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This paper investigates the effectiveness of machine learning (ML) models available in MATLAB Regression Learner app and
MATLAB App Designer, both low-code applications, for accurately predicting punching shear strength (PSS) in reinforced
concrete (RC) slabs. A database of 379 RC slab samples without transverse reinforcement was compiled from renowned publica-
tions. RandomSearch and Bayesian optimisation were employed for tuning hyperparameters. The performance of these models
was compared with six empirical models, which included three current design codes, three equations from other researchers, and
227 finite-element simulations conducted by the authors. The ML models and finite-element method (FEM) demonstrated
superior performance compared with the literature and practical codes. Furthermore, the results emphasised the exceptional
performance of the Gaussian process regression (GPR) with optimised hyperparameters, exhibiting the best performance in
validation, training, and testing datasets with R2 values of 0.95, 0.99, and 0.98, respectively. A user-friendly standalone application
was developed, providing real-time predictions of the PSS using the two best-developed ML models, GPR and support vector
machine (SVM), as well as six empirical models from the literature. This tool offers users flexibility in choosing the most
appropriate model for their specific needs, delivering reliable, and accurate results for estimating the PSS of RC slabs.

1. Introduction

In the domain of structural engineering, the accurate predic-
tion of punching shear strength (PSS) in reinforced concrete
(RC) slabs is of paramount importance for ensuring the
safety, stability, and cost-effectiveness of various building
structures. However, when designing such slabs, the brittle
punching failure caused by concentrated forces and unbal-
anced moments between the slabs and columns has severe
consequences for the structure [1]. Therefore, estimating PSS
is crucial for ensuring the structural safety of these systems.

Recently, alongside traditional approaches like experi-
mental research, analytical models, and finite-element analy-
ses, the machine learning (ML) algorithms have gained
popularity for evaluating damage and predicting behaviour
in civil, construction, architectural, and structural engineering

domains [2–5]. Predicting punching shear resistance in flat
slabs has become particularly important in building design.
Elshafey et al. [6] employed an artificial neural network
(ANN) technique with 244 test data from the literature and
experiments to assess the impact of material properties, slab
geometry, and boundary conditions. They proposed two new
simplified punching shear equations and compared them
with models in American, Canadian, British, and European
specifications. Chetchotisak et al. [7] and Tran and Kim [8]
created ANN-based models for estimating the PSS of rein-
forced concrete slabs without shear reinforcement, using 342
and 218 experimental tests, respectively. Nguyen et al. [9]
developed a ML model utilising XGBoost for 497 experimen-
tal data points of interior slab columns and compared the
results with two other ML models incorporating ANNs and
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random forests (RFs). This concise overview indicates that
ANNs have been predominantly employed for predicting
PSS in flat slabs without transverse reinforcement, with grow-
ing evidence of the efficacy of other ML models such as
SVR [10].

This research represents a pioneering effort to explore
the use of Gaussian process regression (GPR), support vector
machine (SVM), and ensemble ML algorithms for predicting
the PSS of RC slabs. The study employs low-code tools like
the MATLAB Regression Learner app, which have not been
investigated in previous research. In particular, the GPR, a
nonparametric and probabilistic model, was thoroughly
examined. It offers several advantages over alternative ML
techniques, such as providing confidence intervals for pre-
dictions, adapting to diverse datasets, and being suitable for
small data samples [11].

This study’s critical aspect is optimising GPR hyperpara-
meters using random search and Bayesian Optimisation pro-
cesses, both integrated within the Regression Learner app.
Hyperparameter optimisation is essential for enhancing ML
model performance [12, 13], and these two techniques have
demonstrated effectiveness in identifying optimal hyperpara-
meters across various applications [14, 15]. By incorporating
GPR with optimised hyperparameters, the objective is to
develop a robust and accurate model that surpasses conven-
tional methods in performance.

Furthermore, this study aims to develop and compare
finite-element method (FEM) simulations with ML models
for predicting PSS. FEM, a widely used computational tech-
nique in structural engineering, has long been employed for
analysing complex physical phenomena [16–19]. By con-
trasting these computational approaches, this research
intends to offer valuable insights into the advantages and
disadvantages of each method and identify the most suitable
technique for practical applications.

To support these computational methods, a user-friendly
web application has been developed, which incorporates var-
ious practical codes and ML models for quickly predicting
the PSS of RC slabs. This application serves as a valuable
resource for engineers and designers, streamlining the pro-
cess of estimating PSS and enhancing overall efficiency.

2. Methodology

The research methodology is outlined in Figure 1. Initially, a
database consisting of 379 samples was compiled. The entire
dataset was divided into a training set (80% of the data) and a
test set (20% of the data). The training set was employed to
train and fine-tune the predictive models, while the test set
was utilised for evaluating the models’ performance. Four
common ML algorithms available in the MATLAB Regres-
sion Learner app were implemented. Ten models with vary-
ing default levels of hyperparameters were initially assessed
for model selection.

A tenfold cross-validation procedure was employed to
minimise the variance of the findings and provide a more
accurate representation of the models’ overall performance.
Specifically, the training dataset was divided into ten subsets

or “folds,” and each fold was trained and tested indepen-
dently. The average of the ten evaluations was used to deter-
mine the models’ overall performance.

Random search and Bayesian optimisation processes with
Gaussian Process surrogate models were applied to optimise
the hyperparameters of the four ML models across 500 itera-
tions. The performance of the optimised models was com-
pared with that of the initial models. The best-performing
model was evaluated against current design codes, empirical
equations, and the FEM.

The performance of the optimised models was further
investigated through Monte Carlo simulations, with 600
simulations conducted. Finally, a user-friendly web-based
application was developed for estimating the PSS of flat con-
crete slabs.

2.1. Utilising MATLAB Regression Learner App and
MATLAB App Designer. In this research, two modules of
MATLAB that utilise low-code development are employed.
These applications are designed to facilitate the development
process of ML models and to create a user-friendly tool for
predicting the PSS—a measure of a concrete structure
section’s capacity to withstand a punching load.

The MATLAB Regression Learner app, a graphical user
interface (GUI) of MATLAB’s Statistics and machine learn-
ing toolbox, provides a platform for training, testing, and
comparing ML regression models. This app streamlines the
process of selecting, training, and evaluating regression mod-
els by automating many routine tasks, allowing users to focus
more on modelling and less on coding. It includes various
regression algorithms, like linear regression and decision
trees, among others, as well as data preprocessing tools for
feature scaling, outlier detection, and missing value imputa-
tion. The MATLAB Regression Learner app is noted for its
ease of use, automated model selection and optimisation,
performance evaluation metrics, data preprocessing tools,
and seamless integration with MATLAB itself. The results
derived from this research are illustrated in Figure 2.

MATLAB’s App Designer is another low-code applica-
tion that streamlines the creation of interactive, user-friendly
applications with scustomised interfaces. This robust tool
simplifies the design and implementation of graphical inter-
faces for a variety of applications, enabling users to develop
visually pleasing and straightforward apps that incorporate
advanced computational tools.

In this research, App Designer is employed to craft a
standalone application that integrates the ML models devel-
oped using the Regression Learner app. The ensuing appli-
cation offers an intuitive interface, enabling users to input
pertinent data and secure accurate predictions of the PSS of
RC slabs. As such, it bridges the gap between advanced
computational methodologies and practical engineering
applications.

The utilisation of MATLAB’s App Designer in this con-
text highlights the significance of low-code platforms in
improving the accessibility and usability of sophisticated
tools and models in the realm of civil engineering. The
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FIGURE 1: Outline of the research work.

FIGURE 2: Performance evaluation and results from our study using machine learning models developed with the MATLAB’s Regression
Learner app.
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various components of this app, as they pertain to this
research, are depicted in Figure 3.

2.2. ML Models Description. This study utilised four ML
models integrated within MATLAB’s Regression Learner
app: decision tree, SVMs, GPR, and ensemble of trees. Deci-
sion tree is a tree-based model that can handle nonlinear
relationships between the input variables and target outputs
[20]. SVMs can transform the target variable into a continu-
ous one and identify the hyperplane maximising the margin
between distinct data classes [21]. Ensemble of trees, also
known as tree ensembles or tree-based methods, is a power-
ful ML technique that involves constructing multiple deci-
sion trees and combining their outputs to achieve improved
performance. By aggregating the predictions of multiple
trees, the ensemble model can overcome the limitations of
individual trees, such as overfitting and instability, and
achieve higher accuracy and robustness [22]. GPR [11] is a
Bayesian model using Gaussian distributions to represent
relationships between the input variables and target outputs,
modelling complex, nonlinear relationships and providing
uncertainty estimates for its predictions.

The Regression Learner app in MATLAB offers a rich
selection of model options across fourML algorithms, expand-
ing the possibilities for users to tailor the models to their spe-
cific needs. Depending on the nature of the data and the type of
problem to be solved, users can adjust the complexity and
functionality of their models to optimise performance.

In the realm of SVMmodels, users can select from linear,
quadratic, or cubic options, each representing a different
level of complexity in the input–output relationship. For
problems with linear correlations, the linear SVM might be

an ideal choice, while quadratic or cubic SVMs could be
more suitable for nonlinear, complex patterns.

The decision tree algorithm also presents diverse options,
allowing users to choose between trees of varying complexity
levels. For instance, binary trees might be suitable for sim-
pler, binary classification problems, while regression trees
can handle more nuanced, continuous data.

In the GPR model, users have the flexibility to choose
from different kernels, each representing a distinct way of
capturing the input–output relationship. Varieties include
the rational quadratic, squared exponential, matern 5–2,
and exponential kernels, each with their unique characteris-
tics and ideal use cases.

Ensemble of trees models, on the other hand, provide an
opportunity to leverage the power of multiple learners. Users
can opt for ensemble methods such as bagging or boosting,
which can enhance model accuracy by aggregating predic-
tions from multiple decision trees.

The flexibility and diversity of these models help users
navigate the complex landscape of ML, enabling them to
identify and implement the most suitable model for their
specific needs. Table 1 encapsulates these considerations,
summarising the key features of each model type, the specific
models, the acronyms used in this research, and the notable
hyperparameters. It provides a comprehensive view of the
range of models employed in this research, showcasing the
versatility and utility of the Regression Learner app in
MATLAB for tackling complex engineering problems.

2.3. Evaluating Model Performance Metrics. This study
employed four statistical parameters to evaluate the accuracy
of the proposed model, namely correlation coefficient (R),

FIGURE 3: The integrated user interface of the MATLAB’s App Designer application used in this study.

4 Advances in Civil Engineering



root-mean-square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE). The
forecasting model’s quality improves as the MAPE, RMSE,
and MAE values decrease. On the other hand, R indicates the
degree of correlation between the actual and predicted
values, ranging from 0 to 1, where higher values of R indicate
better-performing models. The mathematical formulations
for the three statistical indexes are as follows:

MAE
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N
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pj − pt;j
�� ��; ð1Þ
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where pj is the PPS of jth actual value in the dataset; pt,j is the
PPS of jth predicted value obtained from ML model; p is the

mean actual value of the PPS compliance; pt is the mean
predicted value of the PPS; and N is the total number of
samples in the dataset.

2.4. FEM- for RC Slab Simulation. In this investigation, a
nonlinear 3D finite-element analysis (FEA) approach was
employed to determine the punching shear of slabs. The
modelling technique was implemented using the open-
source programme Cast3M [23], and a detailed discussion
of the methodology can be found in a previous research
publication [16]. The key components of the process can
be summarised as follows:

Meshing and elements: the RC slabs were represented
using 3D isoparametric elements. These elements, each hav-
ing eight nodal points, were configured with dimensions of
25mm× 25mm× 20mm (length×width× thickness). This
choice ensured a detailed representation of the slab geometry
while optimising computational efficiency.

Boundary conditions: to simulate the realistic constraints
of the slabs in their operational environment, displacements
were restricted to the vertical direction. This boundary con-
dition mimicked real-world scenarios where primary displa-
cements under loading occur vertically.

Material properties: the nonlinear behaviour of concrete was
captured using theMazars [24] 3D damage concretemodel. This
model, rooted in damage theory, characterises material degrada-
tion via a damage parameter which signifies microcracking
states. For enhanced accuracy, an improved version of this
model [25] was incorporated, introducing different internal vari-
ables in representing shear behaviour of concrete.

Analysis procedure: the PASAPAS process integrated
within Cast3M was utilised for a static pushover analysis.
By superimposing a displacement atop the slab’s column
area, a pushover curve was generated, representing the rela-
tionship between load and displacement. The peak value on
this curve provided the slab’s PSS.

TABLE 1: Integrating the detailed information about the specific models used in the study.

Model type Model Acronym used for this research Hyperparameters

1 Decision tree Fine tree regression DT_F
Minimum leaf size

Surrogate decision splits

2

Support vector machines

Linear SVM SVM_L Kernel function
3 Quadratic SVM SVM_Q Kernel scale

4 Cubic SVM SVM_C
Box constraint

Epsilon

5

Gaussian process expression

Rational quadratic GP_RQ Basic function
6 Squared exponential GP_SE

Kernel function
7 Matern 5–2 GP_M52

8 Exponential GP_Ex

Isotropic kernel
Kernel scale

Signal standard deviation
Sigma

9
Ensembles of trees

Boosted trees Boosted Minimum leaf size

10 Bagged trees Bagged
Number of learners

Learning rate

Advances in Civil Engineering 5



Figure 4 provides a detailed illustration of the computa-
tional process employed in this study. To achieve accurate
results, the concrete Mazars model’s input parameters were
scrupulously calibrated to align the pushover curve with data
obtained from numerical simulations and experimental mea-
surements, as outlined in the research conducted by Le-
Nguyen et al. [16]. In order to facilitate the analysis, boundary
conditions were established to restrict displacement solely in
the vertical direction. A comprehensive comparison of the
pushover analysis between experimental and numerical out-
comes is presented in Figure 4(a). Furthermore, Figure 4(b)
displays the damaged regions at the failure strength of the
specimen, providing valuable insights into the structural
behaviour under the applied loading conditions.

3. Data Description

All algorithms were implemented in open-source frame-
works, utilising 379 experimental data points gathered
from 53 experimental works [26–78] and are summarised
in Table 2. The data used in this research were meticulously
selected to eliminate the influence of variable diversity
effects, such as the presence of fibre-reinforced plastic rein-
forcement, bond failure, or specimens lacking shear spans.
Consequently, only specimens exhibiting brittle punching
shear failure were considered for inclusion in the dataset.
The input variables consist of the compressive strength of
the slab concrete ( fc), yield strength of the slab flexural

reinforcement ( fy), equivalent column width (b), effective
flexural depth of the slab (d), shear span (a), and slab rein-
forcement ratio (ρ). The target output variable is the PSS.
Within the current database, there are 222 square slabs, 108
round slabs, 35 rectangular slabs, and five octagonal slabs;
slab profiles for the remaining nine specimens are not avail-
able. Moreover, the columns used in the models have three
cross-sectional shapes: 207 square columns, 144 round col-
umns, and 28 rectangular columns.

Table 2 and Figure 5 provide important information
about the range and distribution of the variables used in
the study. The study encompasses a diverse range of RC
slab configurations and material properties. The equivalent
column width (b) has a mean value of 181.42mm and a
standard deviation of 92.39mm, indicating a wide variety
of column widths. The effective flexural depth (d) displays

Meshing of concrete

(a)

Meshing of
reinforcement

0
0 5 10

Exp - S0
Num - S0

Displacement (mm)
15 20

0.93
0.89
0.84
0.80
0.75
0.71
0.66
0.62
0.57
0.53
0.48
0.44
0.39
0.35
0.30
0.26
0.21
0.17
0.12
7.50E–02
3.00E–02

50

Lo
ad

 (K
N

)

Lo
ad

 (K
N

)

100

150

200

250

(b)

Boundary conditions

FIGURE 4: A nonlinear pushover analysis example for calculating the punching shear of RC slabs. (a) Pushover analysis comparison between
experimental and numerical; and (b) damaged regions after the computation.

TABLE 2: Properties of input parameters.

Parameter Mean Min. Median Max. Std.

b (mm) 181.42 40.06 173.57 707.64 92.39
d (mm) 112.91 30.00 107.00 500.00 58.30
a (mm) 648.16 38.00 675.00 2320.00 318.60
ρ (%) 1.26 0.33 1.11 3.73 0.66
fy (MPa) 469.79 250.00 471.00 749.00 118.28
fc (MPa) 32.87 8.66 28.00 118.70 18.51
Pmax (MPa) 379.02 24.00 282.50 2681.00 387.18
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a mean value of 112.91mm and a standard deviation of
58.30mm, showcasing the diversity in slab depths. The shear
span (a) has a mean value of 648.16mm and a standard
deviation of 318.60mm, reflecting the various shear spans
included in the dataset. The slab reinforcement ratio (ρ) has
a mean value of 1.26% and a standard deviation of 0.66%,
indicating the range of reinforcement ratios considered. The
yield strength of the slab flexural reinforcement ( fy) demon-
strates a mean value of 469.79MPa and a standard deviation
of 118.28MPa, highlighting the variety of reinforcement
strengths in the dataset. The compressive strength of the
slab concrete ( fc) has a mean value of 32.87MPa and a stan-
dard deviation of 18.51MPa, suggesting a broad range of
concrete strengths used in the study. Finally, the maximum
load applied to the slab (Pmax) features a mean value of
379.02MPa and a standard deviation of 387.18MPa, empha-
sising the diverse loading conditions considered in the
research.

4. Machine Learning Implementation
and Results

4.1. Evaluating ML Models with Default Hyperparameters.
The performance of the models was evaluated using the ten-
fold cross-validation approach. The validation dataset that
was produced by this method was utilised for both hyperpara-
meter tuning and model assessment. Figure 6 comprehen-
sively evaluates the performance of various ML models
across three datasets: training set, validation, and testing set.
These models include decision tree (DT_F), SVMs with linear
kernel (SVM_L), quadratic kernel (SVM_Q), cubic kernel

(SVM_C), Gaussian process with rational quadratic kernel
(GP_RQ), squared exponential kernel (GP_SE), matern 5/2
kernel (GP_M52), exponential kernel (GP_EX), Boosted, and
Bagged. The performance metrics assessed for each model are
AE, mean squared error (MSE), RMSE, and R-squared (R2).

Upon analysing the results, it is evident that the models
display varying performance levels across the three datasets.
The Gaussian process with exponential kernel (GP_EX)
demonstrates exceptional performance on the training set,
with the lowest MAE (4.5), MSE (67.8), and RMSE (8.2)
values, as well as the highest R2 (1.00) value. This result
suggests that the GP_EX model is highly accurate and pos-
sesses strong predictive capabilities when applied to the
training set.

In contrast, the SVM with a linear kernel (SVM_L) exhi-
bits relatively weaker performance, particularly in the valida-
tion and testing sets. The model records high values for
MAE, MSE, and RMSE, while its R2 values remain consis-
tently lower than those of other models. Notably, the Bagged
model demonstrates consistently moderate performance
across all datasets. While it does not outperform the other
models in any specific category, it maintains relatively stable
results, indicating that it may be reliable when applied to a
diverse range of data.

Identifying a suitable model is vital as it guarantees
improved predictive accuracy and enables efficient generalisa-
tion to previously unseen data. Ultimately, this meticulous
selection process produces dependable insights, fostering
informed decision-making within the context of the given
problem. As the research advances, subsequent efforts will be
devoted to refining the existing models to bolster their
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performance. This optimisation process, which involves fine-
tuning the hyperparameters, has been carried out accordingly.

4.2. Assessing Model Performance with Optimised
Hyperparameters. Hyperparameter tuning is a crucial step
in the ML model training process as it helps in finding the
optimal combination of hyperparameters that results in the
best performance of the model. In this research, two methods
were used for hyperparameter tuning, namely random
search and the Bayesian optimisation process. The Bayesian
optimisation method intelligently explores the hyperpara-
meter space, using a Gaussian process surrogate model to
predict the performance of different parameter combina-
tions, while the random search method samples the hyper-
parameter space randomly to find the best combination.
These two complementary methods, embedded within the
Regression Learner app, enable users to enhance model per-
formance with minimal effort, thus showcasing the effective-
ness of low-code tools for practical machine-learning
applications.

Table 3 displays the range of values and the optimised
values chosen from the hyperparameter tuning process.
These optimised values will be utilised to make predictions
in the final models. By utilising both Bayesian optimisation
and random search, it is anticipated that the models will
achieve improved accuracy in predicting PSS compared
with models with default hyperparameters.

A total of 500 iterations were applied for the hyperpara-
meter tuning process for each method to ensure the robust-
ness of the results. Figure 7 illustrates the minimum mean
squared error (MSE) convergence curve for three models
obtained through Bayesian optimisation and random search
processes, with MSE values computed using a tenfold cross-
validation technique. The GPR model with optimised hyper-
parameters performs better than the other models. Although
the MSE values after 500 optimal iterations for all models are
approximately equal using both tuning methods, the conver-
gence rate differs, with Bayesian optimisation converging

after roughly 150 iterations and the random search process
converging faster at around 100 iterations. This observation
suggests that the random search process achieves conver-
gence more rapidly than Bayesian optimisation, offering an
advantage in terms of computational efficiency and resource
usage. The differing performance may be attributed to fac-
tors such as data nature, model complexity, or the optimiser
used. While Bayesian optimisation may be too conservative,
leading to suboptimal results, random search can explore
diverse hyperparameters but risks overfitting or poor
generalisation.

Figure 8 presents the best R2 and RMSE scores of GPR,
SVM, and ensemble models with varying hyperparameters
across the training, validation, and testing datasets. The
results show that the performance improvement in models
with optimised hyperparameters is not substantially greater
than those with default hyperparameters. In other words, the
models with default hyperparameters, such as the GPR
model with rational quadratic, squared exponential, matern
5–2, or exponential kernel, suggested by the Regression
Learner app, can already yield satisfactory results without
the need for any hyperparameter tuning process.

This observation underscores the advantages of utilising
low-code tools, such as MATLAB’s Regression Learner app,
in practical applications. These tools enable users to quickly
develop and deploy ML models with minimal effort, as they
can provide satisfactory results even without extensive
hyperparameter optimisation. This is particularly beneficial
when computational resources are limited or rapid prototyp-
ing is required.

However, it should be noted that the performance of
default hyperparameters may not always be optimal, and
further optimisation could still lead to improved results in
specific cases. Moreover, different models may be more sen-
sitive to hyperparameter tuning, and the degree of improve-
ment may vary accordingly. Therefore, while low-code tools
like the Regression Learner app offer valuable convenience
and a practical starting point, it remains crucial to consider
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the potential benefits of hyperparameter optimisation for
enhancing model performance and robustness in various
applications.

4.3. Examining Representative Prediction Results. Table 4 pre-
sents a performance metrics comparison of ML models with
different tuning methods. Among the models with tuned
hyperparameters, the GPR model consistently performed

well across all sets and optimisation methods, exhibiting R2

values of 0.995, 0.954, and 0.978 on the training, validation,
and testing sets, respectively. The SVM model also demon-
strated strong performance, with R2 values of 0.955, 0.933,
and 0.973 using Bayesian optimisation and 0.955, 0.926,
and 0.974 using random search.

Conversely, the ensemble model excelled on the training
set, with R2 values of 0.997 and 0.999 using Bayesian

TABLE 3: Hyperparameters with tuning range and optimal values.

Model Hyperparameter name Range
Optimal value using Bayesian

process
Optimal value using random

search

GPR

“Sigma” [1.00e−04,3.78e+ 03] 41.401 38.7

“BasisFunction”
“constant” “none”

“linear” “none”“linear”
“pureQuadratic”

“KernelFunction”

“ardmatern32”

“matern32” “matern32”
“ardmatern52”
“exponential”

“matern32” “matern52”
“squaredexponential”

“KernelScale” (1.6870, 1,687) 7.329 18.3
“Standardise” “true” “false” “true” “true”

SVM

“BoxConstraint” (1.00e−03, 1,000) 83.518 68.53
“Epsilon” (0.165, 1.65e+ 04) 0.293 0.282

“KernelFunction”
“gaussian” “linear”

“polynomial”
“polynomial” “polynomial”

“PolynomialOrder” [2, 4] 2 2
“Standardise” “true” “false” “true” “true”

Ensemble

“Method” “Bag “LSBoost” “LSBoost” “LSBoost”
“NumLearningCycles” (10,500) 487 497

“LearnRate” (1.00e−03,1) 0.049 0.035
“MinLeafSize” (1,152) 2 4

“MaxNumSplits” (1,303) 5 103
“NumVariablesToSample” [1, 6] 5 4
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optimisation and random search, respectively. However, it
exhibited relatively lower performance on the validation and
testing sets, with R2 values of 0.907, 0.883, and 0.966.

Overall, models with optimised hyperparameters display
a better balance between training and testing performance,
suggesting a reduced risk of overfitting or underfitting. In
comparison, models with default hyperparameters, such as
the ensemble model with default settings, show higher error
metrics and lower R2 values on validation and testing sets,
indicating potential overfitting issues.

Figure 9 presented a comparison of experimental values
and predicted PSS for flat slabs without transverse reinforce-
ment using GPR and SVM models with optimised hyper-
parameters. In this figure, the dashed lines represent
experimental values, while dots depict the predicted values
by the models. To enhance the presentation, each data point
displayed is calculated as the average of the PSS for four
consecutive data samples.

The results showcased in the figure indicate that the
punching resistance of experimental samples in the training
dataset closely aligns with the model’s predictions. Similarly,

using the testing database, experimental results are also pre-
dicted with minimal error. The accuracy of the models is
further assessed through the evaluation of error values and
the regression charts comparing experimental data and pre-
dicted results for both GPR and SVM models. This thorough
analysis emphasises the high performance and precision of
the developed models when applied to flat slabs without
transverse reinforcement.

4.4. Analysing the Influence of Data Randomness through
Monte Carlo Simulation. Integrating Monte Carlo simula-
tions with the hold-out method for generating distinct train-
ing and testing datasets is a crucial step in evaluating the
generalizability of the ML models. Several earlier investiga-
tions have emphasised the influence of the random sampling
process on a model’s predictive performance [79]. Therefore,
to ensure the model’s reliability, a significant number of
simulations must be executed before employing it to validate
the findings’ generalizability.

In this study, a total of 600 Monte Carlo simulations are
performed across four different models. The results, in terms
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FIGURE 8: Best R2 and RMSE scores of GPR, SVM, and ensemble models with different hyperparameters on training, validation, and testing.
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of R2 and RMSE values for each model, are obtained from
300 separate simulations and are presented in histogram
plots in Figure 10(a) for the GPR model and Figure 10(b)
for the SVM model. These plots provide a visual representa-
tion of the distribution of R2 and RMSE values, offering
insights into the models’ performance and their robustness
against variations in the data.

The training dataset, testing dataset, and the entire data-
base are all utilised for evaluation purposes, which enables a
comprehensive assessment of the accuracy of the algorithms’
predictions. Among the four optimised models, all exhibit an
R2 value for the testing dataset of ∼0.98, indicating a high
level of accuracy in predicting the target variable. However,
the GPR model stands out with the most favourable results,
achieving an R2 value of around 0.99 for all databases. This
highlights the superior predictive capability of the GPR
model compared to the other models.

Furthermore, the consistency of the R2 values across var-
ious datasets suggests that the developed models are not
sensitive to the data hold-out method, which is a critical
aspect of their generalizability. In particular, the GPR model
demonstrates stability and robustness against changes in the
data, ensuring reliable performance in various scenarios.
This finding underscores the potential of the GPR model

as a valuable tool for predicting the target variable, even
when faced with variations in the data or potential uncer-
tainties in real-world applications.

5. Practical Implications

5.1. Comparing ML Model Performance with Practical Codes
and FEM Simulations. In this study, the accuracy and reliabil-
ity of the GPR model developed were validated by comparing
its performance against multiple benchmarks. The perfor-
mance of the GPRmodel was comparedwith three commonly
used current design codes, three empirical equations pro-
posed by other researchers, and FEM simulations.

Three design codes were studied, including ACI 318-19
[80], EC2 [81], BS 8110-97 [82], and three empirical
equations by Jabbar et al. [83], Chetchotisak et al. [7], and
Elsanadedy et al. [84]. The equations for the design codes
and the empirical equations utilised for the comparative
study may be found in Table 5.

As discussed in the Section 2.4, the FEM simulations in
this study were performed using the nonlinear pushover
technique and were automated using MATLAB-Cast3M.
However, if a nonconverged problem occurred during the
simulation, the outcome was deemed “not successful”. For

TABLE 4: Performance metrics comparison of machine learning models with different tuning methods.

Model Set MAE RMSE R2

GPR model with Bayesian optimisation
Training set 19.61 27.59 0.995
Validation 47.34 81.19 0.954
Testing set 40.04 62.36 0.978

SVM model with Bayesian optimisation
Training set 46.46 80.24 0.955
Validation 58.7 97.91 0.933
Testing set 44.74 68.57 0.973

Ensemble with Bayesian optimisation
Training set 15.04 20.09 0.997
Validation 54.94 115.57 0.907
Testing set 43.87 77.01 0.966

GPR model with random search tuning
Training set 19.05 27.09 0.995
Validation 43.58 74.01 0.962
Testing set 42.47 78.908 0.964

SVM model with random search tuning
Training set 46.47 80.3 0.955
Validation 58.92 102.57 0.926
Testing set 44.58 67.97 0.974

Ensemble model with random search tuning
Training set 3.29 9.58 0.999
Validation 56.78 129.19 0.883
Testing set 47.98 89.29 0.954

SVM model with quadratic kernel
Training set 47.8 80.8 0.95
Validation 58.9 102.3 0.93
Testing set 42.8 62.9 0.98

GPR with rational quadratic kernel
Training set 22.8 31.9 0.99
Validation 48.7 81.6 0.95
Testing set 44.2 80.5 0.96

Ensemble model with default hyperparameters
Training set 44.6 88.9 0.95
Validation 64.6 130.2 0.88
Testing set 34.9 62.9 0.96
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the “successful” simulations, the maximum reaction value
obtained during the Pushover process was considered the
PSS of the slab. Out of the 379 simulations performed,
only 227 were able to calculate the PSS without experiencing
a nonconverged problem.

The regression model depicts the relationship between
the actual experimental values and the predicted values from
ACI 319-19 (Figure 11(a)), EC2 (Figure 11(b)), BS 8110-97
(Figure 11(c)), Jabbar’s model (Figure 11(d)), Chetchotisak’s
model (Figure 11(e)), Elsanadedy’s model (Figure 11(f)),
FEM (Figure 11(g)), and GPR model with optimised hyper-
parameters (Figure 11(h)) for both training and testing data-
sets. The horizontal axis represents the measured PSS of the
specimens, while the vertical axis indicates the predicted PSS.

The best-fit line signifies the ideal condition where the
predicted values are equal to the tested values. The blue and
red dashed lines represent the 10% and 20% error contours,
respectively, providing a clear indication of the deviation
from the ideal prediction. The proposed model exhibits
near-perfect performance with the training dataset, as the

majority of data points closely align with the y= x line, indi-
cating a high degree of accuracy in the predictions.

In addition, Table 6 summarises the statistical criteria
values of design codes and empirical formulas in predicting
the PSS of flat slabs without transverse reinforcement. ACI
319-19, EC2, and BS 8110-97 are well-established design
standards that provide reasonably accurate predictions,
with R2 values of 0.831, 0.934, and 0.937, respectively. How-
ever, their error metrics, particularly MAE and MAPE, are
relatively high compared to the other methods. Jabbar et al.
[83], Chetchotisak et al. [7], and Elsanadedy et al. [84] are
alternative models that show improved performance with R2

values around 0.93 and lower error metrics compared to the
design standards. FEM simulations (227/379 predictions)
exhibit exceptional performance, with an R2 value of 0.999
and significantly lower error metrics compared to all other
methods. However, as previously discussed, FEM simula-
tions can be computationally demanding and time-
consuming, which may limit their practical applications.
The GPR model shows impressive performance with an R2
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value of 0.996 and lower error metrics compared to the
design standards and alternative models. It demonstrates a
good balance between accuracy and computational effi-
ciency, making it an attractive choice for practical
applications.

Upon analysing the results, it becomes evident that the
FEM simulation and GPR models demonstrate the best per-
formance on the testing dataset, confirming their outstand-
ing predictive capabilities when compared to the other
methods. This superior performance can be attributed to
the optimised hyperparameters of the GPR model and the
advanced computational abilities of the FEM simulation,
which enable them to accurately capture the complex rela-
tionships within the data. Consequently, the optimised FEM

simulation and GPR models emerge as reliable and effective
tools for predicting the PSS of flat slabs without transverse
reinforcement, outperforming other established models and
design codes in this regard.

While both the FEMFEM simulation and the GPR model
with optimised hyperparameters exhibit exceptional perfor-
mance in predicting the PSS of flat slabs without transverse
reinforcement, it is important to consider the time con-
sumption and practicality of each method for real-world
applications.

FEM simulations are known to be computationally
demanding and time-consuming due to the high level of
detail and complexity involved in the process. This can be
a significant drawback in practical applications, particularly
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when rapid decision-making or a large number of simula-
tions are required. Moreover, FEM simulations often neces-
sitate advanced technical expertise and specialised software,
which may not always be readily available or accessible to
engineers and practitioners.

On the other hand, the GPR model, as a ML method,
offers several advantages in terms of time efficiency and
practicality. Once the GPR model is trained with optimised
hyperparameters, it can make rapid predictions with min-
imal computational resources, making it a more efficient
and accessible tool for engineers and practitioners. Addi-
tionally, ML models can be implemented in various pro-
gramming languages and environments, allowing for a
broader range of applications and easier integration into
existing workflows.

5.2. Developing a User-Friendly Application Interface. A user-
friendly standalone application has been developed using the
MATLAB Compiler, which is accessible on GitHub at the
following link: https://github.com/lekhuong/PunchingShea
rRCSlabs The tool combines the power of two powerful
ML models, GPR and SVM; with the accuracy of three
commonly used industry standards and three empirical
equations from previous studies. The software is designed
to be user-friendly, requiring the input of six variables with
specified units of “MPa” for fc and fy, and “mm” for d, b, and a.
Upon pressing the “calculate” button, the PSS of the slab is
predicted in real time (Figure 12).

The user interface is designed with an intuitive layout,
displaying input values in the upper left corner and predic-
tive results in the upper right corner. The user can compare

TABLE 5: Empirical models in the literature.

Reference Equation

ACI 318-19 [80]

Vn ¼min 0:17 1þ 2
β

� �
λs; 0:083

αsd
B0

þ 2λs

� �
; 0:33λs

� � ffiffiffi
fc

p
B0d

� �
B0 ¼ 4 bþ dð Þ
λs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ 0:004d

r
≤ 1

αs= 40 for interior columns; αs= 30 for edge columns; and αs= 20 for corner columns

EC2 [81]
Vn ¼ 0:18ζ 100ρfckð Þ13B0d

ζ ¼ 1þ 200
d

� �
≤ 2

fck ¼ fc − 1:6
B0 ¼ 4 bþ πdð Þ

BS 8110-97 [82]
Vn ¼ 0:79ζ 100ρ

fcu
25

� �1
3

B0d

ζ ¼ 400
d

� �1
4

B0 ¼ 4bþ 12d

Jabbar et al. [83] Vn ¼ 0:9
ffiffiffi
fc

3
p ffiffiffiffiffiffiffi

200
d

4

r ffiffiffiffiffiffiffi
f yρ

q
B0d

ffiffiffiffiffi
d
B0

r
B0 ¼ 4 bþ dð Þ

Chetchotisak et al. [7]

Vn ¼ 92:43 fcð Þ1:21 1
100ρ

� �
1:47

B0ð Þ0:42d1:35ζ4:66

B0 ¼ 4 bþ dð Þ
ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nρð Þ2 þ 2nρ

p
− nρ; n¼ Es

Ec
¼ 2 × 105

4300
ffiffiffi
fc

p

Elsanadedy et al. [84] Vn ¼ 0:127
ffiffiffi
fc

3
p ffiffiffiffiffiffiffi

ρf y
q

1þ 8d
B0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 125

d

r
B0d

B0 ¼ 4 bþ dð Þ
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FIGURE 11: Prediction results of punching shear resistance per design codes, empirical, and developed models. (a) ACI 318-19; (b) EC2; (c) BS
8110-97; (d) Jabbar et al. [83]; (e) Chetchotisak et al. [7]; (f ) Elsanadedy et al. [84]; (g) FEM simulations; and (h) GPR model.
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the results of the GPR and SVM models with the calculated
values based on practical standards such as ACI 318-19,
Eurocode 2, and BS 8110-97, as well as the empirical
equations created by Elsanadedy et al. [84], Jabbar et al.
[83], and Chetchotisak et al. [7]. The tool offers the user
the flexibility to choose the most appropriate model for their
specific needs, providing reliable and accurate results for the
PSS of RC slabs.

6. Conclusions

This research has successfully demonstrated the potential of
MLmodels, specifically GPR and SVM, for predicting the PSS
of RC slabs without transverse reinforcement. The study has
also highlighted the advantages of low-code applications, such
as MATLAB Regression Learner app, and MATLAB App
Designer in streamlining the development of ML process

TABLE 6: Statistical criteria values of design codes and empirical formulas in predicting the punching shear strength of flat slabs without
transverse reinforcement.

Reference
Performance measurement

MAE MSE RMSE R2 MAPE

ACI 319-19 [80] 103.75 25,296 159.05 0.831 29.62
EC2 [81] 65.29 9,890 99.45 0.934 20.49
BS 8110-97 [82] 57.51 9,461 97.27 0.937 15.58
Jabbar et al. [83] 57.63 9,791 98.95 0.935 16.03
Chetchotisak et al. [7] 57.27 10,555 102.74 0.929 16.88
Elsanadedy et al. [84] 54.10 9,238 96.12 0.938 15.54
FEM simulations (227/379 predictions) 9.49 211 14.53 0.999 2.62
GPR model 16.03 549 23.45 0.996 5.81

FIGURE 12: User-friendly standalone application.
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and facilitating the creation of user-friendly applications for
engineering applications.

The research employed a comprehensive database of 379
RC slab samples and utilised both Random Search and
Bayesian optimisation for hyperparameter tuning. The
results indicated that even the default hyperparameters sug-
gested by the Regression Learner app could yield satisfactory
results, emphasising the benefits of using low-code tool, such
as Regression Learner app, for rapid prototyping and effi-
cient implementation.

FEM simulations were conducted using the nonlinear
pushover technique and automated through MATLAB-
Cast3M. Despite the limitations of nonconverged simula-
tions, the FEM results exhibited exceptional performance,
with the GPR model achieving the highest predictive accu-
racy among all models.

A total of 600 Monte Carlo simulations were performed
to assess the robustness of the models, with the GPR model
demonstrating superior predictive capability, achieving an R2

value of around 0.99 for all databases. This result under-
scores the potential of GPR as a powerful tool for estimating
the PSS of RC slabs in practical applications.

Finally, a user-friendly standalone application was devel-
oped using MATLAB’s app Designer, offering real-time pre-
dictions of the PSS using the GPR and SVM models, as well
as six empirical models from the literature. This application
serves as a valuable resource for practitioners and research-
ers, allowing them to choose the most appropriate model for
their specific needs and obtain reliable, accurate results for
RC slab design.
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