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Te focus of this study is to forecast the 28-day compressive strength and split tensile strength of concrete with various
percentages of jute and coconut fbres mixed with quarry dust. Te response surface methodology (RSM) and the artifcial
neural networks (ANN) methods were adopted for 3 variable process modelling (coconut fbres of 0% to 2.5%, jute fbres of 0%
to 2.5%, and quarry dust of 0% to 25% by weight of cement). Te RSM Box−Behnken design (BBD) method was adopted to
design the experiments. Test results showed that compressive strength of 34.6 N/mm2 was obtained for concrete with 0% jute,
0% coir, and 12.5% quarry dust. Similarly, the maximum split tensile strength of 3.8 N/mm2 was obtained for concrete with
1.25% jute fbres, 1.25% coconut fbres, and 12.5% quarry dust. ANOVA and Pareto charts were used to assess regression
models for response data. Each progression variable’s statistical signifcance was assessed, and the resulting models were
expressed as second-order polynomial equations. Levenberg−Marquardt (LM) algorithm with feed-forward back propagation
neural network was used for assessing the compressive strength and split tensile strength of concrete. Te statistical data, root
mean square error (RMSE), mean absolute error (MAE), mean absolute and percentage error (MAPE), and determination
coefcient (R2) show that both techniques, ANN and RSM, are efective tools for predicting compressive strength and split
tensile strength. Furthermore, RSM and ANN models have a high correlation with experimental data. However, the response
surface methodology model is more accurate.

1. Introduction

Over many decades, concrete has been the most often used
building material in the world, and its use in the con-
struction sector has steadily increased. Tis situation is
possible due to its strength, toughness, and afordability.
However, its use has been constrained because of its sus-
ceptibility to fragility under stifness, a meager resistance to
cracking, and low fracture strain capacity. To overcome this
fragile behaviour of plain concrete and issues relating to the
shortage of raw materials, fbre-reinforced concrete with

quarry dust has considered an alternative. Concrete with
a higher percentage of recycled aggregate decreases the
compressive strength from 22.62% to 18.56%. Te predicted
results using ANN reveal that it is an efective tool [1]. Tree
variable process modelling may be utilised to forecast
compressive strength utilising response surface methodol-
ogy (RSM) and artifcial neural networks (ANN) [2]. Related
to other models, the RSMmodel’s prediction of compressive
strength using nondestructive testing has high accuracy [3].
Te use of RSM is simpler than any basic formula and ofers
an efective output for predicting the strength of concrete
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proportioning. Moreover, concrete strength properties can
be estimated from established ANN [4]. RSM needs no
calibration, which is a promising tool for strength pre-
diction, while ANNneeds calibration to get the best accuracy
[5]. Mechanical properties of concrete decrease with
a complex percentage substitution of quarry dust, while
abrasion resistance and sorptivity properties increase with
a 30% replacement of quarry dust and metakaolin [6, 7]. Te
fresh concrete properties increase with addition of 0.50% of
jute fbres, and on the other hand, hardened properties
increase with 0.25% of jute fbres [8]. Concrete with 25% of
quarry dust has a 7.9% higher modulus of elasticity, while
100% of sand substitution with quarry dust has 8.6% less
modulus of elasticity [9]. Compressive strength and split
tensile strength of 26.4Mpa and 26.1Mpa, respectively, were
achieved for concrete containing 1.5% bamboo and 2% jute
fbres by weight of cement. SEM analysis exposes that the
breaking of fbres is due to debonding of fbres from the
concrete matrix [10]. Concrete with combined micro and
macro fbres enhances the mechanical properties of concrete
[11]. When glass powder is substituted for cement by 5% and
plastic waste by 10%, the mechanical properties of the
concrete rise [12]. Te compressive strength of concrete
increases by 50% for 20% replacement of quarry dust for
sand and fexural strength, and split tensile strength de-
creases by 25% for 20% replacement when compared with
conventional concrete [13]. Te addition of chopped jute
fbres in M25 concrete of 1.5% by weight of cement increases
the compressive strength by 19.7%, and tensile strength
increases by 30.8% at 28 days of curing. Te workability of
concrete reduces by 1.5% due to the hydrophilic nature of
jute fbre [14]. Te compressive strength of concrete is in-
creased by 84.27%when parafn-coated coconut fbre makes
up 0.5% of the cement weight [15].Te addition of jute fbres
has efectively flled the microcracks in the concrete thereby
reducing the porosity of the concrete and preventing the
propagation of cracks [16]. Steel and polymer fbres increase
the fexural capacity of RC beams, whereas the glass fbres
addition has less infuence on concrete as it increases the
strength only by 5% [17]. Ultimate load and ductility of
concrete containing macro synthetic fbres [18] increase.
Artifcial fbres pose health and environmental risks in
addition to being expensive. Natural fbres are small-
diameter discrete and are dispersed randomly in concrete.
Tey beneft the environment, economy, and conservation
in terms of energy and resources [8, 19]. Te combined
efects of silica fume and steel fbres in concrete have sig-
nifcantly improved the mechanical characteristics though
concurrently lowering the elastic modulus. Test fndings
show that silica fume and sisal fbres may be used to
strengthen concrete, and they also show an improvement in
the material’s mechanical qualities for M30 and M40 con-
crete [20, 21]. Te typical range of optimum dose of Jute
fbres varies from 1% to 2% depending on the length and
diameter of jute fbres [22]. Coconut fbre enhanced the
mechanical performance of concrete by preventing cracks,
similar to synthetic fbres, but decreased the fowability of
concrete [23]. RSM ofers statistically proven prediction
models that may be adjusted to obtain the best process

confgurations. RSM is often benefcial when many factors
impact one or more performance attributes or reactions. It
may also be used to optimise one or more responses to fulfll
a set of requirements. More crucially, RSM allows for ad-
equate experimental interpretation of the nonlinear re-
sponse surfaces of experimental data [24, 25]. RSM has
various benefts for optimization over the one component-
at-a-time strategy, which is time-consuming and does not
account for factor interaction [26]. Design of experiments
(DOE), ideally known as response surface methodology, is
used to explore the impact of self-governing factors on
outcomes withminimum experiments. It is generally utilised
in concrete technology because to its precision in generating
precise results [2, 27–29]. Because of the construction of
a model with strong performance, ANN is increasingly being
used to handle a wide range of civil engineering and material
science challenges. To circumvent the drawbacks of the
empirical approach, an artifcial neural network (ANN) has
been employed in many engineering applications in mod-
elling of nonlinear multivariate interrelationships of the
behaviour of concrete strength and setting time. Te ability
of artifcial neural networks to learn from the display of
sample data sets (patterns), which expresses the system
behaviour, is one of their most important qualities [30]. In
this study, two models namely Box Behnken Design (BBD)
of RSM and Levenberg−Marquardt (NN-LM) algorithm
with feed-forward back propagation neural network was
developed and compared to predict the compressive
strength, split tensile strength of fbre reinforced concrete
having of quarry dust, jute, and coconut fbres. Te co-
efcient of determination (R2), root mean square error
(RMSE), mean square error (MSE), mean absolute error
(MSE), and mean absolute and percentage error (MAPE) of
both models were compared to assess the efciency of each
method. To our knowledge, this is the frst report comparing
RSM and ANN in the prediction of the compressive strength
and split tensile strength of concrete containing jute and
coconut fbres.

2. Materials

In this examination, OPC of grade 53, specifed by IS
12269-2013 [31], was employed. Its initial setting time was
30minutes, and its specifc gravity was 3.2. Fine aggregate
with specifc gravity 2.69 conforming to zone III as per IS
10262 2019 [32] and 20mm coarse aggregate with specifc
gravity 2.81 were used in the mixture. Te quarry dust used
for fractional replacement for sand was collected from
a local area crusher with a specifc gravity of 2.5. Naturally
available untreated jute and coconut fbres having 0.2mm
diameter, as shown in Figure 1, are used to prepare the
concrete.

2.1. Mix Proportion. Te mix proportion utilised in making
concrete specimens is 1 :1.61 : 3.04 at a continual W/C of
0.48. Te replacement of sand by quarry dust was done from
0% to 25%. At the same time, the substitution of jute and
coconut fbres content was made from 0% to 2.5%.
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2.2. Test Methods. Te concrete mix was cast in a cubical
mould of size 150×150 ×150mm for compressive test, and
for splitting tensile strength, a cylindrical mould of di-
ameter 150mm and height 300mm was used. Concrete was
placed into the mould in 3 layers, and each layer was
compacted manually with 25 blows of a tamping rod. Te
concrete samples were detached from moulds after drying
for 24 hrs and kept at room temperature. A total of 45
concrete cube specimens and 45 cylinders were cast for
testing experimentally, with 3 samples tested per mix at
each curing age. Te average of triplicate strength values
was taken as the concrete strength. After twenty-eight days,
the concrete specimens were removed and tested using
a compression testing machine for compressive and split
tensile tests.

3. Mathematical Models

3.1. Response Surface Methodology. Response surface
methodology (RSM) discovers the association between
several illustrative variables and one or more output vari-
ables by analysing the design of experiments. Te DoE aims
to select the most suitable points where the response should
be well examined. Response surface optimization aids in
adjusting the experimental circumstances that yield the best
response [33]. Response surface methodology (RSM) ef-
ciently optimises trials by taking into account both statistical
and mathematical approaches for analysis to compute the
total number of experimental data for better performance
[34, 35]. In circumstances where there are multiple variables,
RSM can be used to investigate the impact of each variable
and their interactions on answers (properties), as well as the
relevance of each variable in the replies or models [36].
Under experimental designs of BBD, Box−Behnken of 3-
factor design was adopted. BBD was adopted to study the
efects of mix factors, including quarry dust, coconut fbres,
and jute fbre on the mechanical characteristics of concrete.
Te independent variables were jute fbre (X1), coconut
fbre (X2), and quarry dust (X3), and the designed responses
were the compressive strength fcs28 and split tensile
strength fSTS28 . Te obtained response is expressed as
shown in equation (1).

y � f X1,X2,X3􏼐 􏼑. (1)

A second-order model was developed, as arrayed in
equation (2), to elucidate the numerous mechanical prop-
erties of concrete and to comprehend the link between the
response function and the combined factors as shown as
follows:

y � k0 + 􏽘 ki xi + 􏽘 ki xi2 + 􏽘 􏽘 kijxixj, (2)

where y� required response variable; k0, ki, kj, kij

� regression coefcients.Te coefcient of determination R2

helps determine the accuracy of the arrived equation. Factors
and levels of variables required are given in Table 1, which is
for the two responses in DOE of RSM autonomous variables.
Te three-factor BBD approach was applied to 15 mixes to
ascertain the efects of jute fbres, coconut fbres, and quarry
dust on the strength qualities of concrete, as shown in
Table 2.

A regression equation (having factors such as linear,
interactive, and quadratic coefcients) was used to fnd the
optimum response. To perform this investigation, 15 trials
were obtained from RSM and their mix composition is
shown in Table 2.

3.2. Artifcial Neural Network. ANN is a computational
framework comprising input layers, hidden layers, and
output layers. Tis prediction method is proven to be quite
useful for the correct forecasting of output variables in
modelling. Te primary advantage of the ANN tool is its
ability to provide precise modelling for nonlinear models
with numerous inputs. Furthermore, ANN tools are widely
used because of their ability to deal with inconsistent and
unreliable data, as well as their fault tolerance and sturdiness
[37, 38]. Tey comprise a large number of basic handling
units which are wired together in a complex communication
network.Tese layers have many dense interconnected units
called neurons. Te communication between neurons is
made with interconnected relations between neurons. To
obtain a single output through equation (3), the neurons are
multiplied with corresponding weights, added together, and
applied to an activation function.

(a) (b)

Figure 1: (a) Coconut fbres; (b) jute fbres.
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Z � f 􏽘
i�0−n

wixi⎛⎝ ⎞⎠ + d (3)

where “Z” is the yield from the neuron, “xi” is the contri-
bution value, “wi” is the linking weights, “d” is the bias value,
and “f” is the initiation function.

In this study, feed-forward propagation of passing the
information from contribution nodes is adopted among feed
forward and backward propagations. Te neural network
used for this study is shown in Figure 2.

3.3. Comparison Parameters. Using various statistical
studies like the coefcient of correlation (R), coefcient of
determination (R2), root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error,
the implications of RSM and ANN models were evaluated
(MAPE) [39]. Te error calculations can be performed using
equations (4)–(6).

RMSE �

���������

􏽐
n

1
(y − x)

2

n

􏽶
􏽴

,
(4)

MAE �
1
n

􏽘

n

1
|y − x|, (5)

MAPE � 􏽘
n

1
|y − x|

∗100. (6)

Here, x is the real data, y is forecast data, and n is the
number of samples.

4. Results and Discussion

4.1. Compressive Strength and Split Tensile Strength. Te
infuence of jute fbres, coconut fbres, and quarry dust
under compression at 28 days was studied which are arrayed
in Figures 3 and 4. Te highest strength under compression
of 31.9N/mm2 was obtained for JCQD11, having 1.25% jute
fbres, 1.25% coconut fbres, and 12.5% quarry dust. Simi-
larly, it is obvious that JCQD07 having 0% jute fbres, 0%
coconut fbres, and 12.5% quarry dust has compressive
strength of 34.9N/mm2. It is evident that adding jute and
coconut fbres has a marginal increment in compressive
strength. Higher percentage addition of jute and coconut
fbres decreases the compressive strength [40]. Due to the
JFRCC’s high porosity and low specifc gravity in com-
parison to reference concrete, a declining trend in com-
pressive strength was seen when jute fbres were added.
Similarly, an extreme split tensile strength of 3.8N/mm2 was
obtained for JCQD11.Te fndings demonstrate that the jute
and coconut fbres help to increase split tensile strength.
Additionally, split tensile strength decreased for concrete
specimens containing more than 0.5% by weight of jute and
coconut fbres due to the uneven distribution of fbre in the
concrete [40].

4.2. RSM Model. Conferring to the BBD, the study was
performed to study the infuence of the variables jute, co-
conut fbres, quarry dust to forecast the compressive
strength (fcs28) and split tensile strength (fSTS28) of
concrete mixes at 28 days. As arrayed in Table 3, experiments
were conducted for compressive strength and split tensile
strength and the responses that were found were articulated
in the equations (7) and (8), and the results are arrayed in
Table 3.

fcs28 � 33.82 − 4.24X1 − 4.66X2 + 0.110X3 + 0.651X1
2

+ 0.175X2
2

− 0.00491X3
2 –0.238X1 ∗X2

− 0.1973X1 ∗X3 + 0.0846X2 ∗X3,
(7)

fSTS28 � 1.388 + 1.940X1 + 1.630X2 + 0.0850X3 − 0.680X1
2

− 0.568X2
2

− 0.00472X3
2 –0.352X1 ∗X2

− 0.000X1 ∗X3 + 0.0080X2 ∗X3,
(8)

where X1, X2, X3 are jute, coconut fbre, and quarry dust,
respectively.

4.2.1. Lack of Fit (p Value) and Pareto Analysis. Te im-
portance of progression factors is aided by the p value. Te
likelihood value of the F test, which should be at a minimum,
is the p value of the model. If the progression variable’s p

values are <0.005 and <0.00, respectively, it can be calculated
as being considerable. Te progression variable is deemed to
be insignifcant if the p value is greater than 0.005. According
to ANOVA Table 4, X1 has a lower p value than X2 andX3,

indicating that jute fbres are an important factor in de-
termining the strength of concrete under compression. Te
Pareto chart in Figure 5 demonstrates that jute fbre is more
signifcant than coconut fbre and quarry dust for com-
pressive strength at 28 days of curing because its value was
greater when compared to the linear (A) and (B&C). Simi-
larly, considering the tensile strength at 28 days from
ANOVA Table 4, the quadratic interaction of X1 and X2
contributes to tensile strength, of which jute fbres were more
substantial and the p value is less than 0.005. Similar ob-
servations can be seen from the Pareto chart shown in

Table 1: Levels of variables.

Variables (%) Minimum (%) Maximum (%)
Jute fbre 0 2.5
Coconut fbre 0 2.5
Quarry dust 0 25
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Figure 6.Te efect of jute fbre was higher than coconut fbre
which is higher than the standard value of 2.57. Because of the
bridging action between the concrete and the fbres, the
tensile strength of the concrete was increased. From the
responses observed, it is concluded that the addition of jute
fbres improves both compressive and tensile strength
compared to coconut fbres.

4.2.2. Surface Plot Analysis and Optimization of Progression
Variables. Figures 7 and 8 show the 3D surface plots to show
the impact of jute fbres, coconut fbres, and quarry dust on
the responses of compressive strength and split tensile
strength. From the fgure, it is learned that extreme com-
pressive strength was obtained for 0.5% of jute and coconut
fbres from 0.5% with 12.5% of quarry dust at 28 days of

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
(Strength)

Figure 2: Neural network diagram.
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Figure 3: Concrete compressive strength with jute fbres, coconut fbres, and quarry dust.
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Figure 4: Concrete split tensile strength with jute fbres, coconut fbres, and quarry dust.
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Table 3: Predicted strengths.

Mix designation Jute fbres
(%) (X1)

Coconut fbres
(%) (X2)

Quarry dust
(%) (X3)

fcs28 (N/mm2) fSTS28 (N/mm2)

JCQD01 0 1.25 0 28.25 2.8
JCQD02 1.25 1.25 12.5 22.7 3.7
JCQD03 1.25 2.5 0 19.7 1.9
JCQD04 1.25 1.25 12.5 22.5 3.8
JCQD05 2.5 2.5 12.5 12.17 1.3
JCQD06 2.5 1.25 25 11.02 1.2
JCQD07 0 0 12.5 34.6 1.3
JCQD08 0 2.5 12.5 25.06 2.5
JCQD09 1.25 0 0 29.39 2.9
JCQD10 1.25 1.25 12.5 31.9 3.8
JCQD11 0 1.25 25 22.5 2.1
JCQD12 1.25 0 25 21.6 2.2
JCQD13 1.25 2.5 25 17.2 1.7
JCQD14 2.5 1.25 0 19.7 1.9
JCQD15 2.5 0 12.5 23.2 2.3

Table 4: Analysis of variance of RSM model.

Source
Compressive strength (fcs28) Split tensile strength (fSTS28)

DF F value p value DF F value p value

Model 9 27.12 0.001 9 8.23 0.016
Linear 3 74.19 0.000 3 3.21 0.121

X1 1 148.62 0.000 1 3.51 0.120
X2 1 61.87 0.001 1 1.48 0.278
X3 1 12.09 0.018 1 4.64 0.084

Square 3 0.92 0.494 3 18.52 0.004
X1

2 1 1.58 0.265 1 29.25 0.003
X2

2 1 0.11 0.750 1 20.41 0.006
X3

2 1 0.90 0.388 1 14.09 0.013
Two way interaction 3 2.98 0.038 3 2.98 0.135

X1 ∗X2 1 8.49 0.653 1 8.49 0.033
X1 ∗X3 1 0.00 0.011 1 0.00 1.000
X2 ∗X3 1 0.44 0.150 1 0.44 0.537

2.57

Pareto Chart of the Standardized Efects
(response is COMPRESSIVE STRENGTH, α = 0.05)
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Figure 5: Pareto chart for compressive strength.

Advances in Civil Engineering 7



2.571

Pareto Chart of the Standardized Efects
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Figure 6: Pareto chart for split tensile strength.
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Figure 7: Surface plots for compressive strength as a function of (a) jute fbre and coconut fbre; (b) jute fbre and quarry dust; (c) coconut
fbre and quarry dust.
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curing, and above 1.25% jute and coconut fbres, the strength
decreased. Although adding jute fbres and coconut fbres
somewhat improved the compressive strength of concrete,
jute fbres had a far more signifcant impact than quarry dust
and coconut fbres after 28 days of curing. Additionally, the
compressive strength has decreased when the weight frac-
tion of jute and coconut fbres exceeds 1.25% due to the
larger volume of fbre content. Te results showed that
a suitable accumulation of jute fbre could efciently fll the
microcracks in concrete, reduce the permeability of the
concrete structure, and increase the tensile strength and
delay the spread of cracks. Te optimized strength under
compression and split tensile strength is shown in Figure 9.
From Figure 9, it can be seen that to attain the highest
compressive strength and split tensile strength at 28 days, the
optimal value of jute fbres, coconut fbres, and quarry dust
were 0.6547%, 0.8081%, and 9.0909%, respectively.

4.3. ANN Model. Compressive strength and split tensile
strength were forecast using ANN feed-forward back
propagation neural network at 28 days of curing. Te model
contains 75% of samples deployed for training, and the rest
25% is used for validation and testing set. Jute fbre, coconut
fbres, and quarry dust are taken as contribution parameters,
compressive strength and split tensile strength are

considered as output layers, and two hidden layers with 10
neurons were selected to make sound ANN models. Te
outcomes of training and cross-validation are presented in
Figure 10, and it reveals a very robust association with
R2 � 0.88336 for the training and R2 � 0.9994 for the au-
thentication, where R is the linear correlation coefcient.
Tis shows that the trained neural network is good and
accurate.

Te competence of the ANN models was determined
using the coefcient of determination value by comparing
actual data with predicted data.

Te anticipated and actual values for compressive
strength and split tensile strength, respectively, were equal,
demonstrating well-ftted data. A positive correlation be-
tween the actual and expected values is shown by the
compressive strength and split tensile strength R values,
which are both more than 0.9. Additionally, the ANN
models that are trained using real data have successfully
predicted the outcomes. Te predicted strength using RSM
and ANN are arrayed in Table 5.

4.4. Validation and Comparison of ANN and RSM Models.
Te performance of developed RSM and ANN models was
estimated by R2, RMSE, MAE, and MAPE, as shown in
Table 6.
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Figure 8: Surface plots for split tensile strength as a function of (a) jute fbre and coconut fbre; (b) jute fbre and quarry dust; (c) coconut
fbre and quarry dust.
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When compared to ANN, RSM showed good accuracy
for estimated R2 for compressive strength and split tensile
strength. In all cases, R2 values are almost 0.9. Tis suggests
that models established by RSM were more operative and
forecast the outcomes more exactly. According to the sta-
tistical analysis, RSM and ANN models have high-quality

simulations due to their capacity for prediction and their
ability to match data efectively. Te RSM yet shows strong
excellence when compared to ANN, as R2, RMSE, MAE, and
MAPE in overall had shown lower values.

Te obtained R2 values of compressive strength and split
tensile strength in RSM are 0.9723 and 0.9368, respectively.
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Figure 9: Response optimization for compressive and split tensile strengths.
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Whereas the R2 values obtained for compressive strength
and split tensile strength in ANN are 0.99994 and 0.88336,
respectively. Te RMSE values obtained for compressive
strength and split tensile strength in RSM and ANN are
0.19735, 0.2768, 0.12505, and 0.49061, respectively.TeMAE
values obtained for compressive strength and split tensile
strength in RSM are ANN are 0.162845, 0.24125, 0.106, and
0.38, respectively. Te MAPE values obtained for com-
pressive strength and split tensile strength are 2.2%, 8.5%,
1.6%, and 9.4%, respectively.

5. Conclusion

RSM and ANN were used in this work to analyse the impact
of adding natural fbres and quarry dust on the compressive
strength and splitting tensile strengths of concrete. Te
following conclusions were drawn from the study:

(i) Fibre content up to 1.25% by weight of cement
increases the split tensile strength due to its binding
nature with the concrete. A higher percentage of
fbre content decreases the compressive strength as
it requires more cement content for proper mixing,
leading to a decrease in strength.

(ii) Quarry dust can be used by itself to enhance
compressive strength by up to 25%; however, it is
not suited to enhance split tensile strength. Te

natural fbre addition greatly increases the split
tensile strength by reducing the cracks at failure.

(iii) Te RSM and ANN models’ outputs, which were
developed using real data, demonstrate that the
models are capable of providing accurate pre-
dictions of concrete properties. Results from com-
paring the two approaches revealed that RSM
models outperform ANN in terms of prediction,
with a determination coefcient of almost 1.

(iv) Te R2 values obtained for compressive strength and
split tensile strength in RSM are 0.9723 and 0.9368,
respectively. At the same time, the R2 values obtained
for compressive strength and split tensile strength in
ANN are 0.99994 and 0.88336, respectively. Te
comparison fndings demonstrate that the RSM
model outperforms the ANN model, with an ex-
cellent correlation coefcient (R2) close to 1.

Data Availability

Te datasets used in this research are available upon request
from the corresponding author.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Table 5: Predicted strength values of concrete using RSM &ANN.

Sample no Jute fbres
(%) (X1)

Coconut fbres
(%) (X2)

Quarry dust
(%) (X3)

Compressive strength
(N/mm2)

Split tensile strength
(N/mm2)

Exp RSM ANN Exp RSM ANN

JCQD01 0 1.25 0 28.25 28.27 28.43 2.8 2.54 2.62
JCQD02 1.25 1.25 12.5 22.7 19.82 20.23 3.7 3.80 2.04
JCQD03 1.25 2.5 0 19.7 18.24 19.12 1.9 2.18 1.98
JCQD04 1.25 1.25 12.5 22.5 19.82 20.22 3.8 3.80 2.03
JCQD05 2.5 2.5 12.5 12.17 7.04 8.13 1.3 0.89 0.88
JCQD06 2.5 1.25 25 11.02 5.70 6.78 1.2 1.46 0.72
JCQD07 0 0 12.5 34.6 34.43 33.44 1.3 1.72 3.42
JCQD08 0 2.5 12.5 25.06 21.23 20.23 2.5 2.49 2.08
JCQD09 1.25 0 0 29.39 29.54 29.45 2.9 2.76 2.88
JCQD10 1.25 1.25 12.5 22.5 19.82 18.98 3.8 3.80 1.88
JCQD11 0 1.25 25 31.9 25.31 26.71 2.1 1.97 2.70
JCQD12 1.25 0 25 21.6 23.05 24.12 2.2 1.93 2.34
JCQD13 1.25 2.5 25 17.2 6.47 8.12 1.7 1.86 0.80
JCQD14 2.5 1.25 0 19.7 20.99 19.19 1.9 2.04 1.91
JCQD15 2.5 0 12.5 23.2 21.73 20.78 2.3 2.31 2.07

Table 6: Validation and comparison of RSM and ANN models.

Parameters RSM (CMP) RSM (STS) ANN (CMP) ANN (STS)
R 2 0.9723 0.9368 0.99994 0.88336
RMSE 0.19735 0.2768 0.12505 0.49061
MAE 0.162845 0.24125 0.106 0.38
MAPE 2.2% 8.5% 1.6% 9.4%
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