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In coastal and port engineering, wind-generated waves have always been a crucial, fundamental, and important topic. As a result,
various methods for estimating wave parameters, including feld measurement and numerical methods, have been proposed over
time. Tis study evaluates the wave height at Sri-Lanka Hambantota Port using soft computing models such as Artifcial Neural
Networks (ANNs) and the M5 model tree (M5MT). In order to overcome its nonstationarity, the primary wave height time series
were divided into subtime series using the wavelet transform. Te collected subtime series were then utilized as input data for
ANN and M5MT in order to determine the wave height. For the sake of the model performance, the daily wind and wave data
from the Acoustic Wave and Current (AWAC) sensor for Hambantota Port in 2020 and Sanmen Bay in 2017 were used in this
study.Te training state utilizes 80% of the available data, while the test state uses 20%.Te RootMean Square Error (RMSE) of the
ANN, M5, WANN, and Wavelet-M5 models in the Hambantota Port for the test stage are 0.12, 0.11, 0.04, and 0.06, respectively.
While in Sanmen Bay, the RMSE of the ANN,M5,WANN, andWavelet-M5models for the test stage are 0.14, 0.16, 0.06, and 0.08,
respectively. According to the fndings of this study, the accuracy of WANN and Wavelet-M5 hybrid models in evaluating wave
height is superior to that of classic ANN andM5MT, and it is recommended that WANN andWavelet-M5 hybrid models be used
to estimate wave height.

1. Introduction

Water waves are the most obvious, almost permanent
phenomena on the surface of any water basin, such as
wetlands, lakes, rivers, reservoirs behind dams, bays, seas,
and oceans. Tey are usually defned as the surface oscil-
lation of the fuid surface [1]. Wave study is the frst step for
any study and activity in order to identify the factors af-
fecting the behavior and conditions in the sea [2]. In coastal
areas, waves play an important role in determining the
geometry and shape of beaches. Te height of the sea waves,

while creating the frst feeling about the occurrence of the
wave, is the most important parameter in all issues raised in
coastal engineering studies. In designing marine structures
such as platforms, breakwaters, and jetties, the main pa-
rameter in determining their various components’ stability
and design is the wave height in the region [3, 4]. When
waves approach coastal areas, they are deformed due to
various phenomena such as shallow, scattering, refraction,
and refection, which are important in various aspects such
as management, protection, and exploitation of the coast,
environment, fsheries, navigation, and construction of
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structures [5–7]. Te study of sea wave’s ofshore and on-
shore structures develops basic knowledge in the feld of
coastal engineering and the physics of the sea and waves. In
coastal areas, determining the pattern of waves and coastal
currents is the most important; features are proposed to
identify the factors afecting the marine environment,
coastal areas, and coastal structures [8]. Te beach’s ge-
ometry, shape, sedimentation, erosion, and many other
physical and dynamic phenomena are directly afected by
waves and currents. Wind waves are the most important
waves observed at sea and have the greatest impact on
human activities in the marine environment; therefore,
when it comes to forecasting waves for engineering pur-
poses, mainly wind waves are considered [9]. Although feld
measurements are the most accurate way to obtain the wave
parameters of any region, the feld measurement method
alone will not be able to respond when determining waves in
a wide area [10]. Today, using numerical models as an ef-
fcient tool for simulation and then studying complex
natural processes open the way for many technical and
engineering issues, including the state of the sea. Soft
computing methods such as model tree (MT), gene ex-
pression programming (GEP), multivariate adaptive re-
gression spline (MARS), adaptive-neuro fuzzy inference
system (ANFIS), and Bayesian Network (BN) have proven
successful applications for modeling various ocean engi-
neering problems [11–16]. In addition, many studies
demonstrated the combination of properties of diferent soft
computing methods with evolutionary algorithms causing
an improvement in the power prediction of phenomena in
solving ocean environment problems [17–21].

Due to the random and irregular nature of the sea,
estimating the height of the waves is associated with
inherent uncertainty. Uncertainty in estimating the wave
height and the consequent forces acting on the structure
causes uncertainty in the design of the members of the
marine structures. Also, the coefcients used to de-
termine the drag and inertia forces are always uncertain.
Given the capabilities of mathematical models with the
help of numerical simulation, using these methods in
predicting wave properties at sea is appropriate. Since the
forecast wave parameters are essential for the design of
coastal structures and for naval operations, diferent
methods such as semiempirical methods such as Coastal
Engineering Manual (CEM) and Sverdruv Munk
Bretschneider (SMB) and numerical models such as
MIKE21, Wavewatch III, and SWAN were used [22, 23].
Soft computing methods such as Artifcial Neural Net-
works (ANNs), fuzzy inference systems, decision trees,
and genetic algorithms are also used.

Tere are two approaches to modeling sea parameters in
general, namely, conceptual (white-box) and systemic
(black-box). White box models are based on governing
mathematical equations and physical parameters of the
phenomenon. Te purpose of these models is to rely on
scientifc research on how the main components of each sea
parameters cycle work to fully understand the mechanism
and how the components work together. Hence, un-
derstanding and interpreting white-box models are more

straightforward than black-box models. In black-box
models, it is difcult to present equations and mathemati-
cal relations in them, and the physical parameters afecting
them cannot be easily estimated. Black-box models estimate
the desired output by receiving input and performing a se-
ries of mathematical operations. Black box models have
parameters and coefcients that are estimated according to
observational input and output data [24]. Terefore, black-
box models depend on input and output data in terms of
quantity and quality of data.

In this study, an attempt was made to develop an
efcient wave evaluation model based on the innovation
hybrid models. Tis study evaluates wave height at Sri
Lanka Hambantota Port and China Sanmen Bay using
ANNs (surrogate of the nonlinear model) and the M5
model tree (M5MT, surrogate of the multivariate linear
regression model). For this purpose, the wind and wave
data were gathered in Hambantota Port, Sri-Lanka 2020
and Sanmen Bay, China 2017. Primary wave height time
series were divided using the wavelet transform to
overcome nonstationarity.

2. Study Area and Data Processing Methods

Sri Lanka’s Hambantota International Port is a deep
water port in the country’s south and directly faces the
North Indian Ocean (Figure 1). After the Port of
Colombo, it is Sri Lanka’s second-largest port. In its plan
for the Hambantota Port, the Sri Lankan government
thought it would deliver commercial benefts and lo-
gistical feasibility. Te dominant wave directions range
from 157.5° to 225°. Tere are approximately 95% of
waves concentrated between the South and Southern
South West (Hs > 2.2 m), and the predominant wave
direction is southward, with about 60% occurrences [25].

Sanmen County is a coastal county in the eastern part
of China’s Zhejiang Province. Tere are approximately
400,000 people living in the county, which has a total
land area of 1,072 km2. Sanmen Bay is a semienclosed
bay, and the easterly direction of the waves is the most
common one in this region (Hs > 1.5 m). [26]. An
Acoustic Wave and Current (AWAC) meter was used to
measure the waves that were used in this study.

Te smoothed wave spectrum is used to fgure out wave
spectral parameters like the zeroth order spectral moment
(m0), the maximum spectral energy density S (fp), and the
mean wave periods (T01 and T02). Te following are some
defnitions of the wave parameters used in the study:

T01 �
m0

m1
,

T02 �

���
m0

m2

􏽲

,

mn � 􏽚
∞

0
f

n
S(f)df; n � 0, 1, 2, · · · ,

(1)

where S(f ) is the spectral energy density at frequency f and
mn is the nth order spectral moment.
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Te JONSWAP spectra formulation was widely advo-
cated for describing wind-generated waves with durations
below 20 seconds equation (3). As a result, the spectral
density of the input JONSWAP spectrum is minimal at low
frequencies (0.03Hz).

E(f) �
αg

2

f
5 exp −

5
4

fp

f
􏼠 􏼡

4
⎡⎣ ⎤⎦c

exp −

f − fp􏼐 􏼑
2

2σ2f2
p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

,
(2)

fp � 22[g2/(U10 F)]1/3, where F is wind fetch length, U10 is
wind speed at 10meter above the water surface level, g is
gravity acceleration, σ is the shape parameter, and c is the
bandwidth parameter.

Te signifcant wave height, Hs, calculated using in this
study, is obtained from equation (4).

HS � 4
���
m0

√
, m0 �

1
t2 − t1

􏽚
t2

t1

η2dt, (3)

t2 –t1 is the time domain and η is the free-surface elevation.
A flter-pass module is utilized to achieve Hs. Using the

discrete Fourier transform, this module may apply a band-
pass flter to the surface elevation at various frequency
ranges and time steps.Tis is done to avoid the generation of
time-series data about surface elevations at a large number of
places.

Hx(X, Y) � 4
��������

mx(X, Y)

􏽱

,

mx(X, Y) � 􏽚
f+

f
􏽚

t2

t1

η(X, Y) cos (2πf · t)dt􏼠 􏼡

2

+ 􏽚
t2

t1

η(X, Y) sin (2πf · t)dt􏼠 􏼡

2
⎡⎣ ⎤⎦

∆T

2
df.

(4)

3. Materials and Methods

Tis study uses ANN andM5MTmodels and their combination
with wavelet transform decomposition. Terefore, a review of
the theoretical foundations of these methods seems necessary.
Te framework of this study is presented in Figure 2.

Normalization of data is the frst stage in designing
a forecast using machine learning. It can facilitate the
training process [27]. Tis data fall between 0 and 1. Nor-
malization data are presented as follows:

Z �
xi − xmin

xmax − xmin
, (5)

where Z is the normalized data value, xi is the data before
normalization, and xmin and xmax are the prenormalization
minimum and maximum data values, respectively.

3.1. Artifcial Neural Network (ANN). Each ANN model is
typically made up of three layers (Figure 3).Te input layer is
responsible for introducing network input parameters, the
output layer is responsible for network output parameters,
and the hidden layer (layers between the input and output
layers) is responsible for information processing [28–31].

Te main control parameters of artifcial neural network
methods are between neurons, which are called connection
resistors called weights. Each neuron receives the weighted
outputs (Wj,i, xi) of the neurons of the previous layer, and
together they produce a net input to the neuron j (netj)
according to the following equation:

netj � 􏽘 Wj.ixi + bj. (6)

Te multilayer perceptron (MLP) neural networks are
a type of a progressive neural network in which each neuron
in one layer is connected to the neurons in the next layer.

MLP learning, like multilayer networks, employs a variety of
learning algorithms, the most common of which is the error
propagation algorithm. An algorithm was used in the cur-
rent study. Matlab tool was used to simulate ANN structures
and determines the best structure.

Te ANN architecture is critical to the network’s
understanding of variable relationships. Te problem
always dictates a portion of the neural network archi-
tecture [33]. According to the problem, the number of
network inputs equals eight, and the number of output
layer neurons equals one. To obtain this, various ar-
chitectures were created, trained, and tested. Finally, in
a two-layer network with fve neurons in the frst layer
(hidden layer) and one neuron in the second layer
(output layer), the transfer function Tangent Sigmoid for
the frst layer is introduced as the best network archi-
tecture in this prediction. Te network architecture and
the linear transfer functions (purelin) and (tansig) for the
second layer are shown in Figure 3.

3.2. M5 Model Tree. Te decision tree in data mining is
a model used to represent classifers and regressions. Tis
tree consists of a number of nodes and branches [34]. Te
leaves represent the classes in the decision tree that performs
the classifcation operation. In each of the other nodes
(nonleaf nodes), a decision is made according to one or more
specifc attributes.Te decision tree is a popular data mining
technique because of its simplicity and comprehensibility; in
other words, the decision tree alone describes everything and
does not need an expert to interpret the output [35]. In fact,
it is a graphical method, and because of its interpretation, it
may be easier to classify than other techniques. Obviously,
having too many nodes in a tree can make it difcult to
graphically display the decision tree.Te frst step in creating
a tree model is to use a branch criterion performed by one of
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the predictor variables. Te branching criterion for the M5
algorithm is based on the standard deviation function of the
values of each class obtained in each node. Tis method is
the basis of classifcation methods called entropy [36].
Entropy can be interpreted as a measure of the turbulence of
a system.Te branch criterion expresses the amount of error
in that node, and the model calculates the minimum ex-
pected error as a result of testing each attribute in that node.
Model error is generally measured by measuring the ac-
curacy of predicting target values of unseen items [37]. Te
equation for calculating the standard deviation reduction
(SDR) is as follows:

SDR � Sd Ti( 􏼁 − 􏽘
N

i�1

│Ti│
│T│

Sd Ti( 􏼁, (7)

where T is a set of samples that enter each node, Sd indicates
standard deviation, andN displays the data number. Because
of the branching process, the data in the child nodes have
a lower standard deviation than the data in the mother node
and are thus purer. M5 chooses the trait that maximizes the
expected reduction after maximizing all possible branches.

Te formed tree in the M5MTneeds to have its branches
trimmed so that the overftting issue can be resolved. Tis is
accomplished by switching out a subtree for a leaf in the tree.
Terefore, the second step in the process of designing a tree
model is to perform a pruning operation on the mature tree
and then replace the subtrees with linear regression func-
tions. Tis technique for the generation of tree models

divides the space of input parameters into areas that contain
smaller subspaces and then ft a linear regression model in
each of those areas.

3.3. Wavelet Transform. Wavelet transform is one of the
efcient mathematical transformations in the feld of
signal processing. Mathematical transformations are used
to obtain additional information from a signal that is not
available from the signal itself. Wavelet analysis like
Fourier analysis, which is one of the most popular
mathematical transformations, deals with the expansion
of functions, but this expansion is based on wavelets
[38, 39]. Te wavelet is a characteristic function of a hy-
pothesis with a mean of zero and, unlike trigonometric
polynomials, is studied locally in space. In this way,
a closer relationship between some functions and their
coefcients is possible, and more numerical stability is
provided in the reconstruction and calculations [2]. Any
application that is based on fast Fourier transformation
can be formulated using wavelets to obtain more spatial or
temporal information [40]. A wavelet function is a func-
tion that has two important properties, namely, fuctu-
ating and short-lived. In other words, ψ (x) is a wavelet
function if and only if its Fourier transform ψ (ω) satisfes
the following condition:

􏽚
+∞

−∞

│ψ(ω)│

│ω│
2 dω< +∞. (8)
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Figure 1: Study area. (a and b) Hambantota Port, Sri Lanka; (c and d) Sanmen Bay, China.
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Tis condition is known as the wavelet acceptance
condition ψ (x). Te previous relation can be considered
equivalent to the following formula that must be satisfed:

ψ(0) � 􏽚
+∞

−∞
ψ(x)dx � 0. (9)

Tis property of a function with a mean of zero is not
very restrictive, and many functions can be called wavelet
functions based on it. ψ (x) is a mother wavelet function in

which the functions used in the analysis are scaled and
shifted along with the analyzed signal by two mathematical
operations of shifting and scaling. Finally, the wavelet co-
efcients at any point in the signal (b) and for any value on
the scale (a) can be calculated by the following equation:

ψa.b(x) �
1
��
a

√ ψ
x − b

a
􏼠 􏼡. (10)

Wind and Wave
Field Data 

ANN M5 Wavelet
Transform

WANN Wavelet-M5

Train Test Train Test

Train Test Train Test

Figure 2: Data analysis framework.
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Figure 3: ANN structure schemes.
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Te operation of scaling, as a mathematical operator,
expands or compresses the signal for the assumed function
f(t); if (s< 1), the expanded state is f(st), and if (s> 1), the
compressed state is the function f(t). As shown in equation
(3), in the defnition of the wavelet transform, the term of
scale (a) is in the denominator, and therefore, if it is (a< 1),

the signal is compressed, and if it is (a> 1), the signal is
expanded. Also, in the previous equation, parameter (b) is
modeled as a function of delay or precedence [41]. Finally,
the continuous wavelet transform (CWT) can be written as
follows:

CWT(a.b) � Wf(a.b) �
1
��
a

√ 􏽚
+∞

−∞
f(x)ψ

x − b

a
􏼠 􏼡dx � 􏽚

+∞

−∞
f(x)ψa.b(x)dx. (11)

3.4. Hybrid Wavelet-Artifcial Neural Network Model
(WANN). Te WANN model has a structure that is com-
posed of three layers.Te frst layer of the network comprises
wavelet neurons, and their input is a subseries obtained by
applying a wavelet transform to a time series of wave height
evaluations. In order to determine the weight coefcients of
wind speed at the height of 10meters in the network
structure, the WANN model uses the neural network to
perform the necessary calculations [42]. Te time series of
the wave height assessment is initially segmented into
subseries using a variety of scales according to the structure
of this model. For instance, time series can be segmented
into one long-term scale and several short-term scales (in
order to monitor transient properties and fuctuations).

3.5. Hybrid Model Wavelet-M5. Te Wavelet-M5 hybrid
model that has been proposed has a total of four stages [40].
In the frst step, information pertinent to the study area’s
wave height evaluation is compiled from the data collected
[43]. Te preprocessing of data is the second step and is
necessary because there is a possibility that the estimated
height of the waves will change depending on the spatial and
temporal distributions of the data. Efective preprocessing
has the potential to make data-driven methods more pro-
ductive. One of the potential approaches to preprocessing
the data is the use of wavelet analysis. Clustering the data is
done in the third step of the process, not only so that the data
can be organized into similar groups but also so that the
structure of the model can be optimized. Clustering the data
serves the following two purposes: frst, it helps organize the
collected information into meaningful categories; second, it
enables the third step of the process, which is to optimize the
structure of the model. When determining the nature of the
connection between independent and dependent variables,
we use the M5MT, which is an application of the tree
classifcation method. Te repetitive patterns that are
present in the data are identifed and extracted during the
fnal stage of the model that has been proposed. Tis is done
in order to fnally provide tree regression models for each of
the subgroups [8, 44].

4. Results and Discussion

Tewave characteristics at any given time are determined by
the current wind speed and previous wind speeds. As a re-
sult, the height of the waves may be afected by the wind

speed 10 hours earlier. Te following equation is used to
simulate and estimate the height of waves in Hambantota
Port.

Hs � f Ut, Ut−1, Ut−2, Ut−3, Ut−4, Ut−5, Ut−6, Ut−7( 􏼁, (12)

where t is the time in hour, U is wind speed at 10meter above
the sea level in the Buoy location, and Hs is the observed
signifcant wave height in the Buoy location. In order to
evaluate and develop the models, wind data and Acoustic
Waves and Current (AWAC) statistics of the Hambantota
Port, in 2020 have been used. For this purpose, 80% of the
data has been used to train soft computational models, and
the rest of the data have been used to evaluate and validate
the performance of trained models.

To evaluate the performance of models, statistical
measures are utilized. For verifcation and quantitative
evaluation of the performance of the presented models,
statistical indicators such as Nash–Sutclife Model Efciency
Coefcient (NSE), Mean Average Error (MAE), Root Mean
Square Error (RMSE), and correlation coefcient (R) have
been used. In the mentioned relations of N number of
observational data, Xi and Yi indicate observational and
predicted parameter, respectively. X and Y are average
observational and predicted values, respectively. Te per-
formance of models was evaluated using the error indices.

NSE � 1 −
􏽐

N
i�1 Xi − Yi( 􏼁

2

􏽐
N
i�1 Yi − Y( 􏼁

2 ,

MAE �
1
N

􏽘

N

i�1
Xi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RMSE �

��������������

1
N

􏽘

N

i�1
Xi − Yi( 􏼁

2

􏽶
􏽴

,

R �
􏽐 Xi − X( 􏼁 Yi − Y( 􏼁

��������������������

􏽐 Xi − X( 􏼁
2

􏽐 Yi − Y( 􏼁
2

􏽱 .

(13)

4.1. Development of ANN Model. A simple perceptron net-
work with sigmoid transfer function was used to develop the
model of artifcial neural networks. Determining and
selecting the optimal middle layers and the number of
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neurons in this layer in the ANN model have always been
a contentious issue. However, research has shown that the
use of a middle layer can be useful for modeling complex and
nonlinear problems. Te middle layer was obtained to be 18
through trial and error. It is important to note that a low
number of training repetitions can result in incomplete

training, whereas a high number of repetitions can result in
network retention or disruption during the training phase.
As a result, the optimal number of repetitions should be
considered so that the model’s quality is acceptable for both
training and testing. According to previous research, this is
between 150 and 200 [40]. As a result, an ANN model with
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Figure 4: Times series of test and train normalized signifcant wave height and the corresponding scatter diagram by the classic ANNmodel
(a–c) in the Hambantota Port (2020) and (d–f) in the Sanmen Bay (2017).

Table 1: Results of diferent modeling for the Hambantota Port at daily scales.

Input Output Case study Stage Model
Efciency criteria

P-value
NSE MAE RMSE R

Ut Hst

Hambantota Port Train

ANN

0.74 0.24 0.06 0.37 0.017
Test 0.66 0.27 0.12 0.34 0.021

Sanmen Bay Train 0.70 0.26 0.08 0.34 0.024
Test 0.63 0.31 0.14 0.30 0.037

Hambantota Port Train

WANN

0.93 0.18 0.01 0.43 <0.001
Test 0.90 0.21 0.04 0.40 <0.001

Sanmen Bay Train 0.91 0.20 0.03 0.42 <0.001
Test 0.87 0.22 0.06 0.38 0.001

Hambantota Port Train

M5

0.72 0.23 0.11 0.39 0.011
Test 0.64 0.28 0.13 0.36 0.033

Sanmen Bay Train 0.69 0.26 0.07 0.35 0.021
Test 0.60 0.30 0.16 0.30 0.051

Hambantota Port Train

Wavelet-M5

0.94 0.17 0.03 0.46 <0.001
Test 0.89 0.20 0.06 0.43 0.002

Sanmen Bay Train 0.88 0.18 0.04 0.42 <0.001
Test 0.84 0.22 0.08 0.38 0.002
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an optimal arrangement of 8×17×1 was obtained to esti-
mate wave height. To estimate the number of neurons in the
hidden layer, Nielson’s relationship is defned as follows:

N
H ≤ 2N

I
+ 1, (17)

where NH is the number of neurons in the hidden layer and
NI is the number of input parameters.

In the Hambantota Port, the straightforward ANN
model did not perform particularly well when attempting to
predict the signifcant wave height. It is possible that the
inability of the simple ANNmodel to deal with the instability
of the input time series is the single most important factor
contributing to this result. Meanwhile, in the Sanmen Bay as
well as Hambantota Port, the ANN model’s performance
was not desirable. Figure 4 presents the fndings of a com-
parison between the signifcant wave heights that were
observed and those that were simulated using ANN for the
train and test states. Te scatter plot for the observed and
simulated results in the train and test states is depicted in
Figures 4(c) and 4(f ) for Hambantota Port and Sanmen Bay,
respectively. Te values for the efciency criteria are pre-
sented in Table 1, which compares the train state to the test
state. Te traditional ANN model did not perform very well
in terms of predicting signifcant wave height in both case
studies.

4.2. Development Wavelet-Neural Network Model (WANN).
In this study, the outcomes of the WANN model and the
ANN model were compared with one another. Decom-
posing signifcant wave height data into subseries using
a wavelet neural network (WANN)model is a technique that
can be used to improve the accuracy of ANN models. In
a manner analogous to that of ANN modeling, the WANN
models were created by applying various ANN architectures
to various input combinations. Te results of diferent de-
composition levels for an input are listed in Table 1, along
with the best performance indices. To obtain the best
possible outcomes, various levels of decomposition, ranging
from level 2 to level 5, were scrutinized. Applying the wavelet
transform should result in an increase in the accuracy of the
model in comparison to the traditional ANN model and
should also result in an improvement in the model’s ef-
ciency, as shown in Table 1. A comparison of the simulated
and observed time series of the signifcant wave height for
the test and train states is presented in Figure 5, which is
based on the WANN model. Figures 5(c) and 5(f ) represent
a scatter plot of observed and simulated results in the train
and test states in the HambantotaPort and Sanmen Bay,
respectively. As can be seen, the WANNmodel outperforms
the traditional ANN model in terms of performance in the
both case studies. As a result, the WANN hybrid model is
signifcantly more appropriate for use in the investigation of
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the process of wave height. It is essential to utilize wavelet
transformation in order to boost the quantity of data that are
input. Although the model improved the accuracy of pre-
diction, in addition, the number of calculations increased
signifcantly, which increased the amount of time required to
perform the calculations.

4.3. Development M5 Model Tree. It is possible to partition
a difcult modeling issue into a number of manageable
subtasks, and the solution is to combine the answers to all of
these problems. In order to obtain an estimate of the height
of the waves in Hambantota Port, the tree structure depicted
in Figure 6 was obtained through the utilization of the
M5MT. In the M5MT, regression relations in the fnal leaves
are used to estimate the wave height. Tis is done so that the
target parameter can be estimated based on the input var-
iables that have been introduced to the model. It can be seen
in the tree structure that the M5MTofers up for inspection.
At the bottom of the tree, the fnal leaf, which contains
ffteen rectangles, is obtained. As a result, ffteen regression
relationships are presented in order to estimate the height of
the waves in Hambantota Port. Moving from the root node
at the top of the tree to the fnal leaves at the bottom of the
tree is sufcient, according to the M5MT, in order to fulfll

the requirements of each rule. Te numbers are displayed on
the various branches, each representing a boundary between
the various relationships shown. In order to categorize
models that are nonlinear by their very nature, the M5MT
divides the nonlinear model into classes that are capable of
being modeled by a straightforward linear regression. Ta-
ble 1 presents the fndings of the M5MT analysis of the
efciency of tree performance. Figure 7 is a comparison of
simulated and observed time series for the signifcant wave
height for the test and train states. Tis comparison is based
on the M5MT. Figures 7(c) and 7(f) illustrate a scatter plot
comparing the observed and simulated results obtained in
the train and test states in the Hambantota Port and Sanmen
Bay, respectively. Te results are summarized in Table 1, and
they demonstrate that the performance of the M5MT is
comparable to that of a traditional ANN model. Te M5MT
did not perform particularly well due to the stochastic nature
of the sea state process. Tis was similar to the problem the
traditional ANN model had.

4.4. Development Wavelet M5 Model Tree (Wavelet-M5).
Wavelet decomposition was used to transform the wave
height time series into subsignals to manage the involved
trend in the main series, which is analogous to the WANN
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Figure 8: Times series of test and train normalized signifcant wave height and the corresponding scatter diagram by the wavelet- M5model
(a–c) in the Hambantota Port (2020) and (d–f) in the Sanmen Bay (2017).
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model. After that, M5MT was constructed with the inputs
from each of the subsignals. Table 1 contains the detailed
fndings regarding the Wavelet-M5 performance regarding
its efectiveness. In Figure 8, a comparison of simulated and
observed time series for signifcant wave height is presented
for the test and train states based on the wavelet-M5 model.
Tis comparison is made for both of these states when they
were in the train state. A scatter plot of the observed and
simulated results in the train and test states in the Ham-
bantota Port and Sanmen Bay is depicted in Figures 8(c) and
8(f), respectively. As seen in Table 1, the application of
wavelet transform improved both the model’s accuracy and
overall efciency, which occurred as a direct consequence of
the unfavorable results produced by the M5MT. As a result,
the Wavelet-M5 hybrid model has a performance that is
signifcantly superior to that of the M5 model in both case
studies.Te fact that the M5MTdoes not perform any sort of
data preprocessing is one of the most straightforward
conclusions that can be drawn from the table. As a result, the
M5NT on its own cannot be considered a tool for
processing data.

4.5.Comparisonof theModels. Te results of theWANN and
wavelet- M5models have less scatter compared to the results
of other models, and the data are closer to the optimal line.
Tis can be seen in the scatter plots, which are shown in
Figures 4, 5, 7, and 8. While the results of the traditional
ANN model and the M5MT are signifcantly scattered from
the optimal line, the results of the M5MT are more con-
sistent. Nevertheless, the results of the comparison indicate
that hybrid models are preferable to the straightforward
computational model in terms of the desired outcomes. As
a result, in the Hambantota Port, the NSE values for ANN
and M5MTare 0.74 and 0.72, respectively, for the train state
and 0.66 and 0.64, respectively, for the test state. On the
other hand, it was discovered that the WANN and wavelet-
M5 models are more accurate than the ANN and M5MT. As
a result, the NSE for the WANN and wavelet- M5 models is
0.93 and 0.94 for the train state, and it is 0.90 and 0.89 for the
test state, respectively.

In the Sanmen Bay, the NSE values for ANN and M5MT
are 0.70 and 0.69, respectively, for the train state and 0.63
and 0.60, respectively, for the test state. On the other hand, it
was discovered that the WANN and wavelet-M5 models are
more accurate than the ANN and M5MT. As a result, the
NSE for the WANN and wavelet-M5 models is 0.91 and 0.84

for the train state, and it is 0.87 and 0.84 for the test state,
respectively. As a result, the performance of the proposed
hybrid model is desirable in both case studies, and it is
comparable to the quality of the WANN hybrid model,
which is known as the model that is considered to be the
optimal model.

According to Table 2, hybrid models’ performance is
better compared to simple models’ performance. As a result,
the performance of the hybrid wavelet- M5 model is im-
proved by 37 percent compared to the M5MTperformance.
In addition, the WANN demonstrated a performance that
was approximately 41% superior to that of the traditional
ANN model.

According to Table 2, hybrid models’ performance is
better compared to simple models’ performance. As a result,
the performance of the hybrid wavelet-M5 model is im-
proved by 37 and 33 percent compared to the M5MT
performance in Hambantota Port and Sanmen Bay, re-
spectively. Furthermore, in Hambantota Port and Sanmen
Bay, theWANNperformed approximately 41 and 38 percent
better than the classic ANN model, respectively.

5. Conclusion

Machine learning is used in a variety of sciences, including
coastal engineering and management. Surveying the wave’s
height nearshore and ports is critical for achieving sus-
tainable development. Te performance of soft computing
models, including the classic ANN andM5MTversus hybrid
models of WANN and Wavelet-M5 models is evaluated in
the Hambantota Port, Sri Lanka, and Sanmen Bay, China. In
this study, the wind and wave daily data from the AWAC
sensor for Hambantota Port in 2020 and Sanmen Bay 2017
were used. Statistical indicators and scatter plots were used
to compare the performance of these models. Wave eval-
uation was used to examine the characteristics of each
model. Approximately 80% of the data was used to train and
evaluate soft computational models, with the remainder
used to validate how well the models performed after
training in both case studies. Te results show that hybrid
methods incorporating wavelet decomposition improve
simulation accuracy. Furthermore, the obtained results in
both case studies demonstrated that the wavelet-M5 and
WANN models outperformed the individual ANN and M5
models. Meanwhile, in the ANN method, problem in-
formation and knowledge are stored in a large set of co-
efcients and weights of connections between neurons,

Table 2: Comparison of the hybrid models with ANN and M5MT (according to efciency criteria average).

Model Case study Train (%) Test (%)

WANN vs. ANN Hambantota Port 39 41
Sanmen Bay 36 38

Wavelet-M5 vs. M5 Hambantota Port 36 37
Sanmen Bay 30 33

WANN vs. M5 Hambantota Port 35 37
Sanmen Bay 32 35

Wavelet-M5 vs. ANN Hambantota Port 33 34
Sanmen Bay 30 32
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making it difcult to determine the relationship between
input variables and the target parameter. Because the values
of the statistical indicators of the models are so similar, it is
suggested that the WANN and Wavelet-M5 hybrid models
should be used to evaluate the wave height in the study area.

When the model is presented with more than two-time
series inputs and when wavelet transformations are per-
formed, the number of inputs signifcantly increases, which
is regarded as a limitation. It should also be noted that this
results in an increased number of inputs. Tis approach
relies on data, which is a limitation. If feld data are not
available, we need simulation results to further realize the
wave characteristic.

Data Availability

Te data supporting the fndings of this study are available
upon request.
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