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Settlements on the ground surface often relate to excavating an underground cavity in cities. Movement on the ground surface can
create a void between the wall of the cylindrical cavity and the lining. Tus, this study proposes an approximate solution under
undrained conditions, based on the relationship between the empirical and analytical methods for predicting ground settlement
around a cylindrical cavity. Based on mathematical formulas, the results obtained by the geometrical representation are then
associated with the experimental data.Te study revealed that the settlement prediction is related either to ground surface loads or
to the ground failure point. Te expansion of the cylindrical cavity is solved as a linear elasticity problem using a system of frst-
order ordinary diferential equations containing two components in the Cartesian coordinates. Te stress distribution around the
cylindrical cavity is evaluated based on a biaxial force. Te proposed approaches show that the results (empirical and analytical)
obtained are approximately similar. Hence, the relationship between the two methods can be best suited for predicting the
settlement around a cylindrical cavity by evaluating both the maximum settlement and the maximum surface displacement.

1. Introduction

Te increasing population in the developing countries has
encouraged underground structure construction using ad-
vanced technologies to control ground motion and settle-
ment. However, statistics have shown that the number of
accidents in cavities is often determined by extreme loads
and excavations on the ground surface (Huang and Zhang
[1]). Te diference of settlement between strata can cause
ground cracking and severely threatens the safe construction
and operation of underground engineering (Yan et al. [2]).
Geotechnical engineers believe that the adverse efects on an
ancient construction from underground excavations result
from unavoidable changes in ground stress and motion
(Klar and Marshall [3]; Klar et al. [4]; Avgerinos et al. [5];
Haji et al. [6]; Lu et al. [7]; Zhang et al. [8]). Based on in situ

measurements, Wu et al. [9] proved that the settlement of
the cylindrical cavity generating the subsidence is related to
the compression of the upper soil layers. Nevertheless,
prediction and mitigation of damages are essential factors in
tunnel design.

Te numerous attempts to develop predictive solutions
for the ground behaviour are classifed into the following
three categories: the empirical method based on the
Gaussian distribution curve (Peck [10]; Schmidt [11]; Cel-
estino et al. [12]; Mo et al. [13]); numerical simulations
relying on algorithms for model designs (Yan et al. [2];
Gioda and Swoboda [14]; Gao et al. [15]; Wang et al. [16];
Wu et al. [17]; Zhang et al. [18]; Möller and Vermeer [19];
Amorosi et al. [20]; Hasanpour [21]; Zheng et al. [22]; Zheng
et al. [23]; Zhang et al. [24]; Zhang et al. [25]; Lü et al. [26]);
and the analytical solution proposed to predict the ground
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behaviour (Sagaseta [27]; Verruijt and Booker [28]; Verruijt
[29]; Park [30]; Wang et al. [31]; Pinto and Whittle [32];
Zhang et al. [25]; Mabe et al. [33]).

Moreover, a complex variable method has been pro-
posed for the ground motion problem to avoid stresses
imposed on the boundary conditions (Verruijt [29]).
However, removing the additional weight of excavated
ground generally causes soil to rebound, generating asym-
metric stress redistribution (Verruijt and Booker [34]; Bobet
[35]). Nonetheless, these ground movements should be
conformal convergence and nonuniform deformation
models, appropriate for estimating ground settlement in the
near and far felds (Pinto and Whittle [32]). Most of these
existing solutions were developed under the assumption that
the cylindrical cavity would deform in an infnite medium
(Yu and Rowe [36]; Mair [37]).

Li et al. [38] and Chen et al. [39] present a generic stress
transport approach for the advanced solutions of the cy-
lindrical cavity expansion under undrained and drained
conditions. Tis solution is then modifed by Zhang et al.
[40] for undrained contraction problems. Tus, Chen and
Abousleiman [41] propose an exact analytical solution in the
undrained conditions using the rigorous defnition of
deviatoric stresses and a shear model that varies with the
average soil pressure. Furthermore, the efects of rotational
hardening, ignored by Chen et al. [42], have been recently
included by Yang et al. [43] under drained loading condi-
tions. Terefore, an exact general solution for the diferent
ground models and a critical evaluation of various simpli-
fying expressions were used by Vrakas [44] for the stress
invariants around the cylindrical cavity.

Currently, many underground constructions use em-
pirical and analytical approaches to predict settlements on
the ground surface. Tese methods evaluate the resulting
stresses from the settlement and then propose the solutions
related to the progressive unloading of the cavity. Tus,
based on the mathematical theorems, this study proposes the
relationship between the empirical and analytical methods
for predicting the ground deformation surrounding a cy-
lindrical cavity. Te signifcance and efciency of the current
solution obtained by the geometric representation are
demonstrated by comparing it with the experimental data.
Ten, a comparative study of the two methods is performed
to investigate the ground settlement under compression by
the process of cavity expansion. Finally, a contribution of the
obtained results is presented to show the applicability of the
current solution in practical engineering.

2. Schematic Representation of the
Cylindrical Cavity

Figure 1 represents the geometry of a cylindrical cavity in an
infnite soil of initial radius r0, in a biaxial plane of co-
ordinates x and y, and of radial position r (radial distance
from the axis of the cylindrical cavity) that is afected by the
circumferential position of the soil nθ (n≥ 1). For further
explanation, Figure 1(a) shows an initial state of the soil at
rest before the expansion of the cylindrical cavity defned by
the following condition: horizontal stress equal to vertical

stress (σx0 � σy0). Furthermore, Figure 1(b) shows the ex-
pansion of a cylindrical cavity under hydrostatic compres-
sion, subjected to a horizontal efective pressure σh0,
a vertical efective stress σv0, and a perpendicular efective
stress σz0. During the expansion, two diferent regions are
formed in Figure 1(b). Te elastic region is at a considerable
distance from the cavity, and the plastic region consists of
two parts, namely, the softening zone and the residual zone.
Te conventional solution of the cylindrical cavity expansion
is based on the idea that the in situ stress in a plane equals to
σh0 � σv0; thus, the stress distribution in the soil element is
only afected by the radial position r (Hou et al. [45]). As the
expansion pressure inside the cavity increases from the
internal pressure p0, the cavity expands from r0 towards the
plastic boundary. Te internal pressure continues to in-
crease, and the ground around the cavity gradually grows
towards the radius of the plastic region rp. At the deviation
of the line between the elastic region and the plastic region is
the elastoplastic region, which is the starting point of the
radial displacement Ur. Te cylindrical cavity is then sub-
jected to a compression pressure between the ground surface
pressure p1 and the internal pressure p0. Terefore, the
initial stress components can be established by

σr0′ � σh0′ cos
2 θ + σv0′ sin

2 θ,

σθ0′ � σh0′ sin
2 θ + σv0′ cos

2 θ,

σz0′ � σz0′ ,

τrθ0 � σh0′ − σv0′( 􏼁 sin θ cos θ.

(1)

Te elastic limit diagram is circular with the radius of the
cylindrical cavity (R). Te expansion pressure of the internal
cavity modifes the ground in the elastic region. Tus, the
equilibrium equation in the polar coordinates can be defned
as follows:

zσr

zr
+
σr − σθ

r
� 0, (2)

where zσr/zr is the derivative of the radial stress with respect
to the radial position r, according to the Tresca criterion
(σθ − σr � Co), equation (2) can be restored as
zσr/zr − Co/r � 0. Considering the shear afecting the
horizontal cavity wall and the efect of the applied efective
stress (σeff � σT − U; with U as the pore pressure) under the
undrained condition, equation (2) can be redefned as
follows:

zσr
′

zr
+

z σT − U( 􏼁

zr
+
1
r

zτrθ′

zθ
−

Co

r
� 0, (3)

where z(.) is the diferential according to the Lagrangian
description. When the soil is subjected to radial compres-
sion, the radial displacement Ur shown in Figure 1(b) can be
expressed as Ur � r2 + ∆2m − rp(2re − rp)2􏽮 􏽯

1/2
− r, where

Dm � 2R is the diameter of the cylindrical cavity, R is the
radius of the cylindrical cavity, rp is the radius of the plastic
region, and re is the radius of the elastic region. Te soil
elements around the cylindrical cavity frst undergo elastic
deformation and then plastic hardening with the
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degradation of the cavity wall (Zhai et al. [46]). Furthermore,
the soil structure can be destroyed before reaching the
boundary of the plastic region. In this vein, Zhuang et al. [47]
explained that when the compression is positive, the initial
stress at the cavity boundary condition can be given by
σr|r⟶ r0 � P0 and σr|r⟶ re � P1.

Since the diferential system used in this study is Car-
tesian, two stress components are taken into account based
on the theory of elasticity and plasticity. Tus, to derive the
equation according to Mohr’s circle, in the plane of stress,
with a unit surface parallel to the direction of the x − y plane
(i.e., perpendicular to σh0 and σv0), the efective stress and
the efective shear stress can be obtained by the following
expression:

σeff �
1
2

σx0 + σy0􏼐 􏼑 +
1
2

σx0 − σy0􏼐 􏼑 cos 2θ + τxy0 sin 2θ,

(4)

τeff � −
1
2

σx0 − σy0􏼐 􏼑 sin 2θ + τxy0 cos 2θ, (5)

where σx0 and σy0 are stresses at the origin and τxy0 is the
initial shear stress. Next, a limited number of cases in-
volving uniform vertical stress and inward shear stress are
proposed by Gerrard [48] to solve the linear problem on
a circular plane. Sivasithamparam and Castro [49] then
adopt the condition that the direction of the known
displacement vector at each point is independent of the
stresses. Te constitutive model can be obtained by using
the boundary conditions. In the plane condition, when the
cylindrical cavity expands, the displacement vector uses
the shear stress to compensate for the “ovalization.” Te
deformation feld is then obtained from the elastic
constitutive law.

When the tunnel is shallow, the stress deformation
model is more infuenced by the proximity to the stress-free
ground surface (Pinto and Whittle [32]). Tus, for the
ground deformation, the boundary conditions for the dis-
placement of the cylindrical cavity wall are subdivided into
the following three deformation models (as shown in Fig-
ure 2): (1). conformal convergence U0 (with ground loss VL),
(2) vertical translation ∆Uy which is materialized by the
downward movement, and (3) fnal form of displacement
∆Uf. Based on the deformation generated by the radius of
the cylindrical cavity, the equation is as follows:

− U0 � ∆Uf − ∆Uy. (6)

According to Poulos [50], the infuence factor of stress
or displacement on a uniform load can be obtained by
integrating the same element on a load point. As a the-
oretical tool for modelling engineering problems, the
undrained cavity expansion solution is more urgent than
the drained solution proposed by Zhai et al. [46]. An
analysis of the settlement and maximum surface dis-
placement around the cylindrical cavity is proposed, as
well as the shear afecting the horizontal ground
displacement.

3. Mathematical Evaluation of Displacements

Tis section proposes the mathematical theorems to predict
the settlement around the cylindrical cavity. Airy stresses
will be used as ground traction stresses, considering the
loads on the ground surface. Te method can be adapted to
calculate displacements in directions other than the vertical
direction and for loadings other than vertical direction
(Poulos and Davis [51]).
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Figure 1: Geometric representation of the cylindrical cavity. (a) Initial ground state. (b) Cylindrical cavity expansion under hydrostatic
compression.
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3.1. Empirical Evaluation of Ground Settlement. Te be-
haviour of the deformed ground in the elastic region pre-
sented by Pinto et al. [52] is given by linear elasticity.
Moreover, the cavity-induced horizontal ground displace-
ments are analysed according to the ground settlement
assumption (O’Reilly and New [53]). As suggested by Peck
[10], the surface settlement trough shape is represented by
the Gaussian distribution curve, which is defned as follows:

Us � U0 max . exp −
xi

2

2i
2􏼠 􏼡, (7)

where Us is the surface settlement, U0 max is the maximum
settlement from the ground surface towards the cylindrical
cavity centerline, xi is the standard deviation, and i is the
infection point of Gaussian curve, with Us/U0 max � 0.61.
Te closed form solutions are evaluated by stress felds to
limit the ground loss (Sagaseta [27]). Te ground loss VL can
be calculated by using the relationship VL � 2πRuε, where uε
is the radial displacement at the wall of the cylindrical cavity.
Te infection point involved the unloading of the cavity at
diferent depths (Figure 3), which can be defned by

i � k(h − h0). Mair et al. [54] proposed an empirical method
to represent the subsurface settlement caused by the tunnel
excavation using the following formula:
k � 0.5h − 0.325h0/h − h0. Hence, the infection point can be
obtained by i � 0.5h − 0.325h0. Using equation (7), the
maximum settlement can be obtained as follows:

U0 max � 7.85uε.
Rr

2

k h − h0( 􏼁
. (8)

Next, using equation (6), the horizontal and vertical
displacement (Ux, Uy) can be obtained by

Ux � − 6.28uε
h − 0.65h0

h − h0

x(x + y)

x
2

+ y
2 R, (9)

Uy � − 3.14uε
h + 0.65h0

h − h0

y + h

x
2

+ y
2 R. (10)

Ten, the radial displacement Ur can be calculated by
(r2 � x2 + y2)

Ur � −
6.28uε

h − h0( 􏼁

R

r
􏼒 􏼓

2
(x + y) h − 0.65h0( 􏼁x

2
+ 0.5h + 0.325h0( 􏼁(y + h)

2
􏽮 􏽯. (11)

For U0 � Uy max (Uy max: maximum vertical dis-
placement) and h0 � 0, equations (9) and (10) become

Ux � − 3.14uεR
(x − 2) x

2
− y

2
􏼐 􏼑 + x( 5 − 2x{ }y − h) + 2y

x
2

+ y
2

􏼐 􏼑
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (12)

Uy � − 3.15uεR
(x + 1) x

2
− y

2
􏼐 􏼑 − y 2x

2
− x􏼐 􏼑 − h(x − 2y)

x
2

+ y
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠. (13)

+ =

(3)(2)(1)

−U0 ΔUy ΔUf

VL

R R R

Figure 2: Diferent step of the ground deformation of a cylindrical cavity.
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Because ground settlement is established with y � − h

and y � h, respectively, equations (12) and (13) become

Ux � − 3.14uεR
(x − 2) x

2
− (y + h)

2
􏼐 􏼑 + x( 5 − 2x{ }(y + h) − h) + 2(y + h)

x
2

+(y + h)
2

􏼐 􏼑
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (14)

Uy � − 3.14uεR
(x + 1) x

2
− (y + h)

2
􏼐 􏼑 − x(y + h)(2x − 1) − h(x − 2(y + h))

x
2

+(y + h)
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠, (15)

Ux � − 3.14uεR
(x − 2) x

2
− (y − h)

2
􏼐 􏼑 + x(5 − 2x)(y − 2h) + 2(y − h)

x
2

+(y − h)
2

􏼐 􏼑
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (16)

Uy � − 3.14uεR
(x + 1) x

2
− (y − h)

2
􏼐 􏼑 − (y − h)(2x − 1)x − h(x − 2(y − h))

x
2

+(y − h)
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠. (17)

When y � − h, for x � 0 (equation (14)), the horizontal
displacement Ux � 0 and the maximum horizontal dis-
placement Ux max � 0. For y � 0, the maximum vertical
displacement resulting from equation (15) becomes
Uy max � − 0.785uε(R/h)2(1 − 3R/h). Next, for y � ±h and
x � 0, the maximum horizontal displacement can be re-
written as Ux max � 0. For y � 0 and x � ±h,
Uy max � − 1.57uε. Consequently, the vertical translation
∆Uy can be given by the following expression:

∆Uy � − 6.28uε
R

h
􏼒 􏼓

3 2(R/h) + 1

(R/h)
2

+ 2􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠. (18)

For R � ±h, equation (18) can be determined by
∆Uy max � − 2.09uε. When h2≫R2, the shear stress can be
given by τxy � − 25.12uεRG.hx(((x2 − h2) + 1)/(x2 + h2)3).
Using the Fourier transformation and respecting the yield of
the spatial coordinates in equations (16) and (17), the
components of the Airy stresses can be rewritten as follows:

zF

zx
� 50.24xuεRG.h

1 − (2h − 3y)x
2

− (2h − 3y)(y − h)
2

x
2

+(y − h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (19)

zF

zy
� 25.12uεRG.h

2x
2

+(y − h)
2

􏼐 􏼑x
2

+ 4 1 + 2hx
2

􏼐 􏼑 − (y − h)
3

􏼐 􏼑(y − h)

x
2

+(y − h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (20)

Terefore, the horizontal, vertical, and shear stress in-
duced by the Airy stress can be established as follows,
respectively:
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σx � 50.24uεRG.h
3yx

2
+ 2􏼐 􏼑x

2
+ (y + 8h)(y − h)

2
− 2x

2
(y + 11h) − 10􏼐 􏼑(y − h)

2

x
2

+(y − h)
2

􏼐 􏼑
4

⎛⎝ ⎞⎠, (21)

σy � − 50.24uεRG.h

+2 h + y(y − h)
2

􏼐 􏼑 − (y + 1)􏽮 􏽯(y − h)
2

− ...

− x
2 (14h − 11y)(y − h)

2
− ...

+3(2h − y) + 2
􏼠 􏼡 − 4(7h − 2y)x

4

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(y − h)
2

+ 3x
4 1 − 7x

2
+ 2􏼐 􏼑(2h − y)􏼐 􏼑

x
2

+(y − h)
2

􏼐 􏼑
4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(22)

τxy � 50.24uεRG.hx

6(y − h) + 2(1 − (y − h))x
4

+ 9(y − h)
4

+(y − h)
2(y − h)(2(y − h) − 5) + ...

+3(y + 5h)
􏼠 􏼡x

2

x
2

+(y − h)
2

􏼐 􏼑
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Terefore, the displacement induced by the surface
settlement can be obtained as follows:

Ux � 12.56uεRx
(1 − v)

x
2

+(y − h)
2

􏼐 􏼑
− 4.

1 − (2h − 3y)x
2

− (2h − 3y)(y − h)
2

x
2

+(y − h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (24)

Uy � − 12.56uεRh
(y − h)(1 − v)

x
2

+(y − h)
2

􏼐 􏼑
+

2x
2

+(y − h)
2

􏼐 􏼑x
2

+ 4 1 + 2hx
2

􏼐 􏼑 − (y − h)
3

􏼐 􏼑(y − h)

x
2

+(y − h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (25)

Integrating equations (24) and (25), for x � 0, Ux � 0,
and Ux max � 0. For y � 0 and x � ±h,
Ux max � ±6.28uε(7 − 14v)(R/h)2. Terefore, equations
(15), (17), and (25) can be rewritten as

∆Uy � − 3.14uε
R

h
􏼒 􏼓

2 4v(R/h)
4

− 36(R/h)
3

+ 2(4v − 17)(R/h)
2

+ 4(R/h) + 16

(R/h)
2

+ 2􏼐 􏼑
3

⎛⎜⎝ ⎞⎟⎠. (26)

As the ground displacement around the cylindrical
cavity is centered on the ground loss, the maximum vertical
translation also coincides with the maximum settlement.

Tus, the equilibrium shown in Figure 3 is satisfed. Con-
sequently, equation (5) can be given by

Us � ±1.57uε (1 − 4(2 − v))
2

− 5􏽮 􏽯 xi
2

− 0.03􏼐 􏼑. exp −
xi

2

0.061
􏼨 􏼩

R

h
􏼒 􏼓

2
. (27)

When the weight on the ground surface is large, the inner
and outer pressure exerts a compressive stress, which changes
the maximum ground settlement. Te displacement-inducing
stress felds are then considered as a hydrostatic compression

state. Figure 3 shows the maximum ground settlement based
on the ground behaviour at variable R/h, obtained from
equation (5). For R/h � 1 (Figure 3(a)), Us max(1) � − 2.51m;
Us max(2) � − 3.1m. For R/h≺ 1 (Figure 3(b)), Us max
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(1) � − 2.3m, and Us max(2) � − 2.7m.Te diference between
these two curves results from the variation in Us max.
Terefore, the maximum depth of ground settlement is
a function of the R/h ratio. Under static loading, the maximum
settlement is high when the cylindrical cavity is shallow.
Figure 4 summarises the displacement for y � h and y � − h

(equations (14)–(17)), and the displacement induced by the
shear stress (equations (24) and (25)) as a function of the ratio
R/h and v. A signifcant infuence of the Poisson ratio is again
observed between 0.6≺R/h≺ 1, with more signifcant cor-
rections for lower Poisson ratio. Note that the results are similar
to those obtained in Figure 4, using the vertical translation
resulting from equation (26). Figure 5 shows the prediction of
the horizontal and vertical displacement (Ux, Uy) of the soil
around the cylindrical cavity, with the parameter v � 0.25,
uε � 1m, R/h � 0.45. Tus, taking into account the undrained
condition adopted in this study (with the radius of the cy-
lindrical cavity tending towards zero), the volume of soil loss
remains constant if the displacement feld is also constant.

3.2. Analysis of Ground Displacement. For the purpose of
predicting ground deformation and displacement, an ana-
lytical solution based on the injection of compressive stresses
is proposed. Gerrard [48] then proposes a complete set of
solutions for stress, strains, and displacement at well-defned
points in a two-dimensional system for the same variables.
Te estimation of these stresses is developed based on the
linear elasticity problems. Using the ordinary diferential
equation (ODE), the radial displacement on the ground
surface can be reformulated as
Ur � p0/2G (1 − 2v)r + R2/r􏼈 􏼉 (Pinto andWittle [32]; Zhang
et al. [25]; and Mabe et al. [33]). Hence, we can have

Ur �
p0

2G
r −

R
2

r
􏼠 􏼡. (28)

Or uε � p0r/2G is the parameter of the conformal
convergence. Hence, Ux and Uy components can be
expressed as follows:

Ux � uεx
x
2

+(y + h)
2

− R
2

x
2

+(y + h)
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠,

Uy � uε(y + h)
x
2

+(y + h)
2

􏼐 􏼑 − R
2

x
2

+(y + h)
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠,

(29)

Ux � uεx
x
2

+(y − h)
2

− R
2

x
2

+(y − h)
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠,

Uy � uε(y − h)
x
2

+(y − h)
2

􏼐 􏼑 − R
2

x
2

+(y − h)
2

􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠.

(30)

Using the Navier yield, the shear stress can be obtained
as follows:

τxy � 2uεGx(2y − h)
2R

2
− x

2
+ (y − h)

2
􏼐 􏼑

x
2

+ (y − h)
2

􏼐 􏼑
3 , (31)

where τxy is the shear stress. For y � 0, the inverse Fourier
transform P(x,y) can be defned by P(x,y) � 4uε
RG 􏽒
∞
− ∞ x/(x2 + h2)􏼈 􏼉e− iωxd(x). Tus, the displacement

induced by the inverse Fourier transformation and the shear
stress can be calculated as follows:

Ux �
1
2
uε

4R(1 − v)x x
2

+ R(y − h)
2

􏽮 􏽯 + 3x
2
R
2

− (y − h)
2

R
2

− (y − h)
2

􏼐 􏼑

x
2

+ (y − h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (32)

Uy � −
1
2
uε

(y − h)(4R(1 − v) − (y + h)) + x
2

x
2

+ (y − h)
2

􏼐 􏼑
2 +

R
2

(y − h)(3y + h) − x
2

􏽮 􏽯

x
2

+ (y − h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (33)

Equation (28) can be rewritten as follows:

Ur �
uεR

2 x
2

+ (y − h)
2

􏼐 􏼑
3

x 4xR(1 − v) x
2

+ R(y − h)
2

􏽮 􏽯 − · · · − (y − h)
2

R
2

− (y − h)
2

􏼐 􏼑􏽮 􏽯 + R
2 3x

3
− (y + h) (y − h)(3y + h) − x

2
􏽮 􏽯􏼐 􏼑

x
2

+ (y − h)
2

􏼐 􏼑
+ · · · + (y + h) x

2
+ ((y + h) − 4R(1 − v))(y − h)􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭.

(34)

Hence, for y � 0, equations (32) and (33) can be re-
written as follows:
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τxy � uεG
3h 3x

3
− h

2
􏼐 􏼑R

2
+ h

3 2h
2

− x
2

􏽮 􏽯

x
2

+ h
2

􏼐 􏼑
4 +

x 11h
2

− x
2

􏼐 􏼑 + R
2
(2x − 1) + 4x(2 + 5h)(1 − v)R

x
2

+ h
2

􏼐 􏼑
3

⎛⎜⎝ ⎞⎟⎠. (35)

Hence, the maximum shear stress becomes
τxy max � − 2uεG (R/h)2 − 1􏽮 􏽯. Figure 6 shows a strati-
graphic soil profle resulting from equations (29), (30), (32),
and (33). Figures 6(a) and 6(b) show a horizontal and
vertical displacement profle drawn on the transverse planes

Ux/uε and Uy/uε. Te contour lines are symmetrical and
show transverse motion on the centreline of the cylindrical
cavity for the value x/h � 0. Te lines, all converge towards
the centreline of the cavity. Tis is due to the decrease in the
internal ground pressure. Using equation (32), for y � 0,
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Figure 3: Maximum settlement related to R/h variation. (a) R/h � 1. (b) R/h≺ 1.

R (h)

-1

-0.5

0

0.5

1

1.5

2

Ve
rt

ic
al

 tr
an

sla
tio

n

v = 0.00
v = 0.25
v = 0.50

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Vertical translation (empirical method).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x (h)

-2

-1.5

-1

-0.5

0

y 
(h

)

-1
0-9

-7

-7

-6

-6

-5

-5

-4

-4

-3

-3

-3

-2

-2

-2
-1

-1

-1 0

0

0

1

1

1

1

2

2

3

3

4

-10

-9-8-7
-5-4

-3

-3

-2

-2

-1

-1

-1

0

00

1

1

2345

Uy/uε
Ux/uε

Figure 5: Stratigraphic contour based on the empirical method.

8 Advances in Civil Engineering



Uy � 0, and Uy max � 0. Next, integrating equation (33), we
can have

Uy � − uε
1
2

R

h
􏼒 􏼓

1 +(x/h)
2

􏼐 􏼑 − 4(1 − v)(R/h)
2

+ 1 +(x/h)
2

􏼐 􏼑􏽮 􏽯 +(R/h)
2 1 − (x/h)

2
􏽮 􏽯

1 +(x/h)
2

􏼐 􏼑
3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (36)

Te maximum vertical displacement can be obtained by
(x � ±h) Uy max � ±0.25uε(1 − 2(1 − v)). Te horizontal
and vertical ground motions proposed numerically as fol-
lows: for ∆Ux � 0, ∆Ux max � 0. Adding the equations (29),
(30), and (33), the vertical translation can be obtained by the
following formulas:

∆Uy � uε
R

h
􏼒 􏼓

2 (R/h)
2
(2.5 − 2v) − 1.5

(R/h)
2

+ 2􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠. (37)

Figure 7 shows a vertical translation of the cross-section
resulting from equation (33). For the variable Poisson ratio,
all the curves converge to R/h � 1. Te maximum settlement
is represented by the following values: v � 0,
Ux max� − 0.04m; v � 0.25, Ux max� − 0.05m; and v � 0.50,
Ux max� − 0.06m with R/h � 0.6. When 0.2 < R/h<1, the
curves move downwards towards R/h � 0.5, while the in-
terval 0.6 < R/h<1, the curves move upwards. When the
load around the cylindrical cavity is low during ground
compression, the wall of the cylindrical cavity can exert
a “buoyancy” efect. According to Poulos and Davis [51], the
method can be adapted to calculate displacements in di-
rections other than the vertical direction for variable loads.
Tus, the stresses will be equilibrated by applying a large
force around the cavity.

4. Validation of Results

4.1. Ground Settlement. Te data used to model the em-
pirical part are represented by three tunnel models, one in
London and two laboratory tests. Te input parameters of
the software are presented in Table 1. Te tunnel radius and
tunnel depth evaluation are represented by the ratio R/hwith

values of 0.12 (Ieronymaki et al. [55, 56]), R/h � 0.31 (Hu
et al. [57]), and R/h � 1 (Wang et al. [58]), respectively.
Under undrained conditions, the ground loss can also be
evaluated as VL � 1 − (1 − (Us max /2R))2. Terefore, for
Ux max, the ground losses VL and uε can be established as
shown in Table 1.

4.1.1. Efect of Ux max. Figure 8 shows the maximum
ground settlement obtained from the empirical formulas.
Te input parameters are Ux max, Us, xi, i, and VL. Since the
ground surface is planar, the maximum settlements obtained
are symmetrical to the centre line at the value xi � 0m. Te
variables of Ux max shown in Figure 8(a) are − 1.061m,
− 1.12m, − 1.422m, − 1.5m, − 1.86m, and − 1.95m. Ten,
Ux max for Figure 8(b) is given by − 1.08m, − 1.437m,
− 1.705m, and − 1.86m. Finally, the Ux max for Figure 8(c) is
given by − 1.275m, − 1.44m, − 1.6m, − 1.63m, − 1.705m, and
− 1.9m. Using empirical analysis, U0 � − 0.06m (Table 1 and
Case 1), U0 � − 0.06m (Table 1 and Case 2) and
U0 � − 0.051m (Table 1 and Case 3). Tus, ∆Uy � − 0.08m,
therefore, ∆Uf � − 0.14m; − 0.14m and 0.131m. Tus, based
on the infection point, these results have approximately
equal values. Tis result in the fact that the maximum
settlement obtained by the empirical formulas can be
considered a reference for predicting ground settlement
under undrained conditions.

4.1.2. Te Efect of R/h on the Ground Deformation.
Figure 9 shows the ground displacement with deformation
points varying from − 0.006m to 0.046m. (a)
Uy max� − 0.005m; ∆Uy � − 0.004m and ∆Uf � 0.028m; (b)
Uy max� − 0.003m; ∆Uy � − 0.037m and ∆Uf � 0.027m; (c)
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Figure 6: Stratigraphic profle of a ground section around the cylindrical cavity. (a) Horizontal displacement. (b) Vertical displacement.
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Uy max� − 0.005m; ∆Uy � − 0.006m and ∆Uf � 0.039m; (d)
Ux max� − 0.007m; ∆Uy � − 0.008m, and ∆Uf � 0.046m,
Tus, using equation (6), U0 is obtained as − 0.032m,
− 0.064m, − 0.045m, and − 0.054m respectively. Te values
of U0 are between − 0.03m and − 0.06m. Furthermore, the
settlement trough is estimated to be R/h � 0.38. Tis in-
dicates that despite the load on the ground surface, the
symmetrical distribution of the stresses induced by the
ground traction can also cause ground loss and settlement
around the cylindrical cavity.

4.2.GroundDisplacement. Table 2 summarises the analytical
data resulting from the selected cylindrical cavity. Te
modelling parameters are R/h, v, and uε.

4.2.1. Efect of VL and v on the Uy max. Te efect of ground
loss can be an important factor in the maximum ground
settlement around the cavity. Using data from the analytical
formulas (equation (36)), the vertical displacement shown in
Figure 10 depending on the values of v for v � 0.00,
Uy max� − 0.035m, for v � 0.25, Uy max� − 0.027m, and for
v � 0.50, Uy max� − 0.018m. Because the values of Uy max
and VL are close to the data obtained from the numerical
results, we noted that the maximum ground settlement for
diferent values of v is close to the empirical values.
Terefore, v also infuences the ground loss and considers
the settlement trough. Te result is that the variations of v

can also contribute to the ground deformation around
a cylindrical cavity.

4.2.2. Te Efect of Ux/Uy and i. Te vertical translation of
the ground is established based on uε and R/h. Te observed
displacement is plotted as a function of uε. Te displacement
Equations (29), (30), (32), and (33) are used for digitising the

deformations shown in Figure 11. Because the load applied
on the ground surface is not evaluable, the values of Ux and
Uy show a variation of the stresses related to the load on the
ground surface and with R/h. Interpreting Figures 11(a)–
11(d), we notice that for (a) Ux/Uy � − 0.053m; (b)
Ux/Uy � − 0.052m; (c) Ux/Uy � − 0.055m; and (d)
Ux/Uy � − 0.054m. Te values of uε are established based on
VL, so the intercession between Ux/Uy is considered the
maximum ground settlement trough. Furthermore, for the
infection points (a), (b), (c), and (d), i � − 0.05m; this value
is approximately equal to the value obtained by the empirical
formulas (i �±0.061m).

4.2.3. Variation of the Us max. Figure 12 shows the maxi-
mum vertical settlement resulting from equation (32). Te
numerical data used are given in Table 2. It should be noted
that the ground settlement varies with the infection point i.
Te values obtain the following maximum settlement: Ta-
ble 2 and case 1: Us max� − 1.175m and − 1.32m; Table 2 and
case 2: Us max� − 0.875m; and Table 2 and case 3:
Us max� − 1.625m, with i � 0.061m. Tese results for the
maximum ground settlement are approximately similar to
the data.

5. Discussion

Figure 13 shows the superposition of the ground displace-
ments under the variable uε. It can be seen that the settle-
ment troughs all converge to the values R/h � 0.0375 and
Uy max� − 0.005m. Because all curves converge to the same
intercession point of coordinates (0.75; 0), it indicates that
the pressure in the cavity centre is lower than the surface
pressure; hence, the settlement efect on the ground surface.

Te ground surface settles when the surface load exceeds
the cavity axis pressure. Figure 14 shows the relationship
between the empirical and analytical solutions. Te codes
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resulting from equation (27) are the input parameters for the
numerical simulation. Te interpretation of Figure 14 shows
Us max� − 1.3m (analytical result) and Us max� − 1.4m
(empirical result). Tese values are approximately equal to
the results obtained in Sections 4.1.1 and 4.2 (iii). Since the
empirical results are mainly based on the Gaussian distri-
bution curve, this study has shown that the prediction of the
ground settlement can also use the linear elastic soil problem
to determine the maximum ground settlement.

Figure 15 shows the superposition of the maximum
surface displacement depending on the efect of v and VL.
Te data obtained varies for values of v � 0.00, v � 0.25, and
v � 0.50. It is observed that the settlement troughs all

converge to R/h � 1.5. Te vertical displacement is negative
because the fgure is represented by the equation y − h � 0.
Tese data result from the synthesis of Tables 1 and 2.

Table 3 summarises the maximum vertical displacement
as a function of v and VL. Te values obtained are based on
the formula for maximum settlement under undrained
conditions. Uy max and U0 are approximately similar to the
previously obtained data. Although the empirical method
usually determines the maximum settlement, this case study
shows that, by using the harmonic conjugation with varying
values of v, the analytical approach can also give settlements
symmetrical to the cross-section. Since the ground dis-
placement is not only closely related to the ground stresses,
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Figure 8: Maximum settlement predicted by the empirical method. (a) Ux max (Table 1 and case 1). (b) Ux max (Table 1 and case 2). (c)
Ux max (Table 1 and case 3).
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the displacement can also be related to the variation of the
intercession point. Tus, Figure 16 shows the superposition
of the vertical translation established by (31), with the in-
tercession point x/h � 1; Ux/uε and Uy/uε � − 0.0686.
Ux max� 0.1m, Ux min� 0.06m, and Uy max� − 0.10m and
x/h � 0; these values are approximately equal to the em-
pirical results. Tis specifes that the correlation between the

empirical and analytical methods can best predict the
ground deformation. Since the ground displacement is not
only closely related to the ground stresses, the displacement
can also be related to the variation of the intercession point.
Tus, Figure 16 shows the superposition of the vertical
translation established by (31), with the intercession point
x/h � 1; Ux/uε and Uy/uε � − 0.0686. Ux max� 0.1m,
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Figure 9: Ground displacement with variable uε. (a) uε � 0.040m. (b) uε � 0.041m. (c) uε � 0.058m. (d) uε � 0.068m.

Table 2: Some case studies.

No. 1PN 2EM R/h v VL (%) uε (m) Reference

1 Extension of madrid metro EPB, slurry shield 0.29 0.50 0.25
7.2 − 0.009; − 0.26 Pinto et al. [52]

2 Sewer, cairo (i) APS
(ii) Slurry TBMs 0.19 0 1.2 − 0.07 El-Nahhas et al. [59]

3 Lanzhou subway line 1 EPB, slurry shield 0.5; 0.34 0.25 35 − 0.65 He et al. [60]
1PN: project name; 2EM: excavation method.
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Figure 10: Maximum surface displacement due to the vertical displacement. (a) VL � − 0.002%. (b) VL � − 0.058%. (c) VL � − 0.002%.
(d) VL � − 0.071%. (e) VL � − 0.079%.
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Ux min� 0.06m, and Uy max� − 0.10m and x/h � 0; these
values are approximately equal to the empirical results. Tis
specifes that the correlation between the empirical and
analytical methods can best predict the ground deformation.

Figure 17 shows the relationship between the vertical
translation (analytical formulas) and the experimental data.
Te settlement trough is R/h � 0.4. Te settlement interval is
between − 0.06m and − 0.04m. Te intercession points are
represented by the coordinates ∆Uy � 0.2 and
∆Uy � − 0.04m. Tese values are approximately equal to the
initial displacement U0 obtained in Section 4.1.1. Further-
more, according to the data on the efect of R/h resulting
from the empirical analysis, these values are also related to

the values of ∆Uy and ∆Uf presented in Section 4.1.2. Tus,
the relationship between the empirical and analytical so-
lutions can be a predictive tool for ground settlement around
a cylindrical cavity under undrained conditions.

Figure 18 shows the relationship between the empirical
and analytical solutions resulting from equations (26) and
(36). Te numerical data are v, ∆Uy, and uε. Te approach is
based on the conformal vertical translation at the wall of the
cylindrical cavity to obtain a displacement on both poles of
the centre line. Using equations (27) and (36), the dis-
placement given by the relationship between empirical and
analytical formulas can be expressed as follows:

Uy max � ±1.57uε
R

h
􏼒 􏼓 (1 − 4(2 − v))

2
− 5􏽮 􏽯 xi

2
− 0.03􏼐 􏼑. exp −

xi
2

0.061
􏼨 􏼩

R

h
􏼒 􏼓 + 0.08 − 4(1 − v)

R

h
􏼒 􏼓

2
+ 1􏼨 􏼩􏼨 􏼩. (38)

-0.15

-0.1

-0.05

0

0.05

0.1

-2 -1.5 -1 -0.5 0 210.5 1.5
x (h)

Horizontal displacement
Vertical displacement

U
x/u

ε U
y/u

ε

(a)

-0.15

-0.1

-0.05

0

0.05

0.1

-2 -1.5 -1 -0.5 0 210.5 1.5
x (h)

Horizontal displacement
Vertical displacement

U
x/u

ε U
y/u

ε

(b)

-0.15

-0.1

-0.05

0

0.05

0.1

-2 -1.5 -1 -0.5 0 210.5 1.5
x (h)

Horizontal displacement
Vertical displacement

U
x/u

ε U
y/u

ε

(c)

-0.15

-0.1

-0.05

0

0.05

0.1

-2 -1.5 -1 -0.5 0 210.5 1.5

U
x/u

ε U
y/u

ε

x (h)

Horizontal displacement
Vertical displacement

(d)

Figure 11: Vertical translation induced by uε. (a) uε � 0.009m. (b) uε � 0.25m. (c) uε � 0.07m. (d) uε � 0.56m.
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Hence, the result presented in Figure 19 mathematizes
the relationship between the two proposed approaches. Te
vertical translation could then be defned as the vertical
displacement at the centreline of the cavity. Moreover, the
settlement trough of both solutions is given by the value
∆Uy. Tus, taking into account the variation of the Poisson
ratio, the empirical and analytical solutions present ap-
proximately equal results.

6. Applying theMethod inPracticalEngineering

Te undrained condition is a complex model to apply in
practical engineering. Hence, this study adopted the un-
drained conditions to implement the compression mecha-
nism of a stress model to evaluate ground settlement. In
practice, adjacent high-rise buildings can produce

a surcharge efect on a deep excavation (Guo et al. [61]). Te
planned cavity will be constructed using a tunneling ma-
chine, which requires reserving favourable conditions for the
current excavation project (Guo et al. [62]). At each stage of
excavation, the simulation of tunnel excavation consists of
the following three substeps: removal of soil elements along
a drive length, attachment of the created shell elements that
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Table 3: Synthesis of maximum displacement and conformal
convergence.

N° v Uy max (m) U0 (m)

1 0.00 − 0.036 − 0.06
2 0.25 − 0.03 and − 0.026 − 0.06
3 0.50 − 0.019 − 0.051
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simulate the lining segments, and application of normal
compressive pressure to the cavity face (Guo et al. [63]).
Because of these restrictions, the excavation support system
becomes complex, and the excavation results will inevitably
difer from those of conventional excavations. It solves the
problem of expanding the cylindrical cavity using param-
eters based on the uniaxial stress analysis. It should also help
engineers to predict the weight of the load on the ground
surface before excavation, even though it is variable.

A practical geotechnical problem is analysed in this
study using the present solution. A deformation of the cavity
radius usually describes the ground settlement problem
around a cylindrical cavity. As the empirical prediction
according to the Gaussian distribution curve has yet to be
deeply adopted as a complete prediction tool, the stress
evaluation of the upper layer is analysed to evaluate, with
a high percentage, the ground settlement around

-0.15

-0.05

0

0.05

-0.1

0.1

-1.5 -1 -0.5 1.5
x (h)

-2 0 20.5 1

Horizontal displacement
Vertical displacement
Intercession point

-0.0686U
x/u

ε U
y/u

ε

Figure 16: Superposition of the vertical translation induced by uε.

V
er

tic
al

 tr
an

sla
tio

n

Analytical result
Experimental data

0.2 10.90.80.70.60.50.40.3
R (h)

-0.08

-0.04

0.00

0.04

0.08

0.12

Figure 17: Relationship between the analytical result and the
experimental data.

R (h)

-1

-0.5

0

0.5

1

1.5

2

V
er

tic
al

 tr
an

sla
tio

n

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v = 0.25

v =
 0.

00

v =
 0.

25
v =

 0.
00

v =
 0.

50

v =
 0.5

0

Empirical solution
Analytical solution

Figure 18: Relationship between the empirical method and the
analytical method.

Empirical solution
Analytical solution

-0.05 0 0.05 0.1 0.15 0.2
R (h)

-0.08

-0.078

-0.076

-0.074

-0.072

-0.07

-0.068

D
isp

la
ce

m
en

t v =
 0.

25

v =
 0.

25

v = 0,00

v =
 0.

50 v = 0.50

Figure 19: Relationship between ground settlement and maximum
displacement.

R (h)

-8

-6

-4

-2

0

2

4

V
er

tic
al

 tr
an

sla
tio

n

y

xs0

- 0.50.00.5

Empirical solution
Analytical solution

Figure 20: Practical results given by the relationship between the
empirical and the analytical solution.

Advances in Civil Engineering 17



a cylindrical cavity. In the current engineering, this method
minimises the disturbances related to ground deformation
and provides additional value to the reinforcement of the
foundations around the cavity.

Figure 20 shows the superposition between the empirical
and analytical results. Numerically, the results obtained by
the empirical and analytical prediction show satisfactory
results. For − 0.5 _≺R/h≺ 0.5, the vertical translation induced
by the curve moves horizontally along the centre line of the
cylindrical cavity. It should be noted that, at R/h � 0, the
curves all converge towards the central axis. Tis can be
explained by the fact that internal pressure is almost non-
existent. When the curves cross the central axis
(0≺R/h≺ 0.5), the curves all diverge towards R/h � 0.5.
Tus, in the practical domain, when the load on the ground
surface is mobile, the compressive stresses can be redis-
tributed towards the central axis of the cavity. Te curves
also show close values, indicating that the relationship be-
tween the analytical and empirical solutions can be best
suited to predicting the ground settlement around a cavity.
Tese data will support “piles” to model the expansion when
the cylindrical cavity is shallow. Furthermore, the values
obtained to allow the reduction of the stress rate concerning
the ground weight and the reconstruction of the shear that
can cause the “elongation” and therefore, the rupture of the
cylindrical cavity cross-section.

7. Conclusions

Tis study proposes an approximate solution under un-
drained conditions, based on the relationship between the
empirical and analytical methods for predicting ground
settlement around a cylindrical cavity. A settlement tech-
nique is proposed based on the initial ground radial dis-
placement infuenced by conformal convergence and
vertical translation. Te method considers the excavation
speed as the cause of settlement during the unloading
process. Tus, a boundary condition study is conducted to
estimate the origin of the cavity expansion by proposing
a ground loss mechanism around the cylindrical cavity; then,
a maximum displacement is induced by the vertical trans-
lation when the ground surface is subjected to a static load.

(1) An empirical prediction is frst proposed by evalu-
ating the settlement origin related to the variation of
and the R/h ratio. Te maximum settlement is de-
termined by considering the cavity radius, the depth
h and the ground surface h0. Furthermore, the radial
displacement is obtained using ground compression
and decreasing the ground’s internal pressure.

(2) Ten, an analytical method is proposed by calcu-
lating the defned stresses based on the linear elas-
ticity problem of the ground. An evaluation of the
ground deformation is presented by determining at
the boundary condition the hydrostatic pressure as
the origin of the ground displacement. Using the
Airy stress, shear stress, and compression force at the
boundary condition, the ground fnal displacement

state is determined with values of v (0.00, 0.25, and
0.50) variables. Tese obtained displacements are
used for digitising the contour lines and the vertical
translation to evaluate the ground behaviour at the
cavity wall and the maximum surface displacement,
respectively.

(3) Tese results are converted into code to numerically
evaluate the ground settlement around the cylin-
drical cavity using the MATLAB software. Some
examples of cylindrical cavities are proposed to
justify the mathematical equations. An evaluation is
frst established on the empirical solutions utilising
the input parameters, VL, uε, and Us max. Sub-
sequently, the analytical data were also proposed
based on R/h, uε, and v. Te relationship between the
two methods allowed the determination of the
ground settlement and the maximum surface dis-
placement induced by the cavity unloading process.

(4) A discussion based on the relationship between the
mathematical formulas and the experimental data is
proposed, and the results gave approximately similar
values. Specifcally, the relationship between the
empirical and analytical solutions will be a better
means to predict the ground settlement around
a cylindrical cavity, thus, the load on the ground
surface. In practice, the results could help engineers
evaluate the stresses for reinforcing “support piles”
and the “buoyancy efect” even though the ground
surface load is variable.
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