladesh by developing linear and

binary logistic regression (BLR) models. Tis method is
unique, and investigating trafc accidents from the stand-
point of smoking has never been attempted in a developing
country. Te frst linear regression (LR) model has been
developed in this study to understand how various smoking
and driving-related factors afect the frequency of road
trafc accidents. Because we considered so many variables, it
was our challenge to identify the most signifcant predictors
for a clearer picture.Te signifcance of various independent
variables related to accidents and driving behaviors is ex-
amined in this analysis based on the frst LR. Ten, in the
second regression analysis, only the signifcant independent
variables are considered to obtain more specifc predictors.
However, while LR produces continuous results, logistic
regression produces discrete results. So, if it is necessary to
determine whether an accident occurred based on various
independent variables, BLR is the best option. Furthermore,
the signifcant independent variables are determined based
on the BLR coefcients. Diferent independent variables
were used in the frst BLR, as in LR. However, only the
signifcant variables were considered in the second binary
logistic model. Te BLR model is also used to determine the
frequency of accidents in relation to these variables.

In the following part, we review several pieces of liter-
ature to fnd the relevancy of diferent smoking-related
factors associated with RTAs. Section 3 establishes the ap-
propriate methodology for developing models to predict the
likelihood of smoking-related predictors on RTAs. Section 4
analyzes the developed models in depth to identify the
predictors that directly impact road trafc fatalities. Section
5 then elaborates on the fndings and discusses the proper
trafc safety policies. Finally, in Section 6, we conclude
this work.

2. Literature Review

According to an estimate from the World Health Organi-
zation (WHO) (2004) [12], road accidents result in up to 50
million injuries and 1.25 million fatalities annually and
nearly 3400 road fatalities every day. However, not all
countries experience the same trafc injuries. Te likelihood
of dying in a car accident varies by country of residence. For
instance, nearly 90% of trafc fatalities occur in low and
middle-income countries (LMICs). Te rate is less than 9 in
high-income countries (HICs) but about 20 in LMICs, with
the most signifcant rate in Africa (26.6%). Moreover, less
than 3 to over 40 people die for every 100,000 people
worldwide, or what is known as the mortality rate. Although
there have been improvements in road safety in HICs over
the past few decades, there have been no improvements in
LMICs. It is anticipated that there will be more trafc deaths
in the upcoming years [13].

In Bangladesh, the number of trafc collisions on the
roads is rising, which has been acknowledged by the people,
government, and administration [14]. According to gov-
ernment statistics, there are more than 60 fatalities in road
accidents for every 10,000 cars in Bangladesh. About eight
people each day pass away in car accidents. Te actual
mortality rate is probably substantially greater. According to

2 Advances in Civil Engineering



Debnath et al. [15], there are still issues with the accident
reporting system and the data it produces, and ofcial
numbers are prone to underreporting. Between 1982 and
2000, the number of accidents climbed by 43%, while the
number of fatalities increased by over 400%, showing that
accidents are happening more frequently but more
severely [16].

As a higher rate of trafc accidents is observed world-
wide as mentioned earlier, there is a need to investigate
safety criteria concerning the incidents. Typically, a wide
range of contributory elements, both from within the rel-
evant organizations and dysfunctional interactions between
them in a broader perspective, can be explored during in-
vestigating signifcant incidents in safety-critical systems
[17]. Furthermore, the sociotechnical systems’ perspective
contends that accidents are not the result of a single, in-
tentional act but rather highly interactive group processes
that are infuenced by decision and policymakers at all
relevant societal levels [18].

Tough many factors are responsible for road accidents,
one of the most prevalent issues is the risky behavior of
drivers [19]. More than 90% of drivers engage in unsafe
driving activities in some way. Males (p< 0.0001), those who
used alcohol or cannabis in adolescence (p< 0.0001), those
involved in violent or property crimes (p< 0.01), and those
connected to delinquent or substance-using peers (p< 0.05)
were the groups most likely to demonstrate frequent dan-
gerous driving behaviors. Te likelihood of trafc accidents
was strongly correlated (p< 0.0001) with the level of risky
driving behavior. Young people frequently engage in risky
driving habits, especially those prone to externalizing be-
haviors (substance abuse, crime, and afliations with deviant
peers). Driving at risk increases the likelihood of a trafc
collision [20].

Although it is widely researched that smoking substances
have disease consequences, there is not much documenta-
tion of the association of smoking with an increased risk of
injury [21]. So, we will discuss some signifcant studies on
smoking-related RTAs for our research. For instance, we can
mention a study done by Saadat and Karbakhsh [22]
showing that road trafc crashes (RTCs) had an annual
incidence of 14.9%: 14.0% included motor vehicle collisions
with other cars and 0.9% included pedestrians. In their
univariable analysis, there was a correlation between the
RTC and male gender, defensive driving technique (DDT),
smoking cigarettes, smoking waterpipes, and driving ma-
neuvers (DMs). Moreover, after adjusting for DDT, mul-
tivariable analysis from their study revealed a substantial
correlation between RTC and cigarette and waterpipe
smoking. Tey also developed a Poisson regression model
and thus showed that smoking a waterpipe, smoking ciga-
rettes, or both, and DDTwere independent predictors of the
frequency of trafc accidents.

Another study by Koushki and Bustan [23] showed that
among young drivers who had never worn a seatbelt,
smokers outnumbered nonsmokers by a factor of more than
two. Te same was true for involvement in trafc accidents:
the number of accidents experienced by young drivers was
higher for smokers and those who never buckled up. Te

causes of these may be related to drivers who disobey the seat
belt requirement and may also disobey other trafc laws and
regulations, which raises the risk of being involved in an
accident. Tey also enlightened that the drivers’ distraction
typically was brought on by taking a cigarette out of the
packet, lighting it, and holding it. At the same time, smoking
impairs a driver’s coordination, response time, physical
mobility, and concentration, which are crucial for pre-
venting accidents. Teir study also found that the ignorance
of the distractions that smoking causes and the amount of
carbon monoxide in cigarette smoke were alarming.
Moreover, diferent literature illustrates that defcient levels
of carbon monoxide severely afect a driver’s alertness, re-
action time, and ability to judge distance and speed [23].
Nevertheless, Grout et al. [24] showed a potential link be-
tween the smoking habits of drivers involved in injury-
producing trafc accidents and the hours of darkness.
Tey suggested that drivers who smoke have a higher risk of
being involved in an injury accident during the hours of
darkness than drivers who do not smoke but are also in-
volved in injury accidents. Te study also revealed a statis-
tically signifcant relationship between smoking and seat belt
use, with smokers less likely to utilize seat belts than
nonsmokers.

Another study by Buñuel Granados et al. [25] found that
the risk of accidents is higher among single men under 45.
According to their study, smokers are involved in accidents
twice as often as nonsmokers. Tere are no statistically
signifcant diferences between smokers who do and do not
smoke while driving a car; smoking makes it more likely that
the driver will be in a car accident, even if he does not smoke
while driving.

Finally, we will discuss another study by Tzortzi et al.
[26] that showed the risk of accidents from the distraction of
certain lifestyle choices, such as smoking and drinking while
driving. Tis study focused on the factors associated with
drivers’ distractive behavior in Greece. Drivers’ behavior
difered depending on their age, gender, social class, and area
of residence. For example, male drivers were more likely to
engage in drunk driving. In contrast, professional drivers
were likelier to use their cell phones for calls and texting, set
the GPS, and smoke while driving. Tey also highlighted the
relationship between smoking, alcohol, and road accidents.

In this paper, we collected data through questionnaire
surveys of drivers of heavy vehicles (e.g., bus and truck) at six
major bus and truck terminals in Dhaka. As our study
mainly concerns the diferent predictors of RTAs of heavy
vehicles, we focus on this study group for data collection.
However, as discussed in diferent studies on the variables
contributing to RTAs, we tried to fnd the gaps frst. So, we
have tried to contribute to flling these gaps for RTAs re-
garding smoking and tobacco use. Firstly, no signifcant
studies on smoking and tobacco-related RTAs have been
conducted in developing countries, especially Bangladesh.
Secondly, smoking-related sociodemographic factors for
RTAs have been conducted. However, proper predictors
related to smoking and SLT have not been well developed.
Tirdly, no proper methodology is available for the
smoking-related predictors that can be modeled to show
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precise results. So, our studies have tried to fll those gaps
and helped develop the right statistical models, such as the
linear and binary logistics models, to fnd important pre-
dictors of smoking and SLT use for safety and drug use
policies in developing countries like Bangladesh.

3. Materials and Methods

3.1. Study Design, Area, and Period. For this study, cross-
sectional data collection was conducted over nine months
(March–December 2017) at six diferent locations in Dhaka,
Bangladesh (bus terminals: Mohakhali, Gabtoli, and Jatra-
bari; truck terminals: Tejgaon, Aminbazar, and Doya-
gonjbazar). Te areas were chosen because of their high
trafc accidents, substantial intercity vehicle movements,
high trafc volume, severe trafc congestion, and intermodal
facilities. In addition, we have selected these study regions to
understand what factors in Dhaka city led to RTAs explicitly.

3.2. Participants and Sample Selection. Te poll and in-
terviews included all heavy vehicle drivers (bus and truck
drivers), administrators, and spokespeople from many in-
stitutions, such as bus and truck owner groups, labor unions,
and transportation authorities. Proper statistical methods
have been employed for data sampling, reducing the col-
lected data’s bias. From several bus and truck ports (bus
drivers: 212 and truck drivers: 212), 424 samples were evenly
chosen. Here, the sample population has been taken,
maintaining equality. Te target population is from diferent
social statuses. We have approached the government and
private organizations mentioned above and the target group
(vehicle drivers) with proper authoritative permissions.

3.3. Data Collection. A semistructured questionnaire survey
was used to provide a clear picture of the smoking and SLT
use behaviors of heavy vehicle drivers—bus and truck
drivers—with a total of 424 completed questionnaires. In
addition, face-to-face interviews were used to collect the
respondents’ responses.

3.4. Analysis Approach. When the data collection was
complete, a data entry operator was engaged to enter the
information and was tasked with teaching everyone about
using coded responses and multiple-choice questions. After
obtaining the data fle from the data entry team, another
round of reviews was performed to ensure the data were
entered correctly.

Here, LR and BLR models have been developed for
diferent RTA predictors. LR analysis is typically used to
predict a variable’s value based on the value of other vari-
ables. Te variable whose value needs to be predicted is
called the “dependent variable,” and the variables that are
used to predict the value of the other variable are called
“independent variables” [27]. If Yi is a dependent variable
and x1, x, . . . ..., xn are independent variables, then an LR
can be developed as follows:

yi � β0 + β1Xi1 + β1Xi2 + . . . + βpXij + εi, (1)

where for each observation, i � 1, ......., n. In the formula
above, it is considered that there are n observations of one
dependent variable and p independent variables. Tus, Yi is
the ith observation of the dependent variable, Xij is the ith
observation of the jth independent variable, and j� 1, 2, ..., p.
Te values βj represent parameters to be estimated, and εi

represent the ith independent identically distributed normal
error. Β is a (p+ 1)-dimensional parameter vector, where
β0 is the intercept term.

However, the standard logistic function σ: R⟶(0, 1)
and the general logistic function P: R⟶ (0, 1) can be
written as follows:

σ Yi(  � P xi(  �
e

yi

1 + e
yi

�
e

yi

1 + e
− yi

. (2)

P (x) in the logistic model is defned as the probability of
the dependent variable Yi being a success or case. Moreover,
in the binary logistic model, the probability of the dependent
variable Yi equals success/failure or yes/no. Terefore, if yes/
no is the case, P (YES) can be used as a dependent variable.
For example, suppose the value of Pmore than 0.5 is taken as
yes, and the value of P less than 0.5 is taken as no. In that
case, the new dependent variable can be either yes or no,
which will be categorical, and it can be named P (YES) [27].

Based on (1) and (2), LR and BLR models with cate-
gorical predictor coding were performed to evaluate the link
between RTAs and driver smoking behavior. In the LR
analysis, the relevance of the predictors was assessed con-
cerning the 95% confdence interval. It is called variable
selection. After that, Pareto analysis, multicollinearity de-
tection, goodness-of-ft analyses, fts and diagnostics for
unusual observations, analysis of variance (ANOVA), re-
sidual analysis, frequency versus residual plot analysis,
versus order plot analysis, and normal probability plot
analysis were performed. In the case of BLR analysis, sig-
nifcance of the predictor is analyzed by the Wald test.
Besides that, goodness-of-ft analyses and odds ratio analyses
have been performed. Te analysis was conducted using the
most recent version of the Statistical Package for Social
Sciences (SPSS version 25.0; IBM Corp., Armonk, NY, USA)
and MS Excel.

4. Results and Findings

Tis section provides a detailed modeling approach for
identifying the predictors of RTAs relating to smoking and
SLT use. Both LR and BLR models will be developed.
However, thirteen predictors have been identifed for the
study purpose, where the response is AccidentFreq (fre-
quency of accidents).Tey have been denoted in short forms
in the LR and BLR models. Table 1 depicts the elaboration of
the response AccidentFreq and the thirteen predictors used
in both models.

Talukder et al.’s study [10] focused on smoking behavior
and driver involvement in RTA in Bangladesh. A relation
between these two phenomena was established by univariate,
bivariate, and multivariate analysis. Tat study used these
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thirteen variables in diferent analyses, which have been used
as predictors in this linear and binary logistic regression-
based approach. Besides, diferent studies on the relationship
between RTA and smoking worked with diferent predictors
mentioned in this study.

Pederson et al. [28] considered current cigarette
smoking, driving exposure, and sociodemographic factors to
fnd their relationship with motor vehicle collisions. Tose
factors include age, number of hours taken to drive, the
status of smoking, indication of the number of days per year
that people smoke cigarettes, the status of whether a driver
smokes every day, and the status of a driver’s less-than-daily
tobacco use.

Choi et al.’s study [29] considered daily smokers clas-
sifed into light, moderate, and heavy daily smokers. Fur-
thermore, it says that the risk of unintentional injury
increases monotonically with increasing levels of smoking.
Compared with nonsmokers, former smokers (PRR, 1.30,
95% CI: 1.23 to 1.37), light daily smokers (PRR 1.34, 95% CI:
1.25–1.42), moderate daily smokers (PRR 1.47, 95% CI:
1.39–1.55), and heavy daily smokers (PRR 1.58, 95% CI:

1.42–1.75) had increased risk for unintentional injuries. In
our study, we also considered the status of smoking four or
more cigarettes per day (Fourormoresmoke) with the status
of whether a driver smokes every day (SmokeDaily) to take
a higher level of daily smoking into account like that study.

Koushki and Bustan [23] considered the number of
smoking while driving as an important factor for RTA. Of
course, smoking an increased number of cigarettes is bad for
driving. Nevertheless, the study also mentioned that the
distraction is caused by removing the cigarette from the
package, lighting it, and holding it. At the same time,
smoking afects drivers’ concentration, coordination, re-
action time, and physical maneuverability.

4.1. First Linear Regression Analysis. Te LR analysis has
been performed from the collected data, considering acci-
dent frequency, driving hours, and daily cigarette con-
sumption. As a result, the LR equation (3) found by the
categorical predictor coding (1, 0) is given below:

AccidentFreq � 3.09 + 0.0346 x1 − 1.972 x2 + 0.0x3NO + 0.871 x3YES

+ 0.0 x4NO + 5.11x4YES + 0.0018 x5

− 0.0158 x6 + 0.0065 x7 + 0.1332x8

+ 0.0x9NO − 1.135x9YES + 0.0x10

+ 0.0x11Gul − 0.80x11Jarda − 3.38x11Khoini − 1.42x11No consumption

− 1.29x11White − pata + 0.0x12Daily

+ 0.694x12No consumption

− 0.488x12 Sometimes

, (3)

where x1 � AvgCigPerDay, x2 � NosmokePerDrivHr,
x3 � SmokeDurDrive, x4 � Foursmokemore, x5 � Age,
x6 � DrivingHour, x7 � CigUseYr, x8 � NoSmokeDur-
Drive, x9 � SmokeorTobaccoStatus, x10 � SmokeDaily,
x11 � TypofSmklessTobc, and x12 � SmkLessTobDailyStat.

Here coefcients and model summary of the LR and fts
and diagnostics for unusual observations are presented in
a tabular form in Table 2.

4.1.1. Variable Selection. Te analysis that involves selecting
signifcant predictors based on a p value threshold of 0.05 is
typically called variable selection. In a variable process, the
goal is to identify a subset of the predictor variables most
strongly associated with the response variable while con-
trolling for the false positive rate (the probability of rejecting
the null hypothesis when it is true). A statistical test, such as
the t-test or the F-test, can be used to calculate the p value for
each predictor variable.Te p value refects the probability of
obtaining the observed test statistic if the null hypothesis
(that the predictor is not associated with the response) is
true. Here, the coefcients show how the frequency of ac-
cidents changes when one predictor in a regression line

changes while other predictors remain constant. In a linear
regression model, the coefcients represent the change in the
response variable for a one-unit change in the predictor
variable, holding all other variables constant. A positive or
negative coefcient value denotes an increase or decrease in
the frequency of accidents when predictors change. Here SE
Coef is the standard error (SE) of a coefcient. In a linear
regression model, it is a measure of the variability of the
coefcient estimate. It represents the standard deviation of
the sampling distribution of the coefcient. It is used to
construct confdence intervals for the coefcient, which
estimates the range of values within which the true value of
the coefcient is likely to fall. In an LR analysis, the test
statistic, known as the t value, is a measure of the size of the
diference between the estimated coefcient (also called the
parameter estimate) and the hypothesized value of the co-
efcient (also called the null value). It is used to determine
the statistical signifcance of the coefcient. A large t value
indicates that the estimated coefcient is signifcantly dif-
ferent from the hypothesized value and suggests that the
relationship between the predictor variable and the response
variable is not due to chance.
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On the other hand, a small t value indicates that the
estimated coefcient is not signifcantly diferent from the
hypothesized value and suggests that the relationship be-
tween the predictor and response variables may be due to
chance. Te t value is usually compared to a critical value
from the t distribution, a statistical distribution used to
determine the probability of observing a given t value by
chance. In an LR analysis, the p value measures the statistical
signifcance of the estimated coefcients (also called the
parameters). It represents the probability of observing the
estimate by chance, given that the null hypothesis is true. It is
calculated based on the t value of the estimate. It is used to
determine the statistical signifcance of the coefcient. A
small p value (usually less than 0.05) indicates that the
estimated coefcient is signifcantly diferent from the hy-
pothesized value and suggests that the relationship between
the predictor variable and the response variable is not due to
chance. On the other hand, a signifcant p value (greater
than 0.05) indicates that the estimated coefcient is not
signifcantly diferent from the hypothesized value and
suggests that the relationship between the predictor and
response variables may be due to chance. Tis study in-
dicates a predictor’s relevance in causing RTA by its p value.

In Table 2, the p values of NosSmokePerDrivHr,
SmokeDurDrive (YES), and Foursmokeormore (YES) are
lower than 0.05, so they are statistically signifcant predictors
with a 5% confdence interval. It means an increase in
smoking per driving hour, smoking during driving, and
smoking more than four cigarettes increases the accident
frequency. Other predictors are not signifcant.

4.1.2. Multicollinearity Detection. Te variance infation
factor (VIF) measures the amount of multicollinearity in the
model. Multicollinearity occurs when two or more highly
correlated predictor variables afect the regression model’s
accuracy and interpretability. For example, it can cause the
standard errors of the coefcients to be infated. A VIF of 1
indicates no multicollinearity between the model’s predictor
and the other variables. A VIF greater than 1 suggests
multicollinearity between the model’s predictor and the
other variables. Te magnitude of the VIF refects the se-
verity of the multicollinearity. Multicollinearity can cause
problems in a linear regression model, such as unstable
coefcient estimates and inaccurate statistical inferences.
Suppose the VIF for a predictor variable is found to be high
(usually greater than 5 or 10). Removing the variable from
the model may be necessary or using a diferent statistical
model may be necessary. Te regression analysis found
signifcant predictors, though the model did not ft well.
Because it calculates how much the variance of a regression
coefcient is infated because of multicollinearity in the
model, the variance infation factor, or VIF, is present and
has a negative impact on the regression fndings. When the
VIF is greater than 10, there is a signifcant association and
grounds for concern. Numerous predictors with VIFs above
ten are observed in the regression model; NosSmokePer-
DrivHr is one of these and has a variance infation factor of
16. Additionally, because the regression model could not

adequately match the data, a new regression model was
created using just two signifcant predictors with a variance
infation factor of less than 10.

4.1.3. Goodness-of-Fit Analyses. Te analyses that consider
the R-squared (R-sq), the adjusted R-squared (R-sq (adj)),
and the predicted R-squared (R-sq (pred)) in a multiple
linear regression model are typically referred to as model ft
analyses or goodness-of-ft analyses. All three measures, the
R-squared, the adjusted R-squared, and the predicted R-
squared, can be used to evaluate the ft of a multiple linear
regression model and to compare the ft of diferent models.
In an LR analysis, the R-squared (R-sq) value measures the
model’s goodness of ft. It represents the proportion of the
variance in the response variable explained by the predictor
variables. Te R-sq value is calculated as the ratio of the sum
of squares explained by the model (ESS) to the total sum of
squares (TSS). Te TSS is the sum of the squared diferences
between the mean of the response variable and each data
point. It refects the total variability in the response variable.
Te ESS is the sum of the squared diferences between the
predicted values of the response variable and the mean of the
response variable. It refects the variability in the response
variable that the model explains. Te adjusted R-squared or
R-sq (adj) is a modifed version of the R-squared (R-sq)
value used to evaluate an LR model’s ft. Te R-sq (adj) value
considers the number of predictor variables in the model. It
adjusts for the fact that the R-sq value tends to increase as the
number of predictors increases, even if the additional pre-
dictors do not improve the model ft.

Te predicted R-squared or R-sq (pred) measures the
predictive accuracy of a linear regression model. It repre-
sents the proportion of the variance in the response variable
explained by the predictor variables in a new dataset. Te R-
sq (pred) value is calculated using a prediction equation
derived from the model. It is based on the predicted values of
the response variable for the new dataset. Te R-sq, R-sq
(adj), and R-sq (pred) value range from 0 to 1, and a higher
value indicates a better ft of the model (for R-sq (pred), it
indicates a better ft of the model to the new dataset). Teir
value of 0 indicates that the model does not explain any of
the variances in the response variable. In contrast, their value
of 1 indicates that the model explains all of the variances in
the response variable.

In this LR model, Table 2 shows that the R-squared value
is 8.74%, the adjusted R-squared value is 5.15%, and the
predicted R-squared value is 0%.Tese data indicate that the
model is not a good ft for the data, as they are extremely low
values. A low R-squared value (adjusted or not) suggests that
the model cannot explain a large proportion of the variance
in the dependent variable. Moreover, a low predicted R-
squared value indicates that the model is not expected to
perform well in future observations, including predicting
any variance in response.

4.1.4. Fits and Diagnostics for Unusual Observations. Fits
and diagnostics for unusual observations in multiple linear
regression analysis are used to identify any unusual
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observations that may have a large impact on the model.
Tese observations are identifed by their ftted values,
standard errors, confdence intervals, and standardized re-
siduals. It is expected that there will be some unusual ob-
servations. For example, based on the criteria for large
residuals, roughly 5% of observations would be expected to
be fagged as having a large residual. In this paper, they have
been identifed by residuals and standardized residuals. In
multiple linear regression analysis, the residuals (also called
“resid”) and standardized residuals (also called “Std Resid”)
are used to identify unusual observations and assess the ft of
the model. Residuals difer between the observed and the
dependent variables’ predicted values. Standardized re-
siduals have been standardized to have a mean of zero and
a standard deviation of one. Both residuals and standardized
residuals can be used to identify unusual observations in
multiple linear regression analyses. Unusual observations
often stand out as points far from the trend in residual and
leverage plots. Residuals and standardized residuals can also
assess the model’s ft. Te model is likely a good ft if the
residuals are randomly distributed around zero. However,
suppose the residuals are systematically skewed or show
patterns. In that case, it may indicate that the model is not
a good ft and that alternative models should be considered.
Overall, residuals and standardized residuals are useful tools
for identifying and dealing with unusual observations in
multiple linear regression analysis and assessing the model’s
ft. Examining the residuals can provide useful information
about how well the model fts the data. Generally, the re-
siduals should be randomly distributed with no obvious
patterns and exceptional values. Standardized residuals
greater and less than two are usually considered large.

In the fts and diagnostics for unusual observations in
Table 2, all the values of Std Resid are either large or unusual.
Suppose every value of the standardized residuals (Std Resid)
is large or unusual. In that case, it may indicate that the
model is not a good ft for the data. Standardized residuals
are calculated by dividing the residuals (i.e., the diference
between the observed and predicted values) by the standard
deviation of the residuals. Unusual observations difer sig-
nifcantly from the rest of the data and may signifcantly
infuence themodel. Unusual observations often stand out as
points with large, standardized residuals, as large, stan-
dardized residuals indicate that the residuals are signifcantly
larger or smaller than expected if the model were a good ft.

4.1.5. Analysis of Variance. In an LR analysis, the analysis of
variance (ANOVA) is a statistical test used to determine
whether the LR model is a good ft for the data. Te ANOVA
test compares the variance of the residuals (the residual sum
of squares or RSS) to the variance of the response variable
(the total sum of squares or TSS). It calculates a test statistic
known as the F-statistic. Tis test is based on the null and
alternative hypotheses. Te null hypothesis means that the
LR model does not explain variances in the response vari-
able. Te alternative hypothesis means that the LR model
explains some or all of the variance in the response variable.
Te adjusted sum of squares (Adj SS) and the adjusted mean

squared error (Adj MSE) are measures of the variability in
the data that the model explains.Tey have adjusted versions
of the sum of squares (SS) and the mean squared error
(MSE), which account for the number of parameters esti-
mated in the model. Te Adj SS and Adj MSE are used in the
ANOVA table to compare the explained variance (Adj SS) to
the residual variance (Adj MSE). Te explained variance
represents the variability in the data explained by the model.
In contrast, the residual variance represents the variability in
the data that the model does not explain.Te Adj SS and Adj
MSE are used to calculate the F-statistic, a measure of the
statistical signifcance of the model. Te F-statistic is cal-
culated as F�Adj SS/Adj MSE.

Te F-statistic follows an F-distribution with p and n− p

− 1 degrees of freedom, where p is the number of parameters
or degrees of freedom estimated in the model and n is the
sample size. Te p value of the ANOVA test is calculated as
the probability of observing an F-statistic as large or larger
than the observed F-statistic by chance, given that the null
hypothesis is true. A small p value (usually less than 0.05)
indicates that the null hypothesis can be rejected, and it can
be concluded that the model is a good ft for the data. On the
other hand, a large p value (greater than 0.05) indicates that
the null hypothesis cannot be rejected. Te error term
represents the variability in the data that the model does not
explain. It is also known as the residual variance or the
within-group variance. Te lack-of-ft term represents the
variability in the data that is not explained by the model but
is not due to random error.Te pure error (error variance or
the within-group variance) is the data’s variability due to
experimental error, such as measurement error or variation
in the experimental conditions. Te total variance, repre-
senting the total variability in the data, is the sum of the
explained variance (between-group variance), the pure er-
ror, and the lack-of-ft variance. Te sum of squares (SS) is
a measure of the total variance, which is calculated as the
sum of the squared diferences between the observed data
values and the mean of the data.

Here, Table 3 depicts the analysis of the variance of the
diferent predictors to identify the most signifcant ones.
However, SmokeDurDrive (p value� 0.011), Four-
smokeormore (p value� 0.012), and NosSmokePerDrivHr
(p value� 0.024) all have p values less than 0.05, making
them statistically signifcant with a 95% confdence interval.
Te most important predictor is smoking while driving,
followed by smoking more than four times per day and the
number of cigarettes smoked per hour of driving. Tis order
also refects the result from the statistical model selection.

4.1.6. Pareto Analysis. A Pareto chart of the standardized
efects is a graphical representation of the standardized
regression coefcients in a multiple linear regression model.
It is used to visualize the relative importance of the predictor
variables in their efect on the response variable. In a Pareto
chart of the standardized efects, the predictor variables are
plotted in descending order of their standardized co-
efcients, with the most important predictor at the top. Tis
allows us to identify the most infuential predictor variables
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and compare their relative importance. Te analysis of
a Pareto chart of the standardized efects in a multiple linear
regression model is typically referred to as a Pareto analysis
or a Pareto ranking.

Now standardized efects of the LR model are presented
in a Pareto chart in Figure 1(a). From the most signifcant to
the most negligible efect, the Pareto chart displays the
absolute values of the standardized efects. Te fgure also
depicts a reference line showing statistically signifcant
impacts. Te signifcance level, which in this instance is 5 in
this case, determines the reference line for statistical sig-
nifcance, which is 1.966. Only driving while smoking,
smoking more than four cigarettes, and the number of
cigarettes smoked per driving hour are shown in this chart as
statistically signifcant. Driver’s smoking while driving is the
most important of all three predictors, while smoking per
driving hour is the least important.

4.1.7. Residual Analysis. A residual versus ftted value plot
analysis is typically referred to as residual analysis. Residual
analysis is a statistical method used to evaluate the ft of
a linear regressionmodel by examining the residuals (i.e., the
observed minus predicted values). A residual versus ftted
value plot is a graphical representation of the residuals in
a linear regression model. It is useful for evaluating the
model’s ft and identifying patterns or trends in the residuals.
A residual versus ftted value plot is created by plotting the
residuals on the y-axis and the predicted values or the
predictor variables on the x-axis. It is a helpful tool for
evaluating the ft of a linear regression model because it
allows one to visualize the residuals and identify any patterns
or trends in the data. For example, suppose the residuals are
randomly dispersed around the horizontal line at zero. In
that case, it indicates that the model fts the data well.
However, suppose the residuals show a pattern or trend. In
that case, it may indicate that the model is not a good ft and

that additional predictors or a diferent model may be
needed.

When examining a residual versus ftted value plot, there
are mainly three characteristics to look for: randomness,
constant variance, and normality. First, the residuals should
be randomly dispersed around the horizontal line at zero. If
the residuals show a pattern or trend, it may indicate that the
model is not a good ft. Second, the spread of the residuals
should be roughly constant over the range of the predicted
values. For example, suppose the variance of the residuals
increases or decreases as the predicted values increase or
decrease. In that case, it may indicate that the model is not
a good ft. Tird, the residuals should be approximately
normally distributed. If the residuals are not normally
distributed, it may indicate that the model is not a good ft or
that the data have been transformed incorrectly.

Te regression model’s “against fts” or “residuals versus
fts” plot is displayed in Figure 1(b). Firstly, A pattern is
found in the plot, so there is no randomness. Secondly, the
plot has no constant variance, as the variance in the plot is
not constant over the range of the predicted value. More-
over, thirdly, from visual inspection, it can be said that the
plot does not follow a normal distribution, and it is skewed
to the right. So, it can be said that the model is not a good ft.
Te details of the normality would be found in the frequency
versus residual plot from Figure 2(b).

4.1.8. Normal Probability Plot Analysis. A normal proba-
bility plot is a graphical technique used to assess the nor-
mality of the residuals in a linear regression model. It is
based on the idea that if the residuals are normally dis-
tributed, the plot of the residuals against the quantiles of
a normal distribution should be linear. A normal probability
plot is a useful tool for assessing the assumptions of a linear
regression model and ensuring that the model is appropriate
for the data.

Table 3: Analysis of variance.

Term DF
Adjusted sum
of square

(SS)

Adjusted mean
square (MS) F value p value

Regression 16 199.55 12.4718 2.44 0.002
AvgCigPerDay 1 14.47 14.4663 2.83 0.094
NosSmokePerDrivHr 1 26.46 26.4591 5.17 0.024
SmokeDurDrive 1 33.52 33.5174 6.55 0.011
Foursmokeormore 1 32.54 32.5396 6.36 0.012
Age 1 0.08 0.0842 0.02 0.898
DrivingHour 1 0.85 0.8467 0.17 0.684
CigUseYr 1 0.53 0.5294 0.10 0.748
NosSmokeDurDrive 1 15.87 15.8686 3.10 0.079
SmokeorTobaccoStatus 1 12.35 12.3541 2.41 0.121
SmokeDaily 1 3.01 3.0136 0.59 0.443
TypofSmklessTobc 4 18.05 4.5132 0.88 0.475
SmkLessTobDailyStat 2 7.30 3.6493 0.71 0.491
Error 407 2083.95 5.1203
Lack of ft 371 1954.45 5.2681 1.46 0.081
Pure error 36 129.50 3.5972
Total 423 2283.50
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Figure 2: Continued.

Pareto Chart of the Standardized Effects
(response is AccidentFreq, α = 0.05)
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Figure 1: (a) Pareto chart of the standardized efects and (b) versus fts plot of the frst linear regression model.

12 Advances in Civil Engineering



If the plot is linear, likely, the residuals are normally
distributed. However, if the plot is not linear, it indicates that
the residuals are not normally distributed. Tis may indicate
a problem with the ft of the linear regression model, and
using a diferent model or transforming the data might need
to be considered. For example, Figure 2(a) shows that the
plot is not linear, so the model does not ft well, and the
residuals are not normally distributed.

4.1.9. Frequency versus Residual Plot. A frequency versus
residual plot is a graphical representation of the residuals in
a linear regression model. It is a type of residual plot that
displays the frequency (i.e., the number of observations) of the
residuals on the y-axis and the residual values on the x-axis.

Frequency versus residual plot is useful for evaluating
the ft of a linear regression model and identifying patterns
or trends in the residuals. For example, suppose the residuals
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Figure 2: (a) Normal probability plot, (b) histogram of frequency versus residual for accident frequency, and (c) versus order plot.
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are randomly dispersed around the horizontal line at zero. In
that case, it indicates that the model fts the data well.
However, suppose the residuals show a pattern or trend. In
that case, it may indicate that the model is not a good ft and
that additional predictors or a diferent model may be
needed.

Figure 2(b) illustrates how the data are skewed to the
right. For example, suppose a frequency versus residual plot
is unimodal and right-skewed. In that case, the residuals are
concentrated around a single mode (i.e., a peak in the
distribution). As a result, the distribution is skewed to the
right, with a long tail extending towards higher residual
values. Tis type of distribution may indicate that the model
is not a good ft for the data and that additional predictors or
a diferent model may be needed.

4.1.10. Versus Order Plot. In multiple linear regression
analysis, a versus order plot can be used to visualize the
relationship between the residuals (the diferences between
the observed and predicted values of the response variable)
and the observation order (the order in which the data points
were collected). A versus order plot of the residuals versus
observation order can be useful for identifying patterns or
trends in the residuals that indicate a problem with the ft of
the multiple linear regression model. For example, suppose
the residuals show a systematic pattern (e.g., increasing or
decreasing over the observation order). Tis could indicate
that the model is not accurately capturing the relationship
between the predictor and response variables. In this case,
adding additional predictor variables to the model or using
a diferent model should be considered.

A versus order plot of residuals can be useful for de-
termining the goodness of ft of a statistical model. A good ft
is typically characterized by randomly distributed residuals
and approximately constant variance. If the residuals show
a pattern or trend, this may indicate that the model is not
a good ft or that there are unusual points in the data. Tere
are mainly three characteristics of a versus order plot of
residuals that can be used to determine the goodness of ft of
a statistical model: randomness, constant variance, and
normal distribution. First, suppose the residuals are ran-
domly distributed across the plot. In that case, this suggests
that the model is a good ft for the data.

On the other hand, if the residuals show a pattern or
trend, this may indicate that the model is not a good ft.
Second, suppose the residuals’ variance is approximately
constant across the plot. In that case, this suggests that the
model fts the data well. If the variance of the residuals
increases or decreases as a function of the predictor variable,
this may indicate that the model is not a good ft.Tird, if the
residuals are approximately normally distributed, this sug-
gests that the model is a good ft for the data. If the residuals
are heavily skewed or have heavy tails, this may indicate that
the model is not a good ft.

Figure 2(c) shows the versus order plot of this LR model.
Firstly, the data do not seem random, rather a pattern can be
found here as residuals are increasing and decreasing with
increasing observation order. Secondly, the residuals’ vari-
ance is far from constant across the plot, as there are many
spikes in the residuals. Moreover, thirdly, the plot is not
normally distributed as the points are not symmetrical
around the center of the plot, and there are many extreme
outliers. So, the model is not a good ft.

4.1.11. Major Findings from the First LR Analysis. All of the
diagnostic tools for assessing the ft of this LR indicate that
the model is not a good ft. So, as our frst option, it can be
helpful to remodel the multiple linear regression model with
only the predictors whose p values are less than 0.05 and
whose variance infation factor (VIF) is less than 10.Tis can
help improve the model by reducing the number of variables
and eliminating variables that are not signifcant or corre-
lated with each other.

p values are used to assess the statistical signifcance of
the coefcients in the multiple linear regression model. A p

value less than 0.05 indicates that the coefcient is signif-
cantly diferent from zero and is, therefore, likely to be
related to the dependent variable. Remodeling the model
with only the predictors whose p values are less than 0.05 can
help to reduce the number of variables and improve the
model’s ability to predict the dependent variable. Te var-
iance infation factor (VIF) measures the multicollinearity
among the predictors in the model. Multicollinearity occurs
when two or more predictors are highly correlated with each
other. High multicollinearity can lead to unstable co-
efcients and make it difcult to interpret the model’s re-
sults. Remodeling the model with only the predictors whose
VIF is less than ten can help to reduce multicollinearity and
improve the stability and interpretability of the model.
Retaining the multiple linear regression model with only the
predictors whose p values are less than 0.05 and whose VIF is
less than ten can improve the model.

According to Table 2, the p values of NosSmokePer-
DrivHr, SmokeDurDrive (YES), and Foursmokeormore
(YES) are lower than 0.05. However, numerous predictors
with VIFs above ten are observed in the regression model.
NosSmokePerDrivHr is one of these and has a variance
infation factor of 16. So, remodeling with only two pre-
dictors, SmokeDurDrive (YES) and Foursmokeormore
(YES), should be done in the second LR analysis.

4.2. Second Linear RegressionAnalysis. In this section, a new
regression analysis (4) has been performed considering two
predictors, as mentioned earlier: Foursmokeormore and
SmokeDurDrive.

AccidentFreq � 1.458 + 0.0 x1−NO + 4.89 x1−YES + 0.0x2−NO + 0.652x2YES, (4)
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where x1 � Foursmokeormore and x2 � SmokeDurDrive.

4.2.1. Variable Selection. Regression analysis of Accident-
Freq versus Foursmokeormore and SmokeDurDrive is
shown in Table 4, where both variables had p values lower
than 0.05 (even lower than 0.01). Terefore, smoking more
than four times a day and smoking during driving are
important predictors, with the same reference line of 1.966.

4.2.2. Goodness-of-Fit Analyses. In this LR model, Table 4
shows that the R-squared value is 4.33%, the adjusted R-
squared value is 3.87%, and the predicted R-squared value is
0%. Tese data also indicate that the model is not a good ft
for the data, as they are extremely low values. So, this model
also fails to explain a large proportion of the variance in the
dependent variable and is not expected to perform well in
future observations, including predicting any variance in
response.

4.2.3. Fits and Diagnostics for Unusual Observations. In the
fts and diagnostics for unusual observations in Table 4, all
the values of Std Resid are large, and two are unusual.
Suppose every value of the standardized residuals (Std Resid)
is large in fts and diagnostics for unusual observations. In
that case, likely, the model does not ft the data well. Tis
could be because of an inappropriate model form, wrong
variable selection, or other problems.

4.2.4. Prediction for Response. In the prediction for response
(AccidentFreq) in Table 4, the prediction interval (PI) of
Foursmokeormore and SmokeDurDrive predictors in dif-
ferent settings has been analyzed. It also indicates if the
model is a good ft and if there are unusual observations and
outliers. Here “NO” means the predictor is not considered,
and “YES” means the predictor is present in the equation,
which would play a role in changing the value of the re-
sponse (AccidentFreq). A prediction interval (PI) is a range
of values likely to contain an individual predicted value with
a certain confdence level (in this model, the confdence level
is 95%). Generally, a prediction interval should contain the
predicted value with a certain confdence level, regardless of
whether the predicted value is positive or negative. It is
noteworthy that if both the upper and lower limits of the PI
have the same sign, it may indicate that the prediction in-
terval is unusual because it does not contain the predicted
value with the specifed confdence level. Tere are several
possible reasons why both the upper and lower limits of the
PI may have the same sign, like the model not being a good
ft for the data, unusual observations, or outliers.

According to the prediction for AccidentFreq results, if
the setting of Foursmokeormore is YES (for both the settings
of SmokeDurDrive), then the PI becomes unusual, as both
the extremes of the PI are of the same sign. On the other
hand, if the setting of Foursmokeormore is No, then good
PIs are found, i.e., if the setting of SmokeDurDrive is YES.
Te PI is (−2.38080, 6.60045), and if the setting of
SmokeDurDrive is NO, then the PI is (−3.02885, 5.94452).

Turning the setting of SmokeDurDrive from YES to No
makes the PI narrower, meaning that the predictor
SmokeDurDrive is a signifcant factor in predicting Acci-
dentFreq. However, as two unusual PIs are found in the
analysis, the model is not a good ft for the data, unusual
observations, or outliers.

4.2.5. Pareto Analysis. Figure 3(a) displays the Pareto chart
of the standardized efects of the new regression model,
where both Foursmokeormore and SmokeDurDrive exhibit
strong signifcance.

4.2.6. Residual Analysis. Te regression model’s “against
fts” or “residuals versus fts” plot is displayed in Figure 3(b).
Te goodness of ft is poor in this model, so the data do not
match the regression line. Firstly, a pattern is found in the
plot, two perpendicular lines on the X-axis, so there is no
randomness. Secondly, the plot has no constant variance
(between the two lines). Tirdly, from visual inspection, the
plot does not follow a normal distribution, which is proved
in Figures 4(a) and 4(b).

4.2.7. Analysis of Variance. Te analysis of variance was
done. Foursmokeormore and SmokeDurDrive show the
exact p values in the variable selection, proving their high
signifcance. Table 5 depicts the variance of accident fre-
quencies related to two predictors (Foursmokeormore and
SmokeDurDrive). For these predictors, the p value is less
than 0.005, indicating that all of them are statistically sig-
nifcant for 95% confdence intervals.

4.2.8. Normal Probability Plot Analysis. Figure 4(a) also
shows that the plot is not linear. So, the model does not ft
well, and the residuals are not normally distributed. In that
case, this model does not ft well, and using a diferent model
or transforming the data might need to be considered.

4.2.9. Frequency versus Residual Plot. Figure 4(b) illustrates
that this model’s data are skewed to the right. So, the re-
siduals are concentrated around a single mode (i.e., a peak in
the distribution). Te distribution is skewed to the right,
with a long tail extending towards higher residual values. Of
course, the residuals are not normally distributed. Moreover,
it means the model is not a good ft for the data and that
additional predictors or a diferent model may be needed.

4.2.10. Versus Order Plot. Figure 4(c) shows the versus order
plot of this LR model. It seems quite the same as Figure 2(c)
of the frst LR model. Firstly, the data do not seem to be
random, rather a pattern can be found here as residuals are
increasing and decreasing with increasing observation order.
Secondly, the residuals’ variance is far from constant across
the plot. Tere are many spikes in the residuals, and the
variance seems even more variable than in the previous
model. Furthermore, thirdly, the plot is not normally dis-
tributed as the points are not symmetrical around the center
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Pareto Chart of the Standardized Efects
(response is AccidentFreq, α = 0.05)
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Figure 3: (a) Pareto chart of the standardized efects and (b) versus fts plot of the new regression model.
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of the plot as before, and there are many extreme outliers. So,
the model is not a good ft too.

4.2.11. Major Findings from the Second LR Analysis.
Even in the second LR analysis, many diagnostic tools for
assessing the model’s ft indicate that the model is still not
a good ft. It may be necessary to consider alternativemodels.
Tere are many diferent regression models, such as linear
regression, logistic regression, and polynomial regression. It
may be worth trying diferent models to see if they better ft
the data. In this study, the binary logistic regression model
has been used.

4.3. First Binary Logistic Regression. In this section, BLR
analysis has been done using these variables: AccidentEver
versus Age, DrivingHour, AvgCigPerDay, CigUseYr,
NosSmokePerDrivHr, TypeofSmoke, NosSmokeDurDrive,

SmokeorTobaccoStatus, SmokeDaily, MostConsmPlace,
TypofSmklessTobc, SmkLessTobDailyStat, and Smoke-
DurDrive. Categorical predictor coding (1, 0) was applied in
this instance. Logit was the link function. Te response was
AccidentEver, indicating whether the accident happened or
not. Among the 424 people surveyed, 274 reported having
experienced at least one accident, whereas 150 reported
never having experienced one. Currently, the goal of this
BLR is to determine the relationship between the accident
and independent variables or predictors such as Age,
DrivingHour, Average Cigar Per Day, Cigar Use Year, No
Smoke Per Drive Hour, Type of Smoke, No Smoke During
Driving, Smoke or Tobacco Status, Smoke Daily, Most
Conscious Place, Type of Smokeless Tobacco, SmkLess Tob
Daily Stat, and SmokeDurDrive. Here AccidentEver is the
dependent variable or response whose possible values are yes
or no. Te regression equations (5) and (6) are given below:

P(YES) �
exp Y

′
 

1 + exp Y
′

 

, (5)

Y
′

�

12 + 0.0182x1 + 0.0068x2 + 0.0065x3 + 0.0350x4

+0.0633x5 − 1.256x6 + 0.0x7 NO − 1.612x7 YES
+0.174x8 + 0.0x9 Daily − 0.47x9 Not at all + 0.0x10 Gul − 12x10 Jarda − 0.0x10 Khoini − 13x10 No consumption
−12x10 White − pata + 0.0x11 Daily + 1.105x11 No consumpion − 0.432x11 Sometimes + 0.0x12 No + 1.105x12 YES

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where x1 � Age, x2 � DrivingHour, x3 � AvgCigPerDay, x4
� CigUseYr, x5 � NosSmokeDurDrive, x6 � NosSmokePer
DrivHr, x7 � SmokeorTobaccoStatus, x8 � TypeofSmoke,
x9 � SmokeDaily, x10 � TypofSmklessTobc, x11 � SmkLess
TobDailyStat, andx12 � SmokeDurDrive.

4.3.1. Coefcients and VIF. Table 6 depicts the detailed
model summary, coefcients, and ftness test of the de-
veloped model. Here, negative coefcients indicate that
increasing NosSmokePerDrivHr and Smoke-
orTobaccoStatus (Yes) would reduce the likelihood of an
accident. Conversely, other factors have positive coefcients,
meaning increasing them would make accidents more likely.
In addition, certain variables ofer extremely high VIF.

4.3.2. Goodness-of-Fit Analyses. In a binary logistic re-
gression model, deviance measures the diference between
the model and the data. Deviance R-squared (Deviance R-
sq) measures the proportion of the variance in the response
that the model explains. Deviance R-sq (adj) is the adjusted
version of Deviance R-sq, which adjusts for the number of
predictors in the model. In general, a higher Deviance R-sq
value indicates that the model explains a larger proportion of

the variance in the response. In contrast, a lower Deviance R-
sq value indicates that the model explains a smaller pro-
portion of the variance in the response.

Similarly, a higher Deviance R-sq (adj) value indicates
that the model explains a larger proportion of the variance
in the response. In comparison, a lower Deviance R-sq
(adj) value indicates that the model explains a smaller
proportion of the variance in the response. In binary
logistic regression, Deviance R-sq and Deviance R-sq (adj)
can be used to compare the ft of diferent models and
assess the predictors’ importance in the model. For ex-
ample, a model with a high Deviance R-sq or Deviance R-
sq (adj) value may be considered a better ft to the data
than a model with a low Deviance R-sq or Deviance R-sq
(adj) value. However, it is important to remember that
these measures have limitations and may not always ac-
curately refect the model’s ft.

According to Table 6, the Deviance R-sq is 7.98%, and
the Deviance R-sq (adj) is 5.08%. Tese values indicate that
the model explains a relatively small proportion of the
variance in the response. However, it is difcult to determine
whether a model fts well based solely on the Deviance R-
squared (Deviance R-sq) and Deviance R-sq (adj) values.
Tese measures have limitations and may not accurately
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Figure 4: Continued.

Advances in Civil Engineering 19



refect the model’s ft. AIC, AICc, and BIC are measures of
the ft of a statistical model that is used to compare the
performance of diferent models. Tese measures are
commonly used in binary logistic regression, which is
a statistical model used to predict the probability of a binary
response (i.e., a response that can take on only two possible
values, such as “yes” or “no”). AIC (Akaike Information
Criterion) is a measure of the ft of a model that balances the
goodness of ft with the model’s simplicity. A lower AIC
value indicates a better ft. AICc (Corrected Akaike In-
formation Criterion) is a modifed version of AIC that is
more appropriate for small sample sizes. Like AIC, a lower
AICc value indicates a better ft. BIC (Bayesian Information
Criterion) is another measure of the ft of a model that
balances the goodness of ft with the complexity of the
model. BIC places a higher penalty on models with more
parameters, making it more conservative than AIC.
Terefore, a lower BIC value indicates a better ft. In general,
AIC, AICc, and BIC are used to compare diferent models’ ft
and select the best model for a given dataset. In binary
logistic regression, these measures can be used to compare
the ft of diferent models with diferent sets of predictors or
model confgurations.

According to Table 6, the AIC, AICc, and BIC values
are 541.01, 542.52, and 609.86, respectively. So, it may
indicate that the model’s ft is relatively poor, as a lower
AIC, AICc, or BIC value indicates a better ft. So, the
values of 541.01, 542.52, and 609.86 suggest that the model
does not ft the data well. However, it is important to
remember that these measures may not always accurately
refect the model’s ft, and other measures may also be
used to assess the model’s ft. For example, in binary
logistic regression, deviance, Pearson’s chi-squared sta-
tistic, and the Hosmer–Lemeshow test are all measures of
goodness of ft that can be used to assess the ft of the
model to the data. Deviance is a measure of the diference
between the model and the data. A lower deviance value
generally indicates a better ft. Pearson’s chi-squared
statistic measures the diference between the observed
and expected frequencies in the data. Finally, the Hos-
mer–Lemeshow test is a goodness-of-ft test that compares
the observed and expected frequencies of the response
variable in diferent groups, or deciles, of the predicted
probabilities. Unfortunately, the dataset’s binary re-
sponse/frequency format makes deviation or the Pearson
test inefective. Te Hosmer–Lemeshow test, however, will
be relevant. Here, a low p value and chi-square value of
under ten would indicate that the model is insufcient.
However, its p value of 0.250 (high) and chi-square value
of 10.22 show otherwise. Terefore, the test indicates that
the goodness of ft is acceptable.

4.3.3. Fits and Diagnostics for Unusual Observations. In the
fts and diagnostics for unusual observations in Table 6, all
the values of Std Resid are large or unusual. In that case,
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Figure 4: (a) Normal probability plot, (b) histogram of frequency versus residual of the new regression model, and (c) versus order plot.

Table 5: Analysis of variance of AccidentFreq versus Four-
smokeormore and SmokeDurDrive.

Term DF Adj SS Adj MS F value p value
Regression 2 98.78 49.390 9.52 ≤0.001
Foursmokeormore 1 47.28 47.281 9.11 0.003
SmokeDurDrive 1 43.39 43.393 8.36 0.004

Error 421 2184.72 5.189
Total 423 2283.50
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Table 6: Coefcients, model summary, goodness-of-ft tests of the regression, and fts and diagnostics for unusual observations.

Coef SE coef VIF
Coefcients
Term
Constant 12 125
Age 0.0182 0.0141 1.41
DrivingHour 0.0068 0.0372 1.29
AvgCigPerDay 0.0065 0.0200 2.13
CigUseYr 0.0350 0.0208 2.63
NosSmokeDurDrive 0.0633 0.0743 15.38
NosSmokePerDrivHr −1.256 0.848 16.08
SmokeorTobaccoStatus
YES −1.612 0.741 9.10
TypeofSmoke 0.174 0.699 10.50

SmokeDaily
Not at all −0.47 1.10 22.13

TypofSmklessTobc
Jarda −12 125 111918.84
Khoini −0 261 1.30
No consumption −13 125 141242.34
White-pata −12 125 35901.36

SmkLessTobDailyStat
No consumption 1.105 0.946 8.34
Sometimes −0.432 0.784 1.48

SmokeDurDrive
YES 1.105 0.337 2.31

Model summary Deviance Deviance
R-Sq R-sq (adj) AIC AICc BIC
7.98% 5.08% 541.01 542.52 609.86

Goodness-of-ft tests Test DF Chi-square P-value
Deviance 407 507.01 0.001
Pearson 407 425.55 0.253

Hosmer–Lemeshow 8 10.22 0.250
Fits and diagnostics for
unusual observations Obs Observed probability Fit Residuals Std residuals Type of residuals

1 1.000 1.000 0.003 ≤0.001 X
20 1.000 0.726 0.801 0.87 X
36 1.000 0.869 0.530 0.70 X
37 1.000 0.698 0.848 0.95 X
49 ≤0.001 0.869 −2.018 −2.04 R
72 ≤0.001 0.485 −1.152 −1.27 X
74 1.000 0.645 0.937 1.08 X
94 ≤0.001 0.399 −1.010 −1.16 X
97 ≤0.001 0.499 −1.175 −1.41 X
100 ≤0.001 0.481 −1.145 −1.30 X
107 ≤0.001 0.493 −1.166 −1.25 X
109 ≤0.001 0.530 −1.230 −1.40 X
111 1.000 0.377 1.396 1.49 X
121 1.000 0.713 0.823 0.99 X
141 1.000 1.000 0.003 ≤0.001 X
150 1.000 1.000 0.002 ≤0.001 X
151 1.000 0.577 1.048 1.18 X
161 ≤0.001 0.692 −1.534 −1.65 X
169 1.000 0.859 0.552 0.65 X
191 ≤0.001 0.766 −1.705 −1.82 X
236 1.000 0.711 0.826 0.89 X
246 1.000 1.000 0.003 ≤0.001 X
267 ≤0.001 0.295 −0.836 −0.90 X
274 ≤0.001 0.921 −2.251 −2.27 R
277 1.000 0.697 0.850 0.92 X
289 ≤0.001 0.234 −0.730 −0.81 X
294 1.000 0.616 0.985 1.08 X
301 1.000 0.402 1.351 1.54 X
313 1.000 1.000 0.004 ≤0.001 X
314 ≤0.001 0.908 −2.182 −2.21 R
320 1.000 0.739 0.777 0.89 X
336 ≤0.001 0.863 −1.995 −2.02 R
341 ≤0.001 0.729 −1.616 −1.76 X
370 1.000 0.481 1.210 1.40 X
388 1.000 0.664 0.905 0.99 X

R� large std residuals; X� unusual std residuals.
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likely, the model does not ft the data well. Tis could be
because of an inappropriate model form, wrong variable
selection, or other problems.

4.3.4. Odds Ratio Analysis. In a binary logistic regression
analysis, the odds ratio (OR) measures the association be-
tween a predictor variable and the response variable. It is the
ratio of the odds of the response occurring in one group (e.g.,
those with a certain value of the predictor variable) to the
odds of the response occurring in another group (e.g., those
without that value of the predictor). For example, suppose
the odds ratio for a predictor variable is 2. In that case, it
means that the odds of the response occurring in one group
(e.g., those with a certain value of the predictor) are twice the
odds of the response occurring in another group (e.g., those
without that value of the predictor). Odds ratios are often
used in binary logistic regression to interpret the strength of
the association between a predictor variable and the re-
sponse. For example, 1 for the odds ratio indicates no as-
sociation between the predictor and the response.

In contrast, values greater than 1 indicate a positive
association, and values less than 1 indicate a negative as-
sociation. Te values of continuous predictors are contin-
uous, but categorical predictors fall into categories like yes
and no. For example, continuous predictors with odds ratios
greater than one show that the event is more likely to happen
as the predictor rises. Conversely, suppose the odds ratio is
less than 1. In that case, as the predictor gets stronger, the
likelihood of the event happening decreases. So, Table 6
shows that the following variables have positive odds ratios:
DrivingHour, AvgCigPerDay, CigUseYear, NosSmoke-
DurDrive, and TypeofSmoke, which suggests that when
these variables rise, the likelihood that a motorist has had
a trafc accident increases.

Te odds ratio for categorical predictors compares the
likelihood that an event will occur at two levels of the
predictor, denoted by level A and level B. Te factor’s ref-
erence level is level B. A level A event is more likely if the
odds ratio is more than 1, whereas a level A event is less likely
if the odds ratio is less than 1. For example, in Table 7,
a driver’s likelihood of being involved in a trafc collision
decreases with a reduction in SmokeorTobaccoStatus (Yes),
SmokeDaily (not at all), and SmkLessTobDailyStat (some-
times) and a rise in SmkLessTobDailyStat (no consumption)
with a rise in SmokeDurDrive (Yes).

4.3.5. Wald Test Analysis. Te Wald test is a statistical test
that can assess the signifcance of individual predictor
variables in a statistical model. TeWald test is based on the
Wald statistic, calculated as the estimated coefcient for
a predictor divided by its standard error. Te Wald statistic
follows a chi-squared distribution, and the p value for the
Wald test is calculated based on this distribution. Te Wald
test is often used in regression analysis, including binary
logistic regression, to assess the signifcance of individual
predictors in the model. For example, the Wald test is often
used in binary logistic regression to assess the signifcance of
individual predictors in the model. It is similar to the

analysis of variance (ANOVA) in other types of regression
analysis. For example, suppose the p value for a predictor is
less than the predetermined signifcance level (e.g., 0.05). In
that case, it is considered statistically signifcant, and the
predictor is considered an important contributor to the
model. On the other hand, suppose the p value is greater
than the signifcance level. In that case, the predictor is not
considered statistically signifcant and may be removed from
the model.

Table 8 displays the Wald test results along with the
dataset. According to the weighted diference between the
unrestricted estimate and its hypothesized value under the
null hypothesis, where the weight refects the estimate’s
precision, the statistical Wald test evaluates limitations on
statistical parameters. Under the null hypothesis, it exhibits
an asymptotic 2-distribution, which can be used to assess
statistical signifcance. Table 8 shows that Smoke-
orTobaccoStatus and SmokeDurDrive exhibit signifcance
with 95% CI. SmokeDurDrive demonstrates extreme
relevance.

4.3.6. Normal Probability Plot Analysis. A normal proba-
bility plot of a binary logistic regressionmodel is a graph that
shows the observed deviance residuals plotted against the
expected normal deviance residuals. Te plot should be
approximately linear if the residuals are normally distrib-
uted. If the plot is not linear, it may indicate that the re-
siduals are not normally distributed, and the model may not
be a good ft for the data. It is true that, in a binary logistic
regressionmodel, the response variable is binary (i.e., it takes
on only two values, such as “yes” or “no”), and the residuals
are not normally distributed. However, the expected de-
viance residuals (used in the normal probability plot) are
based on a normal distribution, so the plot is still useful for
assessing the model’s goodness of ft. Suppose the observed
deviance residuals are approximately linear on the plot. In
that case, it suggests that the model fts the data well. If the
plot is not linear, it may indicate that the model is not a good
ft, and further investigation is needed. Figure 5(a) dem-
onstrates that the dataset is an S-curve rather than following
the normal probability plot, as it is not linear. In that case,
this model does not ft well, and using a diferent model or
transforming the data might need to be considered. How-
ever, the inverted S-curve implies that the distribution is
short-tailed.

4.3.7. Frequency versus Deviance Residual Plot. In a binary
logistic regression analysis, the frequency versus residual
plot is a graphical tool that can be used to assess the model’s
ft. Te plot shows the residuals of the model on the y-axis
and the frequency of the residuals on the x-axis. For ex-
ample, suppose the model is a yes/no-based binary logistic
regression model. In that case, the plot can be separated into
two groups based on the response: one for the “yes” and one
for the “no” responses.

Te goodness of ft of a binary logistic regression model
can be determined by looking at the frequency versus
deviance residual plot. If the two groups (yes and no
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responses) are separated, the model is a good ft. Addi-
tionally, if the residuals are randomly distributed around
the zero line, it indicates that the model is a good ft. It
means that, for a good-ftting model, the points on the
frequency versus residual plot should have a random
pattern, with the points evenly distributed around the x-
axis. On the other hand, if the points on the plot are not
evenly distributed for one or both of the “yes” and “no”
groups, it may indicate that the model is not a good ft for

the data. For example, suppose the points are concentrated
on one side of the x-axis for one of the groups. In that case,
it may indicate that the model is over or under-predicting
the response for that group. So, the deviance residuals
should be randomly distributed around zero, with similar
frequencies for both positive and negative values. Tis
indicates that the model is a good ft and that the residuals
are not systematically biased in one direction.

Figure 5(b) shows the histogram of the frequency versus
deviance residual. First, the two groups are not separated
and are spread out here. Moreover, second, the residuals are
not randomly distributed around the zero line, with the
points evenly distributed around the x-axis, as more de-
viance residuals are concentrated in the yes group. So, the
model has poor goodness of ft.

4.3.8. Versus Order Plot. In a binary logistic regression
analysis, the versus order plot is a graphical tool that can
assess the model’s ft and identify patterns in the residuals.
Here the versus order plot is the deviance residuals versus
observation order plot.Te plot shows the deviance residuals
of the model on the y-axis and the observation order on the
x-axis. If the model is a good ft, the points on the versus
order plot should be randomly distributed around the y-axis,
with no discernible patterns or trends. On the other hand, if

Table 7: Odds ratios for continuous and categorical predictors.

Term Odds ratio∗ 95% CI

Continuous predictors

Age 1.0184 (0.9905, 1.0470)
DrivingHour 1.0069 (0.9361, 1.0829)
AvgCigPerDay 1.0065 (0.9679, 1.0467)

CigUseYr 1.0357 (0.9943, 1.0787)
NosSmokeDurDrive 1.0654 (0.9209, 1.2324)
NosSmokePerDrivHr 0.2847 (0.0541, 1.4994)

TypeofSmoke 1.1905 (0.3024, 4.6860)
Categorical predictors Level A Level B Odds ratio∗ 95% CI

SmokeorTobaccoStatus
YES NO 0.1995 (0.0467, 0.8529)

SmokeDaily
Not at all Daily 0.6227 (0.0715, 5.4250)

TypofSmklessTobc
Jarda Gul ≤0.001 (≤0.001, 4.13843E+ 101)
Khoini Gul 0.9601 (≤0.001, 2.96379E+ 222)

No consumption Gul ≤0.001 (≤0.001, 1.71199E+ 101)
White-pata Gul ≤0.001 (≤0.001, 4.97055E+ 101)
Khoini Jarda 0.9887 (≤0.001, 2.11697E+ 200)

No consumption Jarda 0.4137 (0.0536, 3.1936)
White-pata Jarda 1.1992 (0.2368, 6.0732)

No consumption Khoini ≤0.001 (≤0.001, 5.03528E+ 189)
White-pata Khoini ≤0.001 (≤0.001, 1.45674E+ 190)
White-pata No consumption 2.8989 (0.3655, 22.9941)
Level A Level B Odds ratio∗ 95% CI

SmkLessTobDailyStat
No consumption Daily 3.0185 (0.4725, 19.2821)

Sometimes Daily 0.6491 (0.1398, 3.0149)
Sometimes No consumption 0.2150 (0.0313, 1.4759)

SmokeDurDrive
YES NO 3.0184 (1.5590, 5.8441)

∗Odds ratio for level A relative to level B.

Table 8: Wald test.

Term DF Chi-square p value
Regression 16 31.76 0.011
Age 1 1.66 0.198
DrivingHour 1 0.03 0.854
AvgCigPerDay 1 0.11 0.744
CigUseYr 1 2.84 0.092
NosSmokeDurDrive 1 0.73 0.394
NosSmokePerDrivHr 1 2.20 0.138
SmokeorTobaccoStatus 1 4.73 0.030
TypeofSmoke 1 0.06 0.803
SmokeDaily 1 0.18 0.668
TypofSmklessTobc 4 1.07 0.899
SmkLessTobDailyStat 2 2.47 0.291
SmokeDurDrive 1 10.74 0.001
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there are patterns or trends in the residuals, it may indicate
that the model is not a good ft for the data.

Suppose the model is a yes/no-based binary logistic
regression model. In that case, the plot can be separated into
two groups based on the response: one for the “yes” and one
for the “no” responses. For a good-ftting model, the points
on the versus order plot should be randomly distributed
around the y-axis for both the “yes” and “no” groups, with

no discernible patterns or trends for either group. If the
points on the plot are not randomly distributed for one or
both of the “yes” and “no” groups, it may indicate that the
model is not a good ft for the data. For example, suppose the
points are concentrated on one side of the y-axis for one of
the groups. In that case, it may indicate that themodel is over
or under-predicting the response for that group. Te con-
stant variance of the residuals is also important in a binary
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Figure 5: (a) Normal probability plot, (b) histogram of frequency versus deviance residual of the binary logistic regression model, (c) versus
order plot, and (d) deviance residuals versus CigUseYr.
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logistic regression model. Suppose the variance of the re-
siduals is not constant. In that case, it may indicate that the
model is not a good ft for the data or that other factors afect
the residuals’ variance.

Figure 5(c) shows the versus order plot of this model.
Te deviance residuals are randomly distributed in both
groups, and no discernible pattern or trends are found in
either group. However, the points aremostly concentrated in
the “yes” group more than the “no” group. Besides, the
variance in both groups is not constant. So, the model is not
a very good ft.

4.3.9. Deviance Residual Analysis. Te deviance residual
analysis is done with the deviance residual versus ftted value
plot. In a binary logistic model, the regression line against
increasing or decreasing values of an independent variable
jumps from the negative response to the positive response.
Tere will be two regression lines, one on the positive side and
one on the negative side of zero, on the deviance residual
versus ftted value plot. Te line on the negative side should
increase in value on the x-axis and go from zero to a higher
negative value on the y-axis. On the other hand, the line on the
positive side should follow the increasing value on the x-axis
and move from a higher positive value to zero on the y-axis.

In a binary logistic regression analysis, the deviance
residual versus ftted value plot is a graphical tool that can
assess the model’s ft. Te plot shows the deviance residuals
of the model on the y-axis and the ftted values (predicted
probabilities of the response) on the x-axis. If the model is
a good ft, the points on the plot should have a random
pattern, with the points evenly distributed around the y-axis.
For example, suppose the model is a yes/no-based binary
logistic regression model. In that case, the plot can be
separated into two groups based on the response: one for the
“yes” and one for the “no” responses. For a good-ftting
model, the deviance residual versus ftted value plot points
should have a random pattern, with the points evenly dis-
tributed around the y-axis for both the “yes” and “no”
groups. On the other hand, if the points on the plot are not
evenly distributed for one or both of the “yes” and “no”
groups, it may indicate that the model is not a good ft for the
data. For example, suppose the points are concentrated on
one side of the y-axis for one of the groups. In that case, it
may indicate that the model is over or under-predicting the
response for that group. In such cases, it may be necessary to
try alternative modeling approaches or transform the data to
achieve a better ft.

Figure 5(d) shows deviance residuals versus the CigU-
seYr plot for this model. Te points have a random pattern
and are evenly distributed around the y-axis for both the
“yes” and “no” groups. So, this model is a good ft for
the data.

4.3.10. Major Findings from the First BLR Analysis. Only
two predictors in this regression model show signifcance
with a 95% CI in the Wald test since their p values are less
than 0.05. Other predictors have signifcantly higher p

values. However, CigUseYr has a p value of 0.092, close to

the 0.05 threshold. Besides, some tests show that the model
is not a good ft for the data. So, to get better results, a new
BLR model should be developed using these three
predictors.

4.4. SecondBinaryLogisticRegression. Here the used variables
are AccidentEver versus CigUseYr, SmokeorTobaccoStatus,
and SmokeDurDrive. Te same method and response in-
formation have been used in this new model (Table 9).

4.4.1. Odds Ratio Analysis. Table 10 depicts the odds ratios
of the second BLR model. Te continuous predictor,
CigUseYr, has an odds ratio of 1.0545, meaning that
a driver’s risk of an accident rises as it rises. Smoke-
orTobaccoStatus (Yes) and SmokeDurDrive (Yes) have odds
ratios that are lower and higher than one, respectively. Tis
means that as SmokeorTobaccoStatus (Yes) and Smoke-
DurDrive (Yes) go down and up, respectively, the likelihood
that a driver has experience increases.

4.4.2. Wald Test. Again, the Wald test (Table 11) has been
performed for the new regression model, which shows that
the p values of all three predictors are less than 0.01. So, all
three predictors are highly signifcant, with a 99% CI.

4.4.3. Normal Probability Plot Analysis. Figure 6(a) dem-
onstrates that the dataset displays an S-curve rather than
following the normal probability plot, like the frst BLR
model. In that case, this model does not ft well, and using
a diferent model or transforming the data might need to be
considered. However, the inverted S-curve implies that the
distribution is short-tailed.

4.4.4. Frequency versus Deviance Residual Plot.
Figure 6(b) shows this new BLR model’s frequency versus
deviance residual histogram. Nevertheless, this time, the
frequency distributions for “yes” and “no” are clearer and
less spread out. Te points are not evenly distributed around
the x-axis, as more deviance residuals are concentrated in the
“yes” group. So, it can be concluded that the goodness of ft
improved in the second BLR model from the frequency
versus deviance residual plot perspective.

4.4.5. Versus Order Plot. Figure 6(c) shows the versus order
plot of this model. Te deviance residuals are randomly
distributed in both groups, and no discernible pattern or
trends are found in either group like in the frst BLR model.
On the other hand, the points are mostly concentrated in the
“yes” groupmore than the “no” group. However, the positive
thing is that the variance in both groups is more constant
now. So, the model became quite a good ft.

4.4.6. Deviance Residual Analysis. Figure 6(d) shows de-
viance residuals versus the CigUseYr plot for this model.Te
points are in a less random pattern than the frst BLR model,
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but they are evenly distributed around the y-axis for both the
“yes” and “no” groups. So, this model is not a good ft for the
data like the frst BLR model.

4.4.7. Major Findings from the Second BLR Model. Te
predictor SmokeorTobaccoStatus has a negative coefcient,
which means not consuming tobacco would increase the
chance of RTA, which seems counterintuitive. However, the
goodness of ft in the second BLR model is proved to be well
by the Hosmer–Lemeshow test. Furthermore, the Wald test
shows that these three predictors are signifcant. Besides, the
frequency versus deviance residual plot and versus order
plot show that the goodness of ft improved much from the
frst BLR model. So, it can be concluded that the model fts
with the data.

5. Discussion

According to Talukder et al. [10], age, marital status, income,
and education are important socioeconomic and de-
mographic factors that afect cigarette usage. However, we
had a complete picture thanks to investigating driving be-
havior and accidents in Bangladesh. Te study discovered
a statistically signifcant connection between SLT use,
smoking, and car accidents.

However, the regression results from the LR analysis
show that Foursmokeormore and SmokeDurDrive have
signifcance, and the ANOVA results show that NosSmo-
kePerDrivHr shows signifcance as well. So, it can be con-
cluded that the accident frequency of a driver increases if the
frequency of his smoking a certain amount of smoking
tobacco per driving hour decreases, he smokes during
driving, and he smokes six or more cigarettes/bidis sticks
while driving.

Moreover, the binary logistic analysis results show that
CigUseYr, SmokeorTobaccoStatus (No), and Smoke-
DurDrive (Yes) have more than one odds ratio. Moreover,
theWald test shows that these three predictors have p values
less than 0.01, indicating their high signifcance with a 99%

confdence interval. So, it can be concluded that the chance
of the driver having the status of involved in an accident ever
increases if the number of his cigarette or bidi consumption
days per year is increased and if he smokes during driving.
On the other hand, SmokeorTobaccoStatus (No) or negative
smoking status has high signifcance, but it is counterin-
tuitive. So, further research is necessary in this case.

A study done in China had a total of 8990 ride-hailing
drivers participate in the poll, and 5024 of them, or 55.9%,
were current smokers. 32.2% of smokers smoked in their
vehicles. Te outcomes of the logistic regression analysis
were as follows: male drivers (OR� 0.519, 95% CI [0.416,
0.647]), central and eastern regions (OR� 1.172, 95% CI
[1.049, 1.309]), working both day and night (OR� 1.287,
95% CI [1.164, 1.424]), nonfxed time (OR� 0.847, 95% CI
[0.718, 0.999]), central and eastern regions (OR� 1.330, 95%
CI [1.194, 1.480], ages of 35–54 years (OR� 0.585, 95% CI
[0.408, 0.829]), current drinker (OR� 1.663, 95% CI [1.526,
1.813]), irregular eating habits (OR� 1.370, 95% CI [1.233,
1.523]), the number of days in a week of engaging in at least
10min of moderate or vigorous exercise≥ 3 (OR� 0.752,
95% CI [0.646, 0.875]), taking the initiative to acquire health
knowledge occasionally (OR� 0.882, 95% CI [0.783, 0.992])
or frequently (OR� 0.675, 95% CI [0.591, 0.770]), and un-
derweight (OR� 1.249, 95% CI [1.001, 1.559]) and over-
weight (OR� 0.846, 95% CI [0.775, 0.924]) have an
association with the prevalence of current smoking among
online ride-hailing drivers. It was found that the smoking
rate of ride-hailing drivers was high. Sociodemographic and
work-related characteristics and health-related factors af-
fected their smoking behavior [30].

Another study in Bangladesh shows that male and female
passive smoker prevalence was 74.3% and 25.8%, re-
spectively. Among those who smoke only secondhand,
22.2% said they had a policy allowing smoking at home,
while 29.8% said they had none. As an alternative, 26.0% of
passive smokers said it was permitted, while 27.5% said their
workplace had no smoking policy. According to a logit
regression analysis, the probability of allowing smoking at
home was 4.85 times greater for the tobacco smoker group
than for the nonsmoker respondents (OR� 4.85, 95%
CI� 4.13, 5.71), 1.18 times more likely to be permitted at
home in rural than urban areas (OR� 1.18, 95% CI� 1.06,
1.32), and 0.35 times less likely to be permitted at home if the
respondent has completed college or university or has
a higher education than none (OR� 0.35, 95% CI� 0.24,
0.52). On the other hand, smoking was less likely to be
permitted for respondents who had completed college or

Table 10: Odds ratios of the second binary logistic regression model.

Term Odds ratio∗ 95% CI
Continuous predictors CigUseYr 1.0545 (1.0218, 1.0882)
Categorical predictors Level A Level B Odds ratio∗ 95% CI

SmokeorTobaccoStatus
YES NO 0.3065 (0.1643, 0.5715)

SmokeDurDrive
YES NO 1.9818 (1.2257, 3.2045)

∗Odds ratio for level A relative to level B.

Table 11: Wald test of the new regression model.

Term DF Chi-square p value
Regression 3 23.62 ≤0.001
CigUseYr 1 10.93 0.001
SmokeorTobaccoStatus 1 13.83 ≤0.001
SmokeDurDrive 1 7.78 0.005
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university and (or) had a higher education than respondents
without any formal schooling (OR� 0.26, 95% CI� 0.14,
0.45) and was 1.70 times more likely to be permitted for
tobacco smokers than their counterpart respondents at work
(OR� 1.70, 95% CI� 1.36, 2.14) [31].

Nevertheless, another study conducted in Bangladesh on
the frequency distributions of smoking shows that 24.4% of
smokers experienced headache issues because of smoking
and cigarette fumes, 68.8% of smokers believe smoking
causes gastric problems, 48.8% of smokers feel smoking
causes air pollution, 51.3% believe smoking complicates
breathing for nonsmokers, 86.3% of smokers learned to
smoke from friends, 48.8% of smokers smoke due to ad-
diction, and 25.6% smoke for depression. Usually, 80.6% of
smokers light up after eating. Te chi-square test shows that
the class of smokers was strongly related to heartbeat fre-
quency and that starting to smoke at a certain age level was
signifcantly related to having ailments. At the 1% signif-
cance level, smoking by category was signifcantly correlated
with having a sickness, smoking by class was signifcantly
correlated with reasons why people smoke, and smoking by
age was strongly correlated with smoking by profession. At
the 1% level, a signifcant odds ratio was discovered
(OR� 6.363, 95% CI: 1.918–21.104, p 0.01) for the

occupation group of students/labor; their outcomes for
contracting illnesses, including gastric issues and fever/
headache/others, were 6.363 times higher in the group of
smokers who work in services or other occupations [32].

Tese research fndings show the relationship between
the ever involvement of road trafc accidents and smoking
by drivers. In the regression analyses, the R-sq (adj) values
indicated that further research is necessary to have better
models with good ftness, which can predict better.

6. Conclusions

First, this study demonstrates that smoking is not the only
signifcant issue. Another important problem is that many
smokers are unaware of how RTAs might result from
smoking. Second, this study demonstrates a strong associ-
ation between the incidence of accidents and the number of
times a person smokes, smokes while driving, and uses SLT
daily. Finally, the result has been taken from the second BLR
model, as it fts with the data more than others. According to
that model, a driver is more likely to be in an accident if the
number of days per year that he smokes cigarettes increases
and if he smokes while driving. Additionally, it stresses the
need for more research to make a more accurate forecast.
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Figure 6: (a) Normal probability plot, (b) histogram of frequency versus deviance residual of the new binary logistic regression model, (c)
versus order plot, and (d) deviance residual versus CigUseYr plot.
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