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Tis study proposes a new constitutive model to describe the smooth transition from an elastic to a plastic response in sands under
monotonic shearing. Te model modifes the conventional Mohr–Coulomb model by considering the concept of a bounding
surface and critical state soil mechanics. Te friction angle consists of the critical state friction angle and a portion of the dilatancy
angle, which is determined from the distance to the critical state line. Incorporating the bounding surface and the dilatancy angle
into constitutive relationships for Toyoura sand produces numerical simulation results that have good agreement with the
experimental results.

1. Introduction

Te Mohr–Coulomb (M-C) model, with the accompanying
nonassociated fow rule, is one of the most widely used
constitutive models for describing the behavior of pressure-
sensitive frictional materials, such as sands. In a conven-
tional soil M-C model, the friction and dilatancy angles (ϕb
and ϕd, respectively) are generally assumed to be constants
during shearing. However, keeping them constant during
the entire shearing process violates a fundamental and
widely accepted principle of critical state soil mechanics that
the density and stress states of sand eventually stabilize at the
critical state. Accordingly, the conventional M-C model
sufers from several limitations, such as an inability to de-
scribe the peak behavior of dilative sands under drained
conditions and incorrectly simulating undrained stress-
strain responses in sands.

Recently, geotechnical construction projects have been
related to ground reinforcement with untraditional mate-
rials (i.e., glass fber) [1, 2] or the geotechnical structures (i.e.,
piles) subjected to the cyclic loading conditions [3, 4]. To
describe these situations more realistically, the more com-
plex and rigorous soil constitutive model is required. Ac-
cordingly, Bai et al. [5] and Bai et al. [6] proposed
constitutive models based on soil particle rearrangement

within the framework of the granular thermodynamics to
describe the thermomechanical responses of ground.

On the other hand, a critical state-based, refned version
of the M-C model for sands was proposed by Woo et al. [7].
Tis study improves their critical state-based
Mohr–Coulomb (CSMC) model by leveraging the concept
of bounding surface plasticity. In the study byWoo et al. [7],
the dilatancy angle of sand was proposed as a function of the
state parameter ψc [8], with reference to the critical state
theory [9] and careful observation of dilatancy [10]. By
following the concept proposed by Wood et al. [11], Woo
et al. [7] also decomposed the total friction angle into
fractions of the critical state friction angle ϕc, which is
a material constant that depends on the intrinsic properties
of sand, and the dilatancy angle, which is a function of ψc.

Te CSMC model [7] can simulate sand mechanical
responses that conform to critical state soil mechanics, such
as convergence to the critical state, as well as describe the
peak behavior in dilative sands. However, the model exhibits
piecewise continuous stress-strain responses (e.g., the kink
at the peak under drained shearing for dilative sands) and
overestimates the stifness of sands at early loading stages.
Tese shortcomings are primarily attributed to the use of
a yield surface, which sharply distinguishes between elastic
and plastic regions in a stress space. Bounding surface
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models have successfully described the smooth (and more
realistic) stress-strain relationships in soil by applying a tiny
yield surface [12–16] or one without a yield surface [17–20]
inside the bounding surface that corresponds to the failure
surface in the stress space. Accordingly, this study proposed
a bounding surface critical state-based Mohr–Coulomb
(BSCSMC) model for sands to simulate a smooth transition
from an elastic to a plastic response while retaining the
advantages of the CSMC model.

2. Model Formulation

2.1.Mathematical Expression of Critical State (Steady State) of
Sand. Te critical state [9] describes the condition in
a saturated soil after prolonged shearing, and it is mathe-
matically expressed as follows [21]:

zp
′

zt
� 0,

zq

zt
� 0,

zV

zt
� 0,

zεq

zt
≠ 0,

(1)

where t is the time; p′ is the mean efective stress;
(�σkk
′/3), q(� (3J2)

(1/2)) is the von Mises stress, where J2 is
the second invariant of a deviatoric stress sij � (σij

′ − p′δij);
V is the volume; and εq is the shear strain. According to
equation (1), V, q, and p′ are the constants at the critical
state; therefore, they can be used for mathematically
quantifying the critical state.

In this study, the projection of the critical state on the
stress space (i.e., p′-q plane) is defned as the critical state
surface (CSS), which have been generally assumed to be
a linear function in the p′-q plane:

q � Mc(θ)p
′
, (2)

where Mc is the critical state stress ratio (�q/p′) that is
a function of the Lode’s angle θ, which represents a devia-
toric loading direction. In this study, Lode’s angle θ is the
defned as
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2
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where J3 is the determinant of deviatoric stress. In equation
(3), θ � 30° and −30° under triaxial compression and ex-
tension conditions, respectively.

In the plane of volume (or void ratio e) and mean ef-
fective stress p′, the locus of the critical state is termed as the
critical state line (CSL). Li [22] suggested a mathematical
expression for the CSL of sands based on the triaxial ex-
perimental data from Verdugo and Ishihara [23] as follows:

ec � Γc(θ) − λ
p′

pa

􏼠 􏼡

ξ

, (4)

where ec is the critical state void ratio, Γc is ec at p′� 0, pa is
a reference pressure (≈100 kPa), and λ and ξ are the positive
material constants. Yoshimine et al. [24] reported that CSL
depends on the loading directions. To refect this de-
pendency, this model assumes the intercept Γc of CSL as
a function of Lode’s angle θ:

Γc(θ) �
Γcc + Γce

2
􏼒 􏼓 +

Γcc − Γce

2
􏼒 􏼓 sin θ, (5)

where Γcc and Γce are Γc under triaxial compression and
extension conditions, respectively.

Te critical state is a good reference state for the des-
tination of mechanical responses of soil upon shearing; to
quantify how far the current state of sand locates to the
critical state, state parameters [8, 10, 25] have been proposed,
as reviewed by Lashkari [25]. To defne the current e-p′ state
with respect to the critical state, this study adopted the state
parameter ψc proposed by Been and Jeferies [8], which is
obtained by subtracting the critical state void ratio ec from
the current void ratio e.

ψc � e − ec. (6)

2.2. Friction Angles as a Function of the Dilatancy Angle.
Teoretical and experimental studies [10, 26, 27] have
suggested that the dilatancy angle is not constant, rather, it
changes during shearing. Accordingly, Woo et al. [7] pro-
posed a mathematical expression for dilatancy angle ϕd as

ϕd � −d0ψc, (7)

where d0 is a positive material constant. Te dilatancy angle
ϕd obtained from equation (7) is positive for dilative sand
(ψc< 0) and negative for contractive sand (ψc> 0). At the
critical state (ψc � 0), the dilatancy angle ϕd becomes zero
according to equation (7).

In the present model, to simulate the peak in the stress-
strain response of dense (or dilative) sands, the friction angle
ϕb is defned as a function of the state parameter based on
Bolton’s theory [10]:

ϕb � ϕc − 0.8d0ψc, (8)

where ϕc is the critical state friction angle. For dense (or
dilative) sand (ψc< 0), eq. (8) yields ϕb>ϕc, which allows the
proposed model to describe peak behavior. At the critical
state (ψc � 0 and ϕd � 0), ϕb is identical to ϕc, as given by
equation (8).

2.3. Elastic Moduli. In the proposed model, the elastic re-
sponse of sands is described by the tangential shear and bulk
moduli. Herein, following Richart et al. [28], the maximum
(or small strain) shear modulus G0 is a function of e and p′:
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G0 � Cg

(2.97 − e)
2

1 + e

����
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′
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􏽱

, (9)

where Cg is a positive material constant. To model the
nonlinear elasticity of sand, previous studies [13, 14, 29, 30]
suggested using the degradation function T to compute the
tangential shear modulus as G�G0/T. For monotonic
shearing, Papadimitriou and Bouckovalas [30] defned T as

T � 1 + 2
1
α

− 1􏼒 􏼓min

�����������������
(1/2) r − ri( 􏼁 : r − ri( 􏼁

􏽱
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′( 􏼁ctv

, 1.0⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(10)

where α is a material constant between zero to one, pi
′ is the

initial p′, G0i is the initial G0, and ctv is the volumetric
threshold strain. Herein, the tangential bulk modulus K is
computed from the tangential shear modulus G and Pois-
son’s ratio ] based on elasticity theory as follows:

K �
2(1 + ])

3(1 − 2])
G. (11)

Te main limitation of equations (9) to (11) in the
construction of elastic moduli is that they are purely em-
pirical and based on the hypoelastic formulation; thus, the
elastic pair used in this study cannot guarantee the con-
servation of energy in closed loop stress strain paths, as
investigated by Einav et al. [31] and Lashkari and
Golchin [32].

2.4. Bounding Surface, Mapping Rule, and Hardening Rule.
Te present model uses the roundedM-C failure surface [33]
as its bounding surface:

f �
��
J2

􏽰
Kf(θ) − p

′ sinϕb

� 0,
(12)

whereKf is a function of Lode’s angle θ, whichmakes corners
of the bounding surface smooth. Following equation (3), at
the corners of the M-C failure surface, Lode’s angle θ is equal
to 30° and −30° under triaxial compression and extension
conditions, respectively. Abbo [33] used the limit Lode’s
angle θT (of which the value is closed to θ at the corner of the
M-C failure surface) to build a smoothed M-C failure
surface. When the absolute value of θ is less than the limit
Lode’s angle θT, the function Kf is defned by

Kf � cos θ −
1
�
3

√ sinϕ sin θ. (13)

If |θ|> θT (near the corners of the M-C failure surface),
the function Kf has the following form:

Kf � A − B sin 3θ, (14)

where functions A and B are defned by
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1
3
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1
3

�
3

√ cos θT tan 3θT − 3 tan θT( 􏼁􏼢 􏼣sign(θ) sinφ, (15)

B �

�
3

√

9
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cos 3θT

sinϕ +
1
3

sin θT

cos 3θT

sign(θ). (16)

Equations (12)–(16) are combined to realize the M-C
failure surface with smooth corners, which is used as
a bounding surface in this study. Furthermore, the limit
Lode angle θT is set as 29° to smooth the corners of the
bounding surface without losing its stress anisotropy. By
combining equation (12) and the relationship q� (3J2)1/2, the
stress ratio Mb at the bounding surface can be written as

Mb(θ) �

�
3

√
sinϕb

Kf

. (17)

Figure 1 shows the bounding surface of the present
model in the π plane of normalized deviatoric stress r (� s/p’)
together with the mapping rule applied in this study, par-
tially following Li and Dafalias [18]. In Figure 1, ri is the
initial r, and n, representing the shearing direction, is de-
fned by

n �
r − ri

ρ
, (18)

where ρ represents the tensorial distance between r and ri:

ρ �

�������������

r − ri( 􏼁 : r − ri( 􏼁

􏽱

. (19)

In the present model, modifed from Li and Dafalias [18],
hardening modulus H is defned as

H �

�
2
3

􏽲

Gh0
ρb

ρ
, (20)

where h0 is a positive material constant and the function ρb is
defned by

ρb �

�
2
3

􏽲

Mb − r :n, (21)

which represents the distance to the bounding surface from
the current state. In equation (20), the shear modulus G
(obtained from equations (9) and (10)) indicates the efect of
volume (or void ratio e) and confnement (p’) on H. At the
onset of shearing, H�∞ because r� ri, and ρ� 0; thus, the
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model fully describes the elastic behavior of sand upon initial
shearing. If r is inside the bounding surface, ρb> 0 andH> 0;
thus, rmoves outward to the bounding surface. If the current
r is located outside the bounding surface, ρb< 0 and H< 0;
therefore, r travels inward to the bounding surface. In
summary, stress always evolves toward the bounding sur-
face. Equation (17) demonstrates that the bounding surface
eventually converges to the CSS because ϕd � 0 and ϕb � ϕc at
the critical state.

Te present model relies on the nonassociated fow rule;
the direction of the plastic strain is proportional to the
gradient of plastic potential g. Te mathematical expression
of the plastic potential g is

g �
��
J2

􏽰
Kg − p

′ sinϕd

� 0,
(22)

where Kg is a function for the smooth corners of the plastic
potential surface. Kg has the same form as Kf; however, it
depends on ϕd rather than ϕb.

3. Model Performance

Te proposed model was calibrated for Toyoura sand; Table 1
lists the calibrated model parameters. Te typical values of
mean diameter d50, maximum void ratio emax, and minimum
void ratio emin are approximately 0.19mm, 0.977, and 0.597,
respectively [24, 34–36]. Herein, the critical state angle ϕc was
taken as 31.15° for Toyoura sand, which corresponds to
Mc � 1.25 under triaxial compression conditions, as experi-
mentally determined by Verdugo and Ishihara [23]. To
construct the CSL of Toyoura sand, following Li et al. [37], this
study set Γcc� 0.934, λ� 0.019, and ξ � 0.7 from triaxial
compression test results. Loukidis and Salgado [14] calibrated
Γce (Γc under triaxial extension conditions) as 0.860, which
this study follows.

For shear modulus G, this model requires the quanti-
fcation of parameters Cg, α, and ctv. Following Li and

Dafalias [38], Dafalias and Manzari [39], Li [16], and Li and
Dafalias [40], Cg was set as 125.0 for Toyoura sand in this
study. Woo et al. [7] calibrated α� 0.70 and ctv � 1.75e− 4
for Toyoura sand based on experimental data [13, 30, 41–43];
the current study uses these values for the proposed model.
Poisson’s ratio ] was set as 0.25 for Toyoura sand based on
previous research [18, 44].

Figure 2 illustrates the calibration of the dilatancy pa-
rameter d0 (in equation (7)) using experimental data from an
undrained triaxial compression test for an isotropically
consolidated sand specimen (CIUTXC); a larger d0 produces
a stifer mechanical response due to more dilatant behavior.
As shown in Figure 2, d0 was set to 1.2 for Toyoura sand.Te
determination of themodel parameter h0, used in calculating
the hardening modulus (equation (20)), is illustrated in
Figure 3; a higher h0 yields a stifer sand response. h0 was
calibrated against the results of a drained triaxial com-
pression test for an isotropically consolidated sand specimen
(CIDTXC) and taken as 0.2 for Toyoura sand, as shown in
Figure 3.

Figures 4 and 5 plot the CIUTXC test results (hollow
circles) for Toyoura sand from Verdugo and Ishihara [23],
which overlap with the numerical simulation result (black
line) generated by the proposed model. For comparison, the
simulation results using the bounding surface M-C (BSMC)
model (gray lines) with fxed dilatancy angles ϕd (0–10°) are
plotted in the fgures. Tese are also the simulation results
from the CSMC model (black dashed line), proposed by
Woo et al. [7], with identical model parameters. Figures 4(a)
and 5(a) compare the stress-strain behaviors (q-εa curve,
where εa represents the axial strain), whereas Figures 4(b)
and 5(b) show the comparison in the p’-q space. In
Figures 4(a) and 5(a), the BSMC model with a fxed
ϕd produced signifcantly diferent stress-strain curves from
the experimental results. Furthermore, shear stresses, where
ϕd was nonzero, continually increased without stress sta-
bilization at the critical state. Te nonconvergence of stress
to the critical state of the BSMC model under undrained
loading is also shown in Figures 4(b) and 5(b), where both p’
and q continuously increase when ϕd> 0. Te positive
curvature of the q-εa curves from the BSMC model in
Figures 4(a) and 5(a) is caused by the interdependence

Table 1: Model parameters for Toyoura sand.

Parameters Value Required test
Cg 125 RC or BE/TXC
A 0.70 RC or BE
ctv 1.75e− 4 RC or BE
Ν 0.25 CK0
ϕcs 31.15° TXC
Γcc 0.934 TXC
Γce 0.860 TXE
λ 0.019 TXC
ξ 0.7 TXC
d0 1.20 TXC
h0 0.20 TXC
RC denotes the resonance column test. BE denotes the bender element test.
TXC denotes the triaxial compression test. CK0 denotes the K0 consoli-
dation test. TXE denotes the triaxial extension test.

r2 r3

r1

ri

r
n

n

30°
|θ|

(2/
3)

1/2 M
b

Figure 1: Mohr–Coulomb bounding surface and mapping rule.
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between the elastic moduli and p’ throughout equations
(9)–(11) for a constant ϕd. In contrast, both the BSCSMC
and CSMC models, because ϕd changes during shearing and
eventually vanishes at the critical state, correctly capture the
mechanical response in all states, as shown in Figures 4
and 5.

Figures 6 and 7 present comparisons of the CIDTXC
responses between the test data (hollow symbols) from
Fukushima and Tatsuoka [45] and the simulation results
(black lines) for the Toyoura sand. Te initial mean efective
stress p0′ and the initial void ratio e0 are 100 kPa and 0.824,
respectively, in Figure 6, whereas p0′ � 400 kPa and
e0 � 0.688 in Figure 7.Te friction angle depends on ψc in the
CSMC and BSCSMC models; thus, they can simulate the
peak response under drained shearing within sands, as
shown in Figures 6(a) and 7(a). However, CSMC predicts
peaks at smaller strain levels than those in the experiment
data and produces a kink at the peak and, thus, a sharp
transition from elastic to plastic behavior, primarily because
of the yield surface; such a sharp transition was not observed
in the experimental data. On the other hand, the proposed
BSCSMC model utilizes the bounding surface concept and
successfully describes the smooth stress-strain responses of
sand, which is in excellent agreement with the experimental
results. Figures 6(b) and 7(b) show the volumetric change
versus axial strain from the experimental and simulation
results, respectively. Simulations (gray lines) using the
BSMC model with a fxed dilatancy angle do not show
a stabilization tendency of the volume change during
shearing in Figures 6(b) and 7(b). On the other hand, both
the BSCSMC and CSMC models show a convergence ten-
dency of volume change during shearing.

Figure 8 presents comparisons of the CIDTXE responses
between the test data from Safdar et al. [46] and the sim-
ulation results for the Toyoura sand. Figure 8(a) shows the
von Mises stress q versus axial strain, whereas Figure 8(b)
represents the volume change versus axial strain from the
experimental data (hollow and grey symbols for p0′ � 50 and
400 kPa, respectively) and simulation results (dashed and

solid lines for p0′ � 50 and 400 kPa, respectively). Figure 8
shows that the proposed BSCSMC model successfully de-
scribes the smooth stress-strain responses of sand, which is
in good agreement with the experimental results under
triaxial extension loading conditions.

3.1. Discussion. Te present study compares the BSCSMC
model with the SANISAND (or two-surface) models,
originated by Manzari and Dafalias [12], and the Norsand
model, originally proposed by Jeferies [47], which have
successfully described the mechanical responses of sand.
For the SANISAND and Norsand models, this paper se-
lected the models proposed by Li and Dafalias [38] and
Boukpeti et al. [48], respectively, which presented both
triaxial compression and extension simulation results.
Generally, the difculty of a calibration step of a consti-
tutive model is proportional to the number of parameters
determined by the trial-and-error method. Model pa-
rameters of soil constitutive models based on the critical
state framework can be classifed into parameter groups
used in the construction of elastic moduli, critical state
surface in the stress space, critical state line in the plane of
void ratio (or specifc volume), mean efective stress, and
plasticity formulation. Among the parameter groups, pa-
rameters related to the plasticity formulation (fow,
hardening, and evolution rules) generally require the trial-
and-error method for the calibration. Table 2 lists the
number of model parameters in each parameter group for
SANISAND [38], Norsand [48], and the proposed model.
For the plasticity formulation, SANISAND [38] and
Norsand [48] require 10 and 6 parameters, respectively,
whereas the proposed BSCSMC model requires only two
parameters (h0 and d0); thus, the calibration step in the
proposed model needs less eforts than the SANISAND and
Norsand models.

Realistically, the experimental data show contractive
behavior (reduction of e) before the phase transformation
point; thereafter, the sands begin to dilate (increase of e).

h0 = 0.2

h0 = 0.1

h0 = 0.3

CIDTXC
Toyoura Sand

e = 0.688
p0ʹ = 400 kPa

5 10 15 200
Axial strain (%)

0

500

1000

1500

2000

q 
(k

Pa
)

Figure 3: Calibration of h0.

d0 = 1.6

d0 = 0.8

d0 = 1.2

CIUTXC
Toyoura Sand

e = 0.833
p0ʹ = 100 kPa

0

500

1000

1500

q 
(k

Pa
)

5 20 250 10 15
Axial Strain (%)

Figure 2: Calibration of d0.
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Because the proposed BSCSMC model does not include
a formulation to describe the phase transformation point,
there are slight diferences between experimental and

simulation results. Tis is the main disadvantage of the
proposed model compared to the SANISAND and Norsand
models. However, this contractive phase before the phase

ϕd = 5°
ϕd = 10°

ϕd = 3°
ϕd = 1°

CIUTXC
Toyoura Sand
e = 0.735
p0ʹ = 100 kPa

5 10 15 20 250
Axial strain (%)

0

1000

2000

3000

4000

q 
(k

Pa
)

Experimental data
BSCSMC

CSMC
BSMC

(a)

ϕd = 5°
ϕd = 10°

ϕd = 3°

ϕd = 1°

CIUTXC
Toyoura Sand

e = 0.735
p0ʹ = 100 kPa

Experimental data
BSCSMC

CSMC
BSMC

1000 2000 30000
pʹ (kPa)

0

1000

2000

3000

4000

q 
(k

Pa
)

(b)

Figure 5: CIUTXC test results from Verdugo and Ishihara [23] and simulated results (BSCSMC) for Toyoura sand (e� 0.735; p0′� 100 kPa).
Te simulation results from the bounding surfaceM-Cmodel (BSMC) with fxed dilatancy angles ϕd and the CSMCmodel [7] are plotted for
comparison: (a) axial strain vs. q and (b) p′ vs. q.
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Toyoura Sand

e = 0.833
p0ʹ = 100 kPa
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(k
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Experimental data
BSCSMC
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(a)
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(b)

Figure 4: CIUTXC test results from Verdugo and Ishihara [23] and simulated results (BSCSMC) for Toyoura sand (e� 0.833; p0′� 100 kPa).
Te simulation results from the bounding surfaceM-Cmodel (BSMC) with fxed dilatancy angles ϕd and the CSMCmodel [7] are plotted for
comparison: (a) axial strain vs. q and (b) p′ vs. q.
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Figure 7: CIDTXC test results from Fukushima and Tatsuoka [45] and simulated results (BSCSMC) for Toyoura sand (e0 � 0.688;
p0′� 400 kPa).Te simulation results from the bounding surfaceM-Cmodel (BSMC) with fxed dilatancy angles ϕd and the CSMCmodel [7]
are plotted for comparison: (a) axial strain vs. q and (b) axial strain vs. volume change ΔV/V0.
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Figure 6: CIDTXC test results from Fukushima and Tatsuoka [45] and simulated results (BSCSMC) for Toyoura sand (e0 � 0.824;
p0′� 100 kPa).Te simulation results from the bounding surfaceM-Cmodel (BSMC) with fxed dilatancy angles ϕd and the CSMCmodel [7]
are plotted for comparison: (a) axial strain vs. q and (b) axial strain vs. volume change ΔV/V0.
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transformation point can be described by applying the di-
latancy surface concept [12] or phase transformation line
[15] to the present model.

4. Conclusions

Tis paper proposes a BSCSMCmodel for sands. Te BSCSMC
model used the smoothed M-C failure surface as its bounding
surface, rather than the yield surface, to describe the smooth
transition from elastic to plastic behavior. Tis model sets the
dilatancy and friction angles, which are conventionally assumed
to be constants, as functions of the state parameter, which
represents the distance to the critical state. Terefore, the
proposed model could describe the peak response for dense
sands and the stress stabilization of sands at the critical state.

Te BSCSMC model can simulate the undrained and
drained triaxial compression behaviors of Toyoura sand
better than the bounding surface M-C model, with a fxed
dilatancy angle, and the CSMC model. Te proposed
BSCSMC model numerically described the complex me-
chanical responses of sands, including the smooth stress-
strain response, peak behavior, and the critical state, under
both undrained and drained conditions.
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Géotechnique, vol. 52, no. 3, pp. 173–186, 2002.

[17] Z. Wang, Y. F. Dafalias, C. Shen, and C. K. Shen, “Bounding
surface hypoplasticity model for sand,” Journal of Engineering
Mechanics, vol. 116, no. 5, pp. 983–1001, 1990.

[18] X. S. Li and Y. F. Dafalias, “A constitutive framework for
anisotropic sand including non-proportional loading,”
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Géotechnique, vol. 68, no. 11, pp. 1002–1024, 2018.

[20] Z. Gao and J. Zhao, “A non-coaxial critical-state model for
sand accounting for fabric anisotropy and fabric evolution,”
International Journal of Solids and Structures, vol. 106-107,
no. 107, pp. 200–212, 2017.

[21] K. H. Roscoe, A. N. Schofeld, and C. P. Wroth, “On the
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