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The suspension bridges in mountainous areas are commonly designed with asymmetrical overall layouts to match the terrain and
construction under limited space. However, the effects and influences of the asymmetry parameters on the bridge performance
have yet to be thoroughly investigated. To address this gap, based on a real-world suspension bridge with a main span length of
700m, this paper first presents an improved shape-finding method that can fully consider the components of hanger forces in each
construction step. In the iterative process, the shape of the cable is determined based on the equilibrium equations, and the hanger
forces are calculated through the nonlinear finite element analysis. After deciding the bridge’s initial state, the asymmetry
parameters’ effects are carefully investigated through finite element analysis under the static and seismic conditions. Results
show that the side-to-span ratio of the main cable and the tower’s stiffness can affect the horizontally constrained stiffness,
resulting in distinct bridge behavior. Moreover, reasonably designing the dampers between the tower and the girder can be
beneficial in minimizing the longitudinal displacement and controlling the tower’s moment under the seismic situations.

1. Introduction

Suspension bridges are preferred to satisfy the long naviga-
tion width requirement due to their advantages in spanning
capacity, construction, and esthetics. Most completed sus-
pension bridges cross seas, bays, or rivers, while long-span
bridges spanning deep canyons are relatively rare. However,
with the construction of high-grade highways and high-
speed railways in western China, the number of large-span
suspension bridges in mountainous areas is expected to
proliferate. To match the undulating landforms, suspension
bridges in mountainous areas are often designed with asym-
metric layouts. The asymmetric characteristics include the
height of towers, side span lengths, etc., The mechanical
performance of asymmetric suspension bridges in mountain-
ous areas can be significantly different from the traditional
suspension bridges because the constrained stiffness of
the main cable on the two sides is quite unequal [1]. The

inherent nonlinearity of the suspension system adds to the
complexity of analyzing and optimizing asymmetric suspen-
sion bridges in the mountainous regions. Therefore, a suffi-
cient understanding of the mechanical performance of an
asymmetric suspension bridge is essential for the practical
design.

Some scholars have investigated the performance of sus-
pension bridges through a parametric study. As main cables
are the primary load-carrying components of the suspension
bridges, the configuration of the main cable must be deter-
mined based on the force equilibrium between internal
member forces and dead loads to reach the ideal finished
bridge state before the parametric study, and this process is
referred to as “shape finding” [2]. Some advanced shape-
finding methods have been proposed in the recent years.
For instance, Kim and Lee [3] proposed an analytical formu-
lation that took the unstained cable length as an unknown
parameter, thus eliminating the iterative process. Kim and
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Kim [4] introduced the initial force method to consider
the deformations of the girder and towers. Kim et al. [5]
improved the above two methods for the initial shape analy-
sis of 3-dimension cables. Xiao et al. [6] present a five-step
algorithm extended from the common finite element method
(FEM) analysis method with the additional algebraic opera-
tion and flow control to analyze the initial shape of spatial
cables. Song et al. [7] extended Xiao’s method to the spatial
cable system. Li et al. [8] developed an analytical algorithm
for the main cable system with high-convergence efficiency,
where the self-weight of the cables can be directly considered.
Li and Liu [9] simplified the unknown variables in shape
finding into a concise shape with only three unknowns,
which is easily solved by Interacting Influence Matrix (IIM)
optimization. Zhou and Chen [10] proposed finding the tar-
get profile of cables by nonlinear analysis conducted on the
bridge structure, and two iteration schedules were introduced.
Zhu et al. [11] developed a novel shape-finding method for
the main cable of a suspension bridge using a nonlinear finite
element approach with an Eulerian description. As for self-
anchored bridges, Wang et al. [12] proposed a shape-finding
method for self-anchored suspension bridges considering the
axial deformation of the girder. Sun et al. [13] proposed an
initial shape analysis formula called the coordinate iteration
method for a self-anchored suspension bridge whose main
cable is three-dimensionally curved. Existing methods can
complete the reasonable finished state analysis of the suspen-
sion bridges, and the results are acceptable in engineering
[14]. However, most shape-finding methods consider the
cable an independent member subject to several concentrated
loads from the hanger. These methods do not deal with the
construction steps of the bridge, and this causes an error
between the calculated value and the actual value of the
hanger force. The effect of the constructionmethod on hanger
forces is significant for the suspension bridges in mountain
areas, as more complex steps will be employed due to poor
transport conditions. To increase the accuracy of the initial
shape of cables, the effect of the construction method on the
internal forces of bridge members should be adequately
considered.

On the other hand, based on the developed shape-finding
method, some researchers have investigated the design
parameters to optimize the structural performance. Wang
et al. [15] compared the differences between carbon fiber
reinforced polymer (CFRP) cables and steel cables on the
static response of the suspension bridges. Jia et al. [16] and
Lijun et al. [17] developed a finite element model to investi-
gate the impacts of tower stiffness, sag-to-span ratio, side-
midspan ratio, and tower-girder connection mode on the
bridge’s mechanical parameters. For a three-tower four-span
double-deck steel truss suspension bridge, Cheng et al. [18]
investigated the impact of various structural parameters on
the static and dynamic behavior of the entire bridge and the
mechanical performance of the deck system. Cao et al. [19]
studied the deformation of a three-tower suspension bridge
with a central buckle under live loads. The influence of the
sag-to-span ratio of the cable, the girder’s stiffness, and the
cable’s slippage were analyzed. For asymmetrical suspension

bridges, Zhang et al. [1] proposed an analytical method to
calculate the cable shape in the completed bridge state under
live load action and free cable state for a triple-tower suspen-
sion bridge with two asymmetrical spans, and the construc-
tion parameters were considered. The seismic response of a
780m single-span suspension bridge with viscous dampers
was investigated by Zheng et al. [20]. The above studies pro-
vide a comprehensive analysis of the mechanical performance
of suspension bridges. However, it is worth noting that only a
few studies have been conducted on asymmetric suspension
bridges. Therefore, the effect of the regularity of parameters
with asymmetric characteristics on the structure’s response
under static and earthquake still needs to be explicit.

Regarding dynamic performance, wind, and seismic effects
are critical to the safety of large span suspension bridges in
mountainous areas. The impact of wind on the suspension
bridges includes vibrations, torsion, wind loads, and aerody-
namic effects [21, 22]. These influences can increase stress,
damage the structure, and reduce stability [23].Wind-resistant
design measures and structural considerations need to be
implemented to ensure the safety of suspension bridges
[24, 25]. Moreover, seismic events can induce the ground
motion that affects the dynamic response of suspension bridges,
mainly when seismic waves propagate through the bridge
piers and cables. Such vibrations can impose the significant
additional stresses on the bridge structure, potentially lead-
ing to structural damage or collapse [26, 27]. The horizontal
displacements and ground deformations caused by earth-
quakes can induce relative displacements between the
bridge towers and the deck, further exacerbating the stress
levels and compromising the overall structural integrity of
the bridge. Therefore, it is crucial to implement the robust
design measures and structural interventions to ensure the
safety and resilience of suspension bridges against seismic
hazards [28]. To limit the relative displacement between the
tower and girder to absorb and dissipate the vibrational
energy caused by wind or seismic events, dampers are com-
monly installed between the towers and girders of the sus-
pension bridges. However, when the heights of the bridge
towers are different, there can be a significant disparity in
the support stiffness of the dampers on both sides, which
may adversely affect the structure’s internal forces and dis-
placement response [29]. Therefore, the selection of damper
parameters is crucial in asymmetric systems.

This paper concerns the shape-findingmethod and param-
eter study of long-span asymmetric suspension bridges in
mountain areas to overcome the gaps. An improved shape-
finding method that can accurately consider various con-
struction steps is proposed in this paper. The efficiency and
accuracy of this method are demonstrated using a 700m
single-span asymmetric suspension bridge as an example.
Moreover, the influence of asymmetric design parameters
on the structure’s static performance and natural frequen-
cies is investigated. The role and appropriate parameters of
dampers between the tower and girder of asymmetric sys-
tems in typical seismic conditions are analyzed. Conclusion
remarks are drawn at the end of this paper.
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2. Engineering Background

2.1. Bridge Overview.A practical suspension bridge in Yunnan
Province of China is considered the engineering background
for shaping the findings and further investigation. The span
arrangement of the main cable is 310 + 700+ 175m. The
towers’ west and east sides are 181 and 120m high, respec-
tively. Figure 1 depicts the bridge’s overall configuration.

In the midspan, the planes of the two main cables are
parallel. The main cable has a sag of 70m and a center trans-
verse spacing of 27m. The theoretical splay point of the west
anchorage is 310m away from the central line of the west
bridge tower. In contrast, the theoretical splay point of the
east anchorage is 175m away from the central line of the east
bridge tower. Hangers have a typical longitudinal spacing
of 12m.

Figure 2 shows the detailed design of the stiffening girder.
As noticed, the central height of the girder is 3m with a
width of 27.9m. Table 1 illustrates the section properties of
the stiffening girder and the top and bottom sections of the
towers.

2.2. Finite ElementModel.A finite element model of the exam-
ple bridge is established in SAP2000. The main cable and
hangers are simulated using cable elements, and the stiffening
girder and towers are simulated using beam elements. The
tower’s bottom and the anchor points of the main cables are
fixed; the transverse and vertical degrees of freedom are cou-
pled between the tower and the girder, and all degrees of free-
dom are coupled between the tower’s top and the main cable.

The model of the entire bridge has 1,132 nodes and 709 com-
ponents. Figure 3 depicts the full bridge’s finite element model.

3. Improved Shape-Finding Method

3.1. Framework. An improved shape-finding method is first
presented in this section for determining the initial equilib-
rium state of the bridge before the parametric investigation.
The internal force of each hanger in the finished form of a
suspension bridge comprises two parts: the self-weight of the
girder segments and a portion of the second stage dead load
assigned according to the stiffness. The former can be esti-
mated using the analytical equation, whereas the latter
should be determined considering the construction process.
Although the nonlinear FEM can be used to simulate the
construction process, it is difficult for the FEM to consider
local details such as the shape of saddles. Therefore, the main
focus of the proposed improved shaping finding method is to
establish an iterative procedure that combines the analytical
equation and the finite element model for shape finding.
Figure 4 depicts the main procedure of the proposed method.
As noticed, the proposed method mainly consists of seven
steps.

3.1.1. Determination of Hanger Force. To develop the finite
element model, it is required to estimate the internal force of
hangers first. Therefore, the first step of the analysis lies in
preliminarily determining the initial force of each hanger.

First, by changing the hangers into continuous beam
supports, as illustrated in Figure 5, a multispan continuous
beam finite element model may be created to compute the
preliminary internal force. The calculated preliminary inter-
nal force of the hanger is the support response derived by the
finite element analysis.

Due to the small deviation between the preliminarily
determined cable forces and the actual cable forces in the
bridge’s constructed state, as well as the minimal deviation in
the cable shape and vertical stiffness, it is feasible to calculate
the cable state, main cable shape, and unstressed length
based on these cable forces in conjunction with the coordi-
nates of control points. Subsequently, a finite element model
is established to analyze the variations in cable forces caused
by stiffness distribution during the construction under per-
manent loads in the second phase and the variations in cable
forces resulting from anchor cable adjustments after bridge
completion. Let the initial determination of cable force vec-
tors be denoted as FH1;

Second, the final determination of cable forces in the
bridge’s constructed state is contingent upon two scenarios
based on the actual construction method:

310 700 175

River surface

FIGURE 1: The general layout of the bridge (unit: m).

27.9 m
45 mm SMA
50 mm UHPC

3 
m

FIGURE 2: Cross-section of the stiffening girder.

TABLE 1: Cross-sectional properties.

Cross-section A (m2) Iz (m
4) Iy (m

4) J (m4)

Girder (per separate) 1.3417 99.0577 1.9311 5.4649
West tower (top) 39.2000 102.4427 160.0667 211.2748
West tower (bottom) 96.5275 673.9023 894.6342 1291.3860
East tower (top) 39.6480 103.6134 165.6176 215.6184
East tower (bottom) 52.2480 341.9202 379.0109 136.5414
∗Note: A, cross-section area; Iz, moment of inertia to the z-axis; Iy, moment
of inertia to the y-axis; J, torsion resistance.

FIGURE 3: The finite element model of the whole bridge.
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(1) If the cable forces cannot be adjusted after the second
construction phase, the bridge deck paving, railing,
and other permanent loads are applied in reverse to
the main girder based on the bridge’s constructed
state model. Nonlinear finite element analysis is con-
ducted to obtain the axial compression force FB2 in
the main girder. If FB2 is not equal to 0, the modified
value FH1 is used to recalculate the FB2 iteratively
until it equals 0. This process yields the cable force
vector FH2 corresponding to this state. The cable
forces FH0 generated by the self-weight of the beam
segments during articulation are determined by bal-
ancing the forces, resulting in the cable forces FH2

being determined as follows:

FH ¼ FH0 þ FH1 − FH2: ð1Þ

If the cable forces can be adjusted after the second phase
of construction. In that case, the cable forces can be itera-
tively computed using the influence matrix method to mini-
mize the bending moment energy in the main girder until the
desired computational accuracy is achieved. The bending
strain energy of the structure can be expressed as follows:

U ¼ 1
2

Z
M2

EI
ds: ð2Þ

In the finite element beam elements, it can be represented
as follows:

U ¼ ∑
n

i¼1

Li
4EiIi

M2
Li þM2

Rið Þ; ð3Þ

where: n——the number of elements; Li——the length of
element i; Ei——the elastic module of element i; Ii——the
moment of inertia of element i; MLi——the bending
moment at the starting end of element i; MRi——the bend-
ing moment at the ending end of element i.

Rewrite Equation (3) in matrix form as follows:

U ¼ MLj jT B½ � MLj j þ MRj jT B½ � MRj j; ð4Þ

B ¼

L1
4E1I1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
Ln

4EnIn

: ð5Þ

The left and right end moment vectors of the beam unit
before cable force adjustment are denoted as jML0j and
jMR0j, respectively. The influence matrices of cable forces
on the left and right end moments of the beam unit are
represented by jCLj and jCRj. respectively. The adjusted left
and right end moment vectors of the beam unit, denoted by
jMLj, can be expressed by the sum of the original vectors
jML0j and the vector representing the correction values of
cable forces, denoted by jΔTj:

MLj j ¼ ML0j j þ CLj j ΔTj j; ð6Þ

Establish the finite element model
of the bridge and simulate the

construction process

Modify the hanger
forces considering the
construction process

Preliminarily determine the
initial force of each hanger

Reestablish the finite element
model of the bridge and

simulate the construction process

Calculate the cable shape
based on the catenary theory

Recalculate the
cable shape

Obtain the initial
equilibrium state

of the bridge

Improved procedures
Calculational results

FIGURE 4: The determination process of the target finished bridge state.

li

qB

FIGURE 5: Calculation diagram of preliminary hanger force.
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MRj j ¼ MR0j j þ CRj j ΔTj j: ð7Þ

To minimize the bending strain energy of the structure
after cable force adjustment, the following conditions must
be satisfied:

δU
δΔT

¼ 0: ð8Þ

By simultaneously solving Equations (4)–(8), the solu-
tion can be obtained as follows:

ΔTj j ¼ −
CLj jT B½ � ML0j j þ CRj jT B½ � MR0j j
CLj jT B½ � CLj j þ CRj jT B½ � CRj j : ð9Þ

If the magnitude of vector jΔTj| satisfies the required
computational accuracy, the iterative calculation process is
completed. Otherwise, based on vector jΔTj, the cable forces
at that moment are calculated, along with the corresponding
cable sag profile. A nonlinear finite element analysis is then
performed to obtain the left and right end moments of the
beam unit at that moment. These calculated moments are the
left and right end moment vectors of the beam unit before
cable force adjustment. Subsequently, the aforementioned
steps are repeated to recalculate the vector jΔTj. The cable
forces corresponding to the jΔTj that meets the computa-
tional accuracy requirements represent the final determined
cable forces.

3.1.2. Calculation of Target Finished Bridge State. In the sec-
ond step of the method, after obtaining the internal force of
the hanger, combined with the material parameters and the
coordinates of the design control points, the main cable
shape of the suspension bridge in the completion state can
be calculated. According to the suspension cable calculation
theory, when the two ends of the suspension cable are fixed.
The load is unshapely distributed along the cable length,
the cable shape is a catenary. The functional relationship
between the end coordinates of the cable segment, L and h,
and the horizontal and vertical force, H and V at the end and
the unstressed cable length S0 of the cable segment can be
obtained as Equations (10) and (11):

l ¼ HS0
EA

þ H
q0

arsh
V
H

� �
− arsh

V − q0S0
H

� �� �
; ð10Þ

h ¼ VS0
EA

−
q0S20
2EA

þ H
q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V

H

� �
2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V − q0S0

H

� �
2

s" #
;

ð11Þ

where q0 is the weight per unit length of the main cable, E is
the modulus of elasticity of the main cable, and A is the main
cable area.

When calculating the main span, start by assuming the
shear force V and horizontal force H at the tangent point
between the main cable and the left cable saddle, then sepa-
rate it from the hanger and calculate the coordinate differ-
ence between the two ends and the unstressed length of each
cable segment section by segment. Correct V and H based on
the departure between the design value and the calculated
value of the sag and the height difference between the left and
right ends after the calculation to the right, and then recal-
culate using the same procedure until the deviation satisfies
the accuracy standards. Figure 6 shows the calculation dia-
gram for the main cable shape of the major span.

The horizontal force H can be considered a known quan-
tity when the middle span computation is done. The main
cable shape for the side span may then be computed simi-
larly. The suspension bridge’s primary cable shape has been
calculated thus far.

However, note that the main cable shape and vertical
stiffness can vary somewhat due to the difference between
the preliminary internal force of the hanger estimated by this
approach and the actual completion condition. Therefore, a
finite element model is established in the third step of the
method. Subsequently, in the fourth step, the change of the
hanger force caused by the stiffness distribution during
the second stage of deadly load application is determined
based on the simulation of the construction process.

After modifying the hanger forces, considering the influ-
ence of the construction process, the fifth and sixth steps are
similar to the second and third steps. The initial shape of the
main cable in the completion state can be recalculated based
on the calculation theory, and the finite element model is
reestablished. Finally, in the last step, the above results can be
provided for checking the bridge safety or as the initial

V1

V2

P1
H3

P

V3 Vi

Vn+1

H

H

Pi-1

lil2l1

H

H

FIGURE 6: Calculation diagram of the main cable shape.
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equilibrium state of the suspension bridge for further static
or dynamic analyses.

3.2. Calculation Results. The unstressed length and line shape
of each span’s main cable are computed using the above-
mentioned approach. Figures 7 and 8 depict the convergence
processes of the updating and control parameters in the
midspan, respectively.

The convergence speed for the iterative computation of
the main cable shape is quite quick, as illustrated in Figures 7
and 8. The error for the achieved midspan sag is lowered to
near zero after only one to two iterations, and the predefined
stopping criterion (1mm) can be reached with only eight
iterations. Figure 9 depicts the moment of the stiffening of
the girder in its completed shape.

The moment diagram of the stiffening girder after com-
pletion is remarkably similar to that of the continuous beam
under dead load, as shown in Figure 9. The largest value of
the bending moment arises at the point of the end hangers.
The moments at all other positions are almost the same,
demonstrating the precision of the determined completion
state in this study. The above approaches are utilized in the
follow-up research to determine the goal, finished bridge
condition, and internal force of the suspension bridge for
structural systems with various characteristics. The finite ele-
ment model is built on this foundation for the future study.

4. Parametric Study

Based on the determined initial shape, the effects of some
asymmetry parameters are investigated through the finite
element (FE) model. Under static conditions, tower height
and side span length influence bridge deformation and inter-
nal forces are analyzed. Subsequently, under seismic condi-
tions, the effect of dampers is analyzed and suggestions for
selecting proper damper parameters are given.

4.1. Horizontal Constrain Stiffness of Side Span System. The
forces of the midspan main cable are always symmetrical due
to its flexibility. The tension of the cable is transferred to the
saddle and restrained by the side-span system, which is made
up of the cable at the side span and the tower. The horizontal
and vertical forces acting on the main cable in the midspan
can be separated. In the vertical direction, the displacement
is small due to the substantial axial stiffness of the tower, and
it has a minor influence on the overall stiffness of the bridge.
In the horizontal direction, the bridge tower and the main
cables of the side span constitute a cantilever beam with the
elastic support. The restraint stiffness is made up of the
thrust stiffness of the tower and the geometric stiffness of
the side-span main cables, which together resist the main
cables’ tension, as indicated in Figure 10. The asymmetry
of the stiffness of the side-span restraint system leads to
asymmetric displacements of the bridge under live loads.
Considering that the tower’s height and the angle of the
main cable at the side span are unsymmetrical in the case
study, the mechanical behavior of the bridge is studied based
on these two factors.

4.1.1. Anchor Cable Angle. The ground-anchored suspension
bridge described in this study has a single span and the
anchor cable mostly carries axial stress and self-weight.
The horizontal inclination of the connecting line between
the tower top and the anchor point is referred to as the
anchor cable angle. The main cables are fastened to the cor-
rect points on both banks according to the real topography in
this segment, with varied anchor cable angles. The sinusoidal
values of the anchor cable angle are 0.3, 0.35, 0.4, 0.45, and
0.5. Table 2 lists the parameter values. Figure 11 shows the
parameter as well as the positions of anchor cables.

Figure 12 depicts the axial force of the main cable as a
function of the anchor cable angle under dead load. The
tension of the main cable in the center of the main span
and at the top of the tower remains unchanged as the anchor
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cable angle rises; the tension of the anchor cable progres-
sively increases.

The tension of the main cable in the main span is gov-
erned by the structure’s self-weight distribution, as shown in
Figure 12. The horizontal force of the main cable remains

constant as the inclination angle of the anchor cable rises.
However, the tension of the anchor cable is increased to
offset the horizontal force of the main wire.

The deflection envelop of the girder in anchor cable angle
under live load is shown in Figure 13. It can be observed that
when the anchor cable angle increases, the stiffening girder’s
upward and downward deflections diminish. It demonstrates
that raising the angle of the anchor cable increases the
anchor cable’s constraint on the bridge tower and stiffens
the girder, which helps to improve the overall structural
stiffness.

The trend of structural natural frequency variations due
to changes in the side span-to-central span ratio is depicted
in Figure 14. Alterations in the side-span ratio have discern-
ible effects on the system’s dynamic characteristics. Specifi-
cally, the corresponding frequencies exhibit an increasing
trend for the positive/negative symmetric vertical bending
modes and similar vibrational patterns as the side-span
length extends, with changes of approximately 4% and 2%,
respectively. Conversely, the frequencies associated with the
positive/negative symmetric lateral bending modes remain
largely unaffected by variations in the side-span length.
Notably, the frequency of the first torsional mode experi-
ences a decreasing trend as the side-span length increases,
demonstrating a deviation of approximately 2%. Overall, the
comprehensive analysis indicates that an increasing side-
span length corresponds to a diminishing overall stiffness
of the bridge, albeit gradually.

4.1.2. Tower Stiffness. The tower is a compression bending
part that supports the main cable. The action on the tower
is dominated by dead loads. The horizontal force of the
main cable induced by dead loads can be balanced on the
two sides after the bridge is finished. However, unbalanced
tension forces can also be generated on the two sides due to
the effect of live loads, resulting in a longitudinal displace-
ment at the tower top. The rigidity of the tower has a
considerable impact on the suspension bridge’s live load
equilibrium condition. The asymmetry of the tower stiffness
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FIGURE 9: Distribution of bending moments along the stiffening girder (kN·m).
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FIGURE 10: Illustration of the side-span constraint system.

Advances in Civil Engineering 7



may generate asymmetric structural deflections in a moun-
tain suspension bridge.

To investigate this effect, the stiffness of the bridge tower
is adjusted by keeping the wall thickness unchanged while
maintaining the outer contour size of the section. Let δ
denote the section size adjustment factor, that is, the multiple
of the expansion or reduction of the section size. The values
of δ are taken as 0.9, 1, 1.2, and 1.5, respectively, to study the
influence of bridge tower stiffness on structural static and
dynamic performance.

The influence of bridge tower stiffness on the bending
moment under live loads is shown in Figure 15 (considering
the left tower as an example). Themoment of the bridge tower
is about a straight line, as can be noticed. The moment of the
bridge tower steadily increases as the rigidity of the tower
rises. This demonstrates that the unbalanced horizontal force
on the top of the bridge tower is the primary cause of the
moment and that the increased stiffness of the bridge tower
leads to the rise of the unbalanced horizontal force on the top.

TABLE 2: Values of anchor cable angle parameters.

Number
The west bank The east bank

The sinusoidal values of the
anchor cable angleHeight difference

(m)
Distance between

anchorage and tower (m)
Height difference

(m)
Distance between

anchorage and tower (m)

(1) 101.52 338.41 62.84 209.48 0.3
(2) 108.86 311.03 65.75 187.84 0.35
(3) 115.10 287.75 68.10 170.26 0.4
(4) 120.47 267.71 70.06 155.69 0.45
(5) 125.14 250.28 71.71 143.41 0.5

1 2 3 4 5

15

FIGURE 11: The position of anchor cables in varied angle.
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The trend of structural natural frequency variations due
to changes in the stiffness of bridge towers is depicted in
Figure 16. The stiffness characteristics of the bridge towers
primarily impact the torsional and lateral bending modes,
with minimal influence on the vertical bending mode.
Increasing the stiffness of the bridge towers leads to an aug-
mentation in both the first antisymmetric lateral bending
frequency and the first torsional frequency. Notably, the
model with a section magnification of 1.5 displays an impres-
sive 8.9% increase in the frequency of the first torsional
mode. In comparison, the frequency of the first antisymmet-
ric lateral bending mode experiences a substantial 5.6%

increase compared to the model with a section magnification
of 0.6. These findings demonstrate that enhancing the stiff-
ness of the bridge towers can significantly improve the tor-
sional and lateral bending stiffness of the bridge, thereby
bolstering its resistance to the lateral wind loads. Further-
more, the increased torsional stiffness effectively mitigates
the impact of coupled vehicle-bridge vibrations, further
enhancing the overall performance of the bridge.

The impact of two “asymmetric” parameters on the fun-
damental mechanical behavior of the suspension bridge can
be succinctly summarized as follows:

Firstly, the edge-span constraint system, composed of the
bridge towers and the edge-span main cables, plays a critical
role in constraining the horizontal displacement of the mid-
span main cables. Notably, the asymmetry of the bridge is
primarily manifested through the asymmetrical horizontal
constraint stiffness imposed by the edge-span constraint sys-
tem on the midspan. An increase in the stiffness of the edge-
span constraint system results in a proportional increase in
the stiffness of the midspan main cables, ultimately leading
to an augmented overall structural stiffness. Conversely, a
decrease in the stiffness of the edge-span constraint system
corresponds to a reduced structural stiffness.

Second, the stiffness of the edge-span constraint system is
a composite of the horizontal stiffness of the bridge tower
tops and the edge-span main cables combined linearly. As
the edge-to-midspan ratio increases and the bridge tower
stiffness decreases, the edge-span constraint system’s overall
stiffness diminishes, consequently reducing the overall struc-
tural stiffness. This reduction, in turn, impacts the frequen-
cies of the vertical bending and torsional modes of the
structure, causing them to decrease.

Furthermore, due to the greater height of the Western
bridge tower and the longer length of the edge span, the
stiffness of the Western edge-span constraint system is
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comparatively lower than that of the Eastern side. Detailed
calculations reveal that under live loads, the displacement at
the top of the Western tower is approximately twice than
that of the Eastern tower, thereby indicating that the stiffness
of the Eastern edge-span constraint system is approximately
twice as large as that of the Western side.

Last, by strategically adjusting the heights of the bridge
towers and the edge-to-midspan ratio, it is possible to mitigate
structural asymmetry and enhance the static and dynamic per-
formance of the system. Notably, the observed asymmetry in
the stiffness of the edge-span constraint system does not signif-
icantly impact the mechanical performance of the case bridge.

4.2. Parameters of the Damper. If the suspension bridge’s
stiffening girder adopts a structural system with no longitu-
dinal restriction due to the extended self-vibration period,
considerable displacement may happen at the end of the
girder after an earthquake. Installing dampers at the connec-
tion parts of the tower and girder or at the end of the girder
to increase the damping of the bridge is an effective measure
to control the displacement and improve the structure’s seis-
mic performance.

The liquid viscous damper is a cylindrical pore-type
damping device. The power relationship between the force
and velocity of the damper is shown in Equation (12):
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F tð Þ ¼ C sign u̇ð Þ u̇j jξ; ð12Þ

where C is the damping coefficient, ξ is the damping expo-
nent, and is the relative acceleration.

It can be seen from Equation (3) that at the same speed,
the greater the damping coefficient C is, the greater the
damping force F. Generally, the relative velocity between
the tower and girder caused by seismic waves is more minor
than 1m/s, so the smaller the damping exponent ξ is, the
greater the damping force F is. Although the stiffness of the
damper is nonlinear, it can be seen from the above analysis
that the stiffness of the damper can be increased with the rise
of damping coefficient C or the decrease of damping expo-
nent ξ.

Four groups of dampers are usually set between the
towers and stiffening girders of suspension bridges, as shown
in Figure 17. For convenience, the damping coefficient C in
this section represents the sum of the damping coefficients of
one-sided dampers. The damping exponent ξ is taken as 0.3,
0.5, 0.7, and 0.9. The damping coefficients are 2,000, 6,000,
10,000, and 14,000, respectively (the unit of damping coeffi-
cient ξ is kN/(m/s)).

Nonlinear time history analysis is used to investigate the
impact of damper settings on the displacement at the end of
the girder and the impact on the damping force. The artificial
seismic wave generator is utilized to construct the time his-
tory curve based on the conditions at the bridge site, and four
seismic waves with good fitting are chosen for input. Figure 18
depicts a seismic wave time history curve. Seismic waves have
a 3% chance of exceeding their limits every 100 years.

Under the seismic circumstances, Figure 19 depicts the
changing trend of the greatest relative displacement between
the tower and girder with various damper values. As noticed,
setting a damper efficiently reduces the relative displacement
between the tower and the girder. The relative displacement
falls as the damping exponent drops and decreases as the
damping coefficient C increases, and the reduction speed
steadily decreases.

Under the seismic circumstances, Figure 20 depicts the
relationship between the maximum damping force and

damper settings. It can be shown that the damping force
grows as the damping exponent and damping coefficient C
decrease, and the growth rate steadily declines.

Figure 21 shows the trend of the maximum moment at
the tower bottom with the change of damper parameters
under seismic conditions. It can be seen that the moment
at the bottom of the tower increases with the reduction of
damping exponent ξ and decreases with the growth of damp-
ing coefficient C, and the reduction rate decreases gradually.
When ξ is taken as 0.3, the moment at the bottom of the
tower increases with the rise of C.

The inclined hanger’s horizontal component constrains
the stiffening girder’s longitudinal displacement under seis-
mic conditions if the damper is not set. When the hanger is
slanted, the imbalanced horizontal force is transmitted to the
tower’s top, causing a substantial moment at the tower’s
bottom. The longitudinal restraint reaction of the stiffening
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girder is conveyed to the center of the bridge tower through
the damper once it is set, and the active position of the shear
force in the tower goes down, resulting in a decrease in the
moment at the bottom of the tower.

For different damping ratios ξ, there exists a threshold
value where the bending moment at the base of the east
tower remains almost unchanged with the varying damping
coefficient C when C is less than this threshold. However,
when C exceeds this threshold, the bending moment at the
base of the east tower increases with increasing C. Moreover,
this threshold value decreases as ξ decreases. This indicates
that when the stiffness of the damper itself exceeds a certain
threshold, the bending moment at the base of the east tower
increases due to the presence of the damper, which adversely

affects the force distribution on the east tower. This is attrib-
uted to the fact that the lateral stiffness of the east tower is
significantly higher than that of the west tower, and when the
damper stiffness is high, the east tower bears the majority of
the lateral reaction forces while weakening the effectiveness
of the damper on the west side.

Setting a damper can effectively minimize the displace-
ment of the stiffening girder, as shown in Figures 19 and 21.
The relative displacement between the tower and the girder
reduces as C decreases. However, if C is too large or too little,
the damping force will be substantial, increasing the reaction
wall’s design difficulties. As a result, the damper parameters
should be chosen carefully to limit the relative movement of
the tower and girder and to keep the damping force within a
tolerable range.

5. Conclusions

Based on the characteristics of bridges in the mountainous
areas, this paper proposes an improved shape-findingmethod
for main cables, and the finite element analysis carefully stud-
ies some asymmetric parameters. The study can be summa-
rized as follows:

(1) An improved shape-finding method considering the
impact of the construction process is proposed. The
hanger forces are determined by initially treating
the stiffening girder as a multipoint supported contin-
uous beam. Then, the main cable shape is calculated
by an analytical method based on the equilibrium
equation. A full-bridge model with the construction
steps is next established in the FE software to update
the hanger forces. In the iterative process, the cable
shape and the hanger forces are used as input to
the analytical and FE model, until the convergence
of the results. The components of hanger forces in
various construction steps are fully considered
through the nonlinear FE model.

(2) The side-to-span ratio of the main cable and the stiff-
ness of the tower affect the horizontal constrain stiff-
ness of the main cable in the midspan. With a smaller
side-to-span ratio or a lower tower height, the hori-
zontal constrained stiffness of the main cable can be
greater, thus resulting in reduced displacements at
the tower top and along the stiffening girder under
live loads. The asymmetry of the bridge layout can
lead to the different horizontal displacements of the
tower under live loads, which mainly affects the value
of the tower’s bending moments. However, it yields
minor effects on the overall performance of the bridge.

(3) Setting dampers between the tower and the girder and
choosing proper damper parameters can effectively
minimize the longitudinal displacement of stiffening
girders and benefit controlling the moment of towers
under the seismic situations. Noteworthy, for towers
with large differences in horizontal stiffness, excessive
damping forces may considerably increase the bend-
ing moment of the higher tower.

7.5

7.0

6.5

6.0

5.5

5.0

4.5

Damping coefficient C (kN/(m/s)ξ)
14,00010,0006,0002,000

M
om

en
t (

10
5 kN

.m
)

ξ = 0.3
ξ = 0.5

ξ = 0.7
ξ = 0.9

FIGURE 21: Maximum bottommoment of west tower under different
damper parameters.

8,000

6,000

4,000

2,000

0
2,000 6,000 14,00010,000

D
am

pi
ng

 fo
rc

e (
kN

)

Damping coefficient C (kN/(m/s)ξ)

ξ = 0.3
ξ = 0.5

ξ = 0.7
ξ = 0.9

FIGURE 20: The maximum damping force of the west side under
different damper parameters.

12 Advances in Civil Engineering



Data Availability

Some or all data, models, or code generated or used during
the study are available from the corresponding author upon
reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors gratefully appreciate the financial support from
the National Key Research and Development Program of
China (2021YFB1600300), the Scientific Research Project
of China Power Construction Road and Bridge Group Co.,
Ltd. (HHZ-JGY-FW-07), the National Natural Science Foun-
dation of China (51878494), and the Science and Technology
Committee of Shanghai, China (21DZ1202900).

References

[1] W.-M. Zhang, C.-Y. Yang, and J.-Q. Chang, “Cable shape and
construction parameters of triple-tower double-cable suspen-
sion bridge with two asymmetrical main spans,” Journal of
Bridge Engineering, vol. 26, no. 2, Article ID 04020127, 2021.

[2] N. J. Gimsing and C. T. Georgakis, Cable Supported Bridges:
Concept and Design, John Wiley & Sons, Ltd, 2011.

[3] K.-S. Kim and H. S. Lee, “Analysis of target configurations
under dead loads for cable-supported bridges,” Computers and
Structures, vol. 79, no. 29-30, pp. 2681–2692, 2001.

[4] H.-K. Kim and M.-Y. Kim, “Efficient combination of a TCUD
method and an initial force method for determining initial
shapes of cable-supported bridges,” International Journal of
Steel Structures, vol. 12, pp. 157–174, 2012.

[5] M.-Y. Kim, D.-Y. Kim, M.-R. Jung, and M. M. Attard,
“Improved methods for determining the 3 dimensional initial
shapes of cable-supported bridges,” International Journal of
Steel Structures, vol. 14, pp. 83–102, 2014.

[6] R. Xiao, M. Chen, and B. Sun, “Determination of the reasonable
state of suspension bridges with spatial cables,” Journal of Bridge
Engineering, vol. 22, no. 9, Article ID 04017060, 2017.

[7] C. Song, R. Xiao, and B. Sun, “Improved method for shape
finding of long-span suspension bridges,” International Journal
of Steel Structures, vol. 20, pp. 247–258, 2020.

[8] C. Li, J. He, Z. Zhang et al., “An improved analytical algorithm
on main cable system of suspension bridge,” Applied Sciences,
vol. 8, no. 8, Article ID 1358, 2018.

[9] T. Li and Z. Liu, “A recursive algorithm for determining the
profile of the spatial self-anchored suspension bridges,” KSCE
Journal of Civil Engineering, vol. 23, pp. 1283–1292, 2019.

[10] Y. Zhou and S. Chen, “Iterative nonlinear cable shape and force
finding technique of suspension bridges using elastic catenary
configuration,” Journal of Engineering Mechanics, vol. 145, no. 5,
2019.

[11] W. Zhu, Y. Ge, G. Fang, and J. Cao, “A novel shape finding
method for themain cable of suspension bridge using nonlinear
finite element approach,” Applied Sciences, vol. 11, no. 10,
Article ID 4644, 2021.

[12] S.Wang, Z. Zhou, Y. Gao, and Y. Huang, “Analytical calculation
method for the preliminary analysis of self-anchored suspension

bridges,” Mathematical Problems in Engineering, vol. 2015,
Article ID 918649, 10 pages, 2015.

[13] Y. Sun, H.-P. Zhu, and D. Xu, “New method for shape finding
of self-anchored suspension bridges with three-dimensionally
curved cables,” Journal of Bridge Engineering, vol. 20, no. 2, 2014.

[14] M.-Y. Kim, M.-R. Jung, and M. M. Attard, “Unstrained
length-based methods determining an optimized initial shape
of 3-dimensional self-anchored suspension bridges,” Compu-
ters & Structures, vol. 217, pp. 18–35, 2019.

[15] L.-B. Wang, Y. Wu, and M. Noori, “Parameters of static
response of carbon fiber reinforced polymer (CFRP) suspension
cables,” Journal of Central South University, vol. 22, pp. 3123–
3132, 2015.

[16] L. Jia, Z. Lin, R. Xiao, and Y. Jiang, “Parameter effects on the
mechanical performance of triple-tower four-span suspension
bridges,” Advances in Structural Engineering, vol. 21, no. 2,
pp. 256–269, 2017.

[17] J. Lijun, W. Jinliang, J. Yang, and X. Rong, “A parametric study
of long-span triple-tower suspension bridge,” Advances in
Structural Engineering, vol. 23, no. 15, pp. 3185–3194, 2020.

[18] J. Cheng, M. Xu, and H. Xu, “Mechanical performance analysis
and parametric study of double-deck plate-truss composite
steel girders of a three-tower four-span suspension bridge,”
Engineering Structures, vol. 199, Article ID 109648, 2019.

[19] H. Cao, Y. Chen, J. Li, and S. Liu, “Static characteristics
analysis of three-tower suspension bridges with central buckle
using a simplified model,” Engineering Structures, vol. 245,
Article ID 112916, 2021.

[20] S.-X. Zheng, X.-H. Shi, H.-Y. Jia, C.-H. Zhao, H.-L. Qu, and
X.-L. Shi, “Seismic response analysis of long-span and
asymmetrical suspension bridges subjected to near-fault ground
motion,” Engineering Failure Analysis, vol. 115, Article ID
104615, 2020.

[21] Z. Xu, H. Wang, H. Zhang, K. Zhao, H. Gao, and Q. Zhu,
“Non-stationary turbulent wind field simulation of long-span
bridges using the updated non-negative matrix factorization-
based spectral representation method,” Applied Sciences, vol. 9,
no. 24, Article ID 5506, 2019.

[22] H. Tang, Y. Li, K. M. Shum, X. Xu, and Q. Tao, “Non-uniform
wind characteristics in mountainous areas and effects on
flutter performance of a long-span suspension bridge,” Journal
of Wind Engineering and Industrial Aerodynamics, vol. 201,
Article ID 104177, 2020.

[23] J. Cheng and R.-C. Xiao, “A simplified method for lateral
response analysis of suspension bridges under wind loads,”
Communications in Numerical Methods in Engineering, vol. 22,
no. 8, pp. 861–874, 2006.

[24] Z. Guo, S. Lin, and Q. Ni, “Advances in active control of wind-
induced vibration of long-span suspension bridges,” Interna-
tional Journal of Structural Stability and Dynamics, vol. 22,
no. 12, Article ID 2230002, 2022.

[25] M. Zhang, F. Jiang, J. Zhang, J. Qin, X. Jiang, and Y. Li, “Field
measurement of local wind environment on the approach deck
of a suspension bridge in mountain terrain,” Scientific Reports,
vol. 12, Article ID 15659, 2022.

[26] D. M. Siringoringo and Y. Fujino, “Seismic response of a
suspension bridge: insights from long-term full-scale seismic
monitoring system,” Structural Control and Health Monitor-
ing, vol. 25, no. 11, Article ID e2252, 2018.

[27] S. Arzoumanidis, A. Shama, and F. Ostadan, “Performance-
based seismic analysis and design of suspension bridges,”
Earthquake Engineering& Structural Dynamics, vol. 34, no. 4-5,
pp. 349–367, 2005.

Advances in Civil Engineering 13



[28] L. Lu, “Application of buckling-restrained braces in the
seismic control of suspension bridges,” Earthquake Engineer-
ing and Engineering Vibration, vol. 21, pp. 543–557, 2022.

[29] F. Meng, J. Wan, Y. Xia, Y. Ma, and J. Yu, “A multi-degree of
freedom tuned mass damper design for vibration mitigation of
a suspension bridge,”Applied Sciences, vol. 10, no. 2, Article ID
457, 2020.

14 Advances in Civil Engineering




