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In the Three Gorges reservoir area, the overhead upright pier is the primary structural form. For intelligent monitoring of existing
terminals, this research chooses Chongqing Xintian Port as the study object and proposes a support vector machine (SVM)
damage-inducing factor (DIF) inversion model based on particle swarm optimization (PSO). To apply the finite element method to
analyze the stress distribution characteristics of quay pile groups under three main DIFs, including the stacking effect, ship impact
load effect, and bank slope effect. After characterizing the stress data, it becomes evident that there exists a correlation between
stress and each DIF parameter. Before generating the training sample set, principal component analysis is employed to reduce
dimensionality and eliminate a substantial amount of redundant data. The model has an accuracy of 0.999 for the identification of
the type of DIF and 0.975 for the identification of the location of the action of the DIF with F1 coefficients of 0.999 and 0.978,
respectively. For the strength of DIF predictions, MAE and MSE were 4.871 and 1.202, respectively, R2 was 0.986, NSE was 0.986,
WI was 0.996, and PBIAS was 0.095. After extracting every sample, the relative error for the ship impact load effect is 0.05, and the
highest relative error for the bank slope effect is 0.02; the error for the stacking effect is limited to 0.08. The results suggest that the
damage inducement inversion model of the SVM optimized by the PSO algorithm can effectively identify the DIF of the overhead
upright pier.

1. Introduction

Overhead upright wharf has the advantages of adapting to
large water level variation, good berthing stability, and high
loading efficiency, and is widely used in the construction of
the quay in the Three Gorges reservoir [1]. However, the
long-term and continuous loading makes the wharf structure
prone to damage, so real-time monitoring of the load and
timely control of damage has become a key guarantee of the
long-term reliable operation of the wharf.

The existing technology for monitoring the health of the
wharf mainly focuses on the identification and localization of
damage after it has occurred, monitoring structural deforma-
tions, and conducting external inspections of the wharf
[2, 3]. For example, Huang and Wei [4] proposed methods
for external inspections, including rust monitoring. Zhao

et al. [5] established damage identification indicators based
on structural dynamic responses. These scholars mainly focus
on monitoring mechanical parameters and deformations of
wharf structures after damage has occurred, but they pay less
attention to the monitoring and intervention of loads before
damage occurs. Therefore, this study introduces the concept
of the “Damage-Inducing Factor” (DIF) and incorporates
load monitoring indicators into the monitoring of overhead
vertical dock structures. We aim to advance research on dam-
age inducement, to detect potentially dangerous loads
promptly at the early stage of load application, before damage
occurs, and to take necessary intervention measures.

“Damage-Inducing Factor” is defined as the application
of loads to structures that exceed regulatory limits but do not
cause damage to the dock. It serves as a “yellow light”warning
for dock operations. Therefore, monitoring and analyzing
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damage inducement are essential components of load moni-
toring. During the operation of docks, adverse factors such as
overloading, reckless berthing of ships [6, 7], and lateral soil
pressure on the shore slope often lead to structural damage.
Hence, we have selected these three main detrimental factors
as the focus of our research.

Pile foundations are the most critical load-bearing com-
ponents of dock structures and provide an important win-
dow for observing the structural load state. Therefore, the
study of the “Damage-Inducing Factor” aims to establish a
nonlinear mapping between the mechanical characteristics
of pile foundations and the load state of the entire dock
structure, enabling the reverse calculation of structural load
state from pile foundation stress.

For the issue of nonlinear mapping mentioned above,
machine learning offers unique advantages. For instance,
Shu et al. [8] used various models to identify the stability
of slopes. Wang et al. [9] employed Support Vector Machines
(SVM) to assess the factors influencing the thermal deforma-
tions of dams and explained the impact of temperature on
deformations. Li et al. [10] used the Differential Evolution
Grey Wolf Optimization-SVM to predict the real displace-
ment of dam bodies. SVM, as a classic machine-learning
model, performs well in high-dimensional data and exhibits
excellent generalization capabilities, especially for small-sample
data [11]. However, SVM’s performance is closely related to
kernel parameters and penalty factors [12], which, to some
extent, limits its application. Particle swarm optimization
(PSO) has a fast convergence rate and fewer hyperparameters,
making it a popular choice for optimizing hyperparameters
[13–16]. For example, Jia et al. [17] combined PSO with
locally supported SVM and used PSO to optimize parameters
for landslide prediction. Fei et al. [18] introduced the PSO
algorithm to estimate the permeability coefficient of engineering
rock and soil non-watertight structures based on PSO–SVM.
Hence, PSO has been selected as the optimization technique
for SVM.

To meet the demand for real-time monitoring of over-
head upright quay structure, this research takes Chongqing
Xintian Port as the research object and uses the finite ele-
ment method to analyze its static monitoring index under
the effect of damage inducements such as stacking effect,
ship impact load effect, and bank slope effect. This research
proposes an SVM inversion model based on the PSO algo-
rithm, which can identify the idiosyncrasies of the stress
distribution in the pier pile foundation and perform real-
time monitoring and early warning work on the damage
inducement of overhead upright piers. This study can pro-
vide technical references for the safe operation of the wharf.

2. Group Piles in Overhead Upright Piers under
the Influence of DIFs: Stress Analysis

2.1. Model Building and Material Parameters Selection. The
structural section 8 of the first phase of the Xintian Port in
Chongqing is used as a general research object, and a finite
element model is established, as shown in Figure 1, to
completely constrain the bottom surface and to constrain

the normal displacements of the four bedrock sections in
the front, back, left, and right. The normal displacements
on the side and rear of the bank slope are restricted in the
initial stage. When the bank slope effect is loaded after the
balancing of in situ stress, the restriction on the displacement
behind the bank slope is released. Themodel uses C3D8R solid
elements, which have a total of 42,481 units and 542,485 nodes.
Table 1 is used to determine the material properties.

2.2. DIFs. DIFs are actions taken on the quay structure that
exceed the quay code value but does not result in the quay
structure failing from overload action. As a quay monitoring
indicator, DIFs are the quay components before the emer-
gence of the “yellow light” stage of plastic damage. By moni-
toring the DIFs, companies possess the ability to carry out
berthing optimization, shore monitoring, and other control
operations in advance to stop the damage at its source and
stop it from getting worse.

The DIF working conditions are taken according to the
Chinese “JTS144-1-2010”, “JTG D60-2015,” and “GB50007-
2011,” and the design values are enlarged appropriately (by
20%–50%). Due to the large transverse stiffness of the quay,
the shipload only considers the force perpendicular to the
frontier line of the quay. Specific values are taken, as shown
in Table 2.

The stacking effect position is shown in Figure 2, and the
stacking area of the quay panel is divided into four blocks.
The ship impact load effect position is shown in Figure 2, and
15 impact positions are set according to different water
levels. The bank slope effect mode is shown in Figure 2,
and the load is equated to the surface load. According to
Table 2, three groups of different DIFs were selected for cal-
culation; Group I applied a 30 kPa uniform load in area 3, and
Group II applied a 500 kN equivalent static ship impact action
on the 3-bay row frame three berthing members. Group III
applied a shore slope action of 1,200 kN.

2.3. Group Pile Stress Distribution Characteristics Analysis.
Figure 3 displays the outcomes of the calculation for Group I.
For real-time wharf monitoring, stress collection points are
placed between the design low water mark (143.6m) and the
top of the pile (153.4m), with five stress collection points
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FIGURE 1: Finite element model of the wharf.
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placed at equal intervals from top to bottom for each pile.
The locations of these 20 pile bases and 100 collection points
are depicted in Figure 4. Each pile foundation’s stress collect-
ing locations are labeled no. 1 (top), no. 2, no. 3, no. 4, and
no. 5 (bottom), in that order.

The stress data at the collecting location of each pile
foundation 1 are displayed as indicated in Figure 5(a)–5(c),
which was created by extracting the calculation results of the

three groups of working circumstances defined in the previ-
ous section. As seen in Figures 5(a) and 5(c), the horizontal
stresses caused by the stacking effect and the bank slope
effect are distributed among the piles in an arch-like pattern,
with the stacking effect stress concentrations being higher at
the second and third rows of piles and the bank slope effect
concentrations being higher at the bases of the fourth row of
piles and gradually decreasing toward the riverside. From

TABLE 1: Material parameters.

Material category
Density
(kg/m3)

Young modulus
(Pa)

Poisson
ratio

Internal friction angle
(°)

Cohesion
(kPa)

Expansion angle
(°)

Reinforced concrete 2,500 3.0× 1010 0.25 – – –

Steel member 7,850 2.06× 1011 0.3 – – –

Riprap compaction 2,300 2.5× 1010 0.25 37 5 0.1
Bedrock 2,400 2.2× 1010 0.21 32 150 0.1

TABLE 2: Work conditions of damage-inducing factors.

Damage-inducing factors Point Direction Strength of effect

1 Stacking effect and gravity Panel #1–4 Vertical downward 10–55 kPa
2 Ship impact load effect and gravity Berthing member #1–15 Horizontal toward the shore side 150–600 kN
3 Bank slope effect and gravity Back side of soil Horizontal toward the river side 0–1,300 kN/m

30 kPa

Horizontal toward the
river side

Horizontal toward the
shore side

Bays 1 Bays 2 Bays 3 Bays 4 Bays 5
1234
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(a) Frontal view of ship collision point
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(b) Side view of ship collision point
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FIGURE 2: Method of lateral earth pressure of slope: (a) illustration of stacking effect; (b) illustration of bank slope effect; (c) illustration of ship
impact load effect.
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Figure 5(b), it is clear that the horizontal stress at the front
row of the piling foundation’s collecting point beneath the
impact position (impact point no. 3), which is subject to
the effects of ship impact loads, changes abruptly. Due to
the intricate coupling effect of the quay superstructure, the
impact on the last three rows of pile foundations is less
severe. As seen in Figure 6(a)–6(c), the stress data from

each collecting point of the first row of the pile foundation
are plotted. It is discovered that the vertical stress of the pile
foundation shows a more pronounced progression with loca-
tion and that the pattern of distribution under the influence
of each damage inducement should differ.

The above investigation reveals that the group pile stress
distribution exhibits clear specificity when subjected to various

Stress (MPa)
0.629
0.577
0.524
0.472
0.367
0.315
0.262
0.210
0.157
0.105
0.005
0.0004

FIGURE 3: Stress program under stacking load in no. 3 stacking load area.

Collection point 1

Collection point 5
11

ðaÞ
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R
 = 1.3

5 m

ðbÞ
FIGURE 4: The layout of stress acquisition points: (a) side view of pier; (b) 1–1 cross-section.
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damage inducements, which can offer feature values for the
inverse identification of damage inducement.

3. Inducement Inversion Model Based
on PSO–SVM

3.1. SVM-Based Inversion Model for Damage Inducement.
Based on the stress data at known collection places, damage
inducement inversion seeks to precisely determine the type,
location, and intensity of damage inducement on the wharf
structure. The inversion of its intensity is a nonlinear regres-
sion problem, while the identification of its location and type
of action is a classification problem [19].

SVMs employ rigorous optimization theory and mathe-
matical reasoning to provide a singular response to this ques-
tion [20]. SVMs, as opposed to neural networks, offer the
benefit of eliminating structural risk, solving problems

without local extrema, and also having strong generalization
performance with small samples and the ability to accurately
estimate any function [21]. So, a mathematical model for
damage inducement inversion based on SVMs is suggested
in this study.

Ypr ¼ SVM Xð Þ
Ypr ¼ ypr1 ; y

pr
2 ; y

pr
3

À Á
X ¼ x1; x2; x3…xlð Þ

8><
>: ; ð1Þ

where Yprrepresents the target vector to be inverted. ypr1 ; y
pr
2 ;

ypr3 represents the inverse damage inducer type, action loca-
tion, and action intensity, respectively. X represents the
reduced dimensional strain vector. l represents the dimension-
ality of X.
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FIGURE 5: Horizontal stress distribution at group pile collection points: (a) stacking effect; (b) ship impact load effect; (c) bank slope effect.
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FIGURE 6: Vertical stress distribution at group pile collection points: (a) stacking effect; (b) ship impact load effect; (c) bank slope effect.
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The original challenge of resolving the damage-causing
component Y is represented by the distribution of sample
points in space after the model imports the inverse samples.
The original issue is changed into a related dyadic problem
using quadratic convex optimization theory. The dyadic
problem is then solved using the SMO method to get the
globally optimal decision plane, which completes the inver-
sion of the DIF. The kernel function is introduced to map the
sample points to higher dimensions for the nonlinear issue.
The use of Gaussian kernel functions to handle nonlinear
samples has been demonstrated in studies [22] to have a
high level of accuracy. The use of the Gaussian kernel func-
tion is made in this research.

κ Xi;Xj

À Á¼ exp −
Xi − Xj

 
2σ2

 !
; ð2Þ

where σ represents the bandwidth of the Gaussian kernel. xi;
xj represents the sample vectors.

3.2. Optimization Solution Based on PSO. The correctness of
the mathematical model is significantly impacted by the
SVM’s σ bandwidth and the penalty factor C Composed
during the solution process, according to studies [21], and
establishing the parameter values by trial calculations has a
significant blind spot.

PSO [23, 24] is introduced in this research. Each particle
in this algorithm represents a potential solution, and its posi-
tion reflects the fitness value the fitness function determined.
To achieve the overall optimization, the movement of the
particles is dynamically changed by other particles’ move-
ment experiences. Its convergence speed is rapid, and its
computational volume is less than that of the genetic algo-
rithm. The optimal SVM in this work contains only two
hyperparameters, yet its sensitivity is great and significantly
affects the outcomes. The PSO algorithm is chosen because it
has a fast convergence speed, a strong global search, and a
relatively simple structure. Manually adjusting the parame-
ters results in a large workload and low accuracy, while the
other optimization methods introduce more hyperpara-
meters to make the model more bloated. Figure 7 displays
the optimization’s flow.

The fitness function for the inverse identification of the
damage-inducing agent’s mode and site of action is as fol-
lows:

ki ¼
1; yi ≠ ypri
0; yi ¼ ypri

(
; ð3Þ

fitc ¼ ∑
n

i¼1
ki; ð4Þ

where yi represents the true damage inducement type and
location of the action, ypri represent the damage inducement
type and location of the effect of counter-performance and n
represents the number of samples.

The fitness function for the inversion of the strength of
the DIF’s effect is as follows:

fitr ¼
1
n
∑
n

i¼1
Si − Spri
 2

2; ð5Þ

Si represents the true damage inducement effect intensity, Spri
represents the damage inducement effect intensity of the
counter-performance, and n represents the number of
samples.

4. Construction of Inverse Sample Set for
Damage Inducement

4.1. Batch Processing of Finite Elements Method Calculations.
Python is utilized for the secondary development of finite
element software to implement batch finite element model
solution calculation and batch result extraction. The steps are
shown in Figure 8.

The experimental batch calculates 10,000 sets of stacking
action conditions, 10,000 sets of ship impact action condi-
tions, and 1,000 sets of shore slope action conditions.
Finally, the stress data at their collection points are extracted
accordingly.

4.2. Sample Data Analysis. Box line diagrams, as shown in
Figure 9(a), were created by extracting the single-dimensional
stress data under various impact point locations. The box line
diagrams, from bottom to top, represent the minimum, first
quartile (Q1), median, second quartile (Q2), and maximum
values of the data, respectively, and show the distribution
characteristics of the data. Figure 9 shows that the stress
data appear to have a clear regularity with the impact point
location, the impact point from right to left (1–5/6–10/
11–15), and the stress at this monitoring point will increase
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FIGURE 7: Flowchart of particle swarm optimization algorithm.
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significantly. Box line diagrams, as shown in Figure 9(b), are
created by extracting the single-dimensional stress data under
various pile load locations. The stress distribution is also cor-
related with the stacking position.

Stresses for different DIF categories were extracted and
plotted as in Figure 9(c). The stress levels under various
damage inducer types range significantly from one another.
Out of the three, the pier slope action has the potential to
cause the floating greater strains on the pier piles, perhaps
resulting in a more dangerous pier structure.

The location and kind of DIF are strongly correlated with
the stress data, as seen by all of the aforementioned figures.
The rich feature information in the stress data may be uti-
lized as the model eigenvalues.

The stress data for the first 10 dimensions were extracted
to plot a histogram as in Figure 10. Although the dimensional
stress data shows some minor variations, the overall distribu-
tion remains constant, indicating that there are redundant
data points and a lot of information features. As a result,
the dimensionality reduction process must be completed.

4.3. Construction of the Inverse Sample Set. To extract mean-
ingful information, the stress data that were retrieved above
must be downscaled. Principal component analysis (PCA)
[21] is frequently used to process data that have been dimen-
sionally reduced. The general steps for PCA processing are as
follows:

Hypothetical data sample T ¼ðα1; α2; α3;…αmÞ,m is the
number of samples, and the dimension of each sample is n.
The covariance matrix C is calculated by Equation (6).

C ¼ 1
m − 1

∑
m

j¼1
αj − α
À Á

αj − α
À Á

T ; ð6Þ

where the α represents the mean of the sample, and then the
feature value λ and its corresponding feature vector U are
calculated by solving Equation (7).

λI − Cð ÞU ¼ 0; ð7Þ

where I represents the unit matrix such that λ1>λ2>…>λm
and their corresponding feature vectors are U1;U2;…;Um:
The transformation matrix W formed by them as follows:

W¼ U1U2…Um½ �; ð8Þ

Calculate the final PCA transformation from W:

Y ¼WTT; ð9Þ

where Y represents the altered data. Typically, the most use-
ful information is found in the first r rows of Y . Therefore, to
achieve data dimensionality reduction, the first r rows are
extracted. r Select by the following formula:

∑
r

j¼1
λj

∑
m

j¼1
λj

≥ 0:95: ð10Þ

As a result, the sample’s dimensionality is decreased from
n to r dimensions while still retaining more than 95% of the
informational value of the original data sample.

The data normalization is done by the following
equation:

T 0
i ¼

αi − αmin

αmax − αmin
; ð11Þ

where T 0
i represents the normalized sample, αmax, αmin

represents the maximum and minimum values in the
sample.
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After normalization and dimensionality reduction, the
number of dimensions and the information content of the
data are shown in Table 3.

Figure 11 displays the plot of the interpretable variance of
stress data before and after dimensionality reduction.
Figure 11 illustrates how there was a significant variation
in the percentage of interpretable variance between the stress
data before and after dimensionality reduction. While some
stress data accounted for a high percentage of interpretabil-
ity, others had a very low percentage. Following dimension-
ality reduction, the data’s percentage of interpretable
variance became more uniform, indicating that each dimen-
sion’s relative importance had increased and that no major
dominant feature of the stress data was present in any one
dimension. This indicates that PCA removes some duplicate
data while extracting a great deal of valuable information.

The inverse sample’s feature Xd is constructed from the
reduced-dimensional stress data, where the number of rows
in Xd corresponds to the sample’s number and the number of
columns to its dimension. With the number of lines equaling
the number of samples, denote y1; y2; y3 as the various types,
locations, and strengths of damage induction. The sample set

for the inversion of damage inducement is recorded as a
matrix with the columns Xd; y1; y2; y3.

5. SVM Damage Inducement Inversion for PSO

5.1. DIF Inversion Procedure Based on PSO–SVM Model.
Figure 12 plots the overall research framework and the inver-
sion process, which includes data characterization, model
accuracy analysis, and the construction of the PSO–SVM
inversion model.

5.2. Optimization Training of Inverse Model. The 21,000
datasets in the generated inverse sample set were randomly
chosen as 80% of the training sample set and 20% of the test
sample set for the optimization training of the inverse model.
Figure 13 illustrates the iterative process of parameter opti-
mization for the SVM inverse model using the particle
swarm technique. The model tends to converge after a pre-
determined number of iterations.

The particle swarm algorithm hyperparameters are set in
Table 4. The number of particle swarms is represented by
swarm size in Table 4, the maximum number of iterations is
represented by Maxiter, the upper and lower limits of the

TABLE 3: Dimensions and information content after data processing.

Data processing method Data dimension Data information content (%)

Raw data 100 100
Normalization process 100 100
PCA 23 95.7
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FIGURE 11: Interpretable variance of data before and during reduction of dimensionality: (a) pre-dimensionality; (b) after dimensional
reduction.
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particle search are represented by lb and ub, and the optimal
hyperparameters for particle swarm search are best_C,
best_gamma.

The performance of the categorical inverse model for
damage inducement types and action locations on the train-
ing sample set after optimization is shown in Table 5.

The regression inversion model of the damage induce-
ment strength was optimized, and the realizations on the
training sample set are shown in Table 6.

In Table 5, precision indicates the proportion of the
number of correctly predicted samples in the sample set to
the total number of samples. The higher the value, the better
the sensitivity of the model. F1-score is the summed average
of precision and recall, and the larger the value, the higher

the sensitivity and precision of the model. The above three
values range from 0 to 1, and the closer the value is to 1, the
better the generalization ability of the model. After the opti-
mization of the inverse model for DIF type and action loca-
tion, the above three indexes are above 0.978, indicating that
the optimized inverse model has high sensitivity and accu-
racy in the training sample set.

In Table 6, the mean absolute error (MAE) and mean
squared error (MSE) represent the degree of difference
between the predicted and true values of the model, which
is calculated in the following equations [25]:

MAE ¼ ∑
n

i¼1
yi − ypi
�� ��; ð12Þ
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MSE ¼ ∑
n

i¼1
yi − ypi
À Á

2: ð13Þ

5.3. Classification Prediction by Inverse Model of Damage
Inducement Factor Types and Location. The machine-
learning model must not only perform well on the training
sample set but also be able to recognize and predict sample
points outside of the training sample, i.e., the model must not
be overfitted and have good resilience. The predictions of the
type and location of damage inducement were then projected
as a heat map, and the inverse model was tested using the test
sample set created in the previous section. The test sample
set’s model performance is indicated in Figure 14 and Table 7
for the model.

Comparing Table 5 with Table 7, the three indices of the
model decreased slightly, but their values were still above

0.975. In summary, the inverse model has an excellent per-
formance in the test sample set for the inverse identification
of the type and location of damage inducement, which
proves that the model does not have the phenomenon of
overfitting and has good robustness.

The numbers in Figure 15’s diagonal represent how
many test sample sets the inversion model accurately pre-
dicted. For instance, the first row of Figure 15(a) shows that,
of the 2007 test sample sets for the stacking action, 2006 sets
were correctly predicted by the inversion for the type of
damage causation, and one set was mistakenly identified as
shore slope action. The values in the classification model that
are on the diagonal are all significantly greater than the other
values.

Plotting the predicted structure of the injury causative
agent type and the location of action as a histogram, as
shown in Figure 16, and adding the kernel density curve
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FIGURE 13: Particle swarm optimization iteration process.

TABLE 4: Particle swarm hyperparameter.

Hyperparameter Swarm size Maxiter lb ub Best_C Best_gamma

50 30 0.1 50 6.153 0.598

TABLE 5: Classify model training metrics.

Inversion category Sample size Precision rate F1-score Recall rate

Types of damage inducement effect 16,800 0.999 0.998 0.996
Location of damage inducement effect 16,800 0.979 0.978 0.978

TABLE 6: Regression model training metrics.

Inversion category Sample size MAE MSE

The strength of damage-inducing factor 16,800 2.488150 0.731
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reveals that the differences between the true and predicted
values are less, and the kernel density curves exhibit good
agreement.

5.4. Regression Test of the Inverse Model of the Intensity of
DIF. The performance of the inverse model of effect strength
on the sample test set is shown in Table 8. NSE, WI, R2, and
PBIAS coefficients—statistical parameters used to measure
the degree of model fit—are introduced to examine the

accuracy of the regression model from a variety of angles.
The closer the last parameter is to 0 (indicating less model
error) and the closer the first three parameters are to 1
(indicating a better fit).

Comparing Table 8 with Table 6, it can be seen that the
MAE and MSE, although increased, still have small values.
PBIAS is just 0.095, and the remaining four parameters [26]
—R2, NSE, WI, and 0.986, 0.986, and 0.996, respectively—
show that the model’s overall predictive tendency is
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FIGURE 14: Regression model relative error plots: (a) types of damage inducements; (b) position of stacking loading; (c) position of ship impact
load effect.

TABLE 7: Classification model test metrics.

Inversion category Sample size Precision rate F1-score Recall rate

Types of damage inducement effect 4,200 0.999 0.999 0.998
Location of damage inducement effect 4,000 0.975 0.978 0.976
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excellent. This indicates that the inverse model for damage
inducement strength prediction has high accuracy.

The box-and-line plot of the relative error under each
injury causation category was extracted and plotted below.

Figure 14(a) shows that the ship striking action is antici-
pated with a moderate error of less than 5%, the bank slope
action is predicted with less error, and the relative prediction
error for the heap load action is close to 8% with fewer
anomalies points.

In Figure 14(b), a box plot represents the relative errors
of the strength prediction under each action point of the ship
collision. Under the influence of ship collision, it is evident

that the model’s strength prediction error distribution at
each action point is centralized, floating above and below
the 0-point, and devoid of any clear skewness pattern. The
relative error upper and lower boundaries are also less than
6%, and each action point only contains a very small number
of prediction anomalies. The aforementioned illustrates how
accurate and successful the PSO-SVM prediction model is in
predicting the severity of ship collisions.

In Figure 14(c), a box plot represents the relative errors
of the strength prediction under each action point of the
stacking effect. Similar to the ship impact action, the stacking
action error distribution exhibits more anomaly points, and
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while the strength prediction may be impacted in certain
instances, it is still very accurate in the great majority of
situations.

Extract the predicted values of bank slope effect strength
and plot the histogram with the true values as in Figure 17.
The two data distributions are approximate and combined
with Figure 14(a), which shows that the maximum relative
error is only less than 2%, while there are very few anomalies.

To observe the fitting accuracy of the inverse model data
more intuitively, 30 groups of damage inducements were
randomly selected, respectively, and the prediction results
of the three damage inducements were plotted as bar graphs
after calculating the relative errors with the real effect
strength, as shown in Figure 18. The largest relative error
of the prediction results of the three damage inducements is
only 7.87%.

In summary, the SVM optimized by particle swarm has
high reliability in the inversion of damage inducement of
overhead upright piers.
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TABLE 8: Regression model test metrics.

Inversion category Sample size MAE MSE R2 NSE WI PBIAS

Strength of damage-inducing factor 4,200 4.871 1.202 0.986 0.986 0.996 0.095
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FIGURE 17: Histogram of stresses acting on the bank slope.
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6. Conclusions

This research selects damage inducement as an important
index for wharf monitoring and conducts damage induce-
ment inversion research for the demand of real-time moni-
toring in the Xintian Port wharf.

The main findings are summarized as follows:

(1) For an overhead upright wharf, the finite element
method was used to investigate the stress distribution
characteristics of group piles under the influence of
three different damage inducements. It was discov-
ered that the stress distribution of group piles dem-
onstrated blatant specificity under the influence of
various damage inducements.

(2) By secondary development of abaqus through Python,
21,000 sets of stress data of group piles collected
by different damage inducements are calculated and

extracted. The types of damage causative factors, the
location of the action, and the stress data are found to
be correlated through the analysis of the stress data. A
significant amount of redundant information is discov-
ered by comparing the dimensions of the stress data; the
sample set of the inversionmodel is constructed follow-
ing the downscaling process of the stress data.

(3) A PSO-based damage causation inversion model for
SVMs is presented.

The model’s accuracy in predicting the kind and site of
the injury-causing agent’s action was 0.999, 0.975, and its
corresponding F1 coefficients were 0.999, 0.978. The pre-
dicted values are extracted and plotted in heat maps and
histograms, and it is discovered that the model has good
accuracy, which satisfies the requirements of this study.

The introduced model evaluation parameters R2, NSE,
WI, and PBIAS are 0.986, 0.986, 0.996, and 0.095, respectively,
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FIGURE 18: Random 30-group predictive relative error histogram for different damage inducements: (a) stacking effect strength; (b) bank slope
effect; (c) ship impact load effect.
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and the model’s prediction results on the strength of the
action mae and mse are 4.871 and 1.202, respectively. These
metrics demonstrate the high reliability of the optimized
inversion model. When the prediction results and errors are
extracted to plot box line plots and histograms, it is evident
that the maximum relative error of the shore slope action is
0.02, the maximum ship collision action is 0.05, and the stack-
ing effect error is not greater than 0.08. This suggests that the
model can accurately determine the degree of damage causa-
tive factors of the overhead upright wharf.

(4) This study included the bank slope action as a dam-
age causative component by comparing the research
in the same series [27–31]. By examining its correla-
tion with the stress data, it was discovered that it has
a significant impact on the stress data, which may
raise the pier structure’s risk. Based on this, a statis-
tical analysis of the stress data demonstrated a clear
association between the stress data and each damage
causation parameter. The optimization method (PSO)
was then incorporated to address the blind spot dur-
ing the parameter adjustment process. Compared
with the same type of study [29], after adding the
bank slope thrust, the accuracy of the model strength
prediction decreased slightly, but the species and loca-
tion prediction improved slightly (previous model,
strength R2 0.994, species accuracy 0.98, location
accuracy 0.975); this may be due to the difficulty of
the model prediction due to the addition of the bank
slope load, but thanks to the optimization of the PSO
and the SVM’s good classification power, there are
better results in the identification of species and loca-
tion ability. It makes the model have better results in
species and location identification. In summary, the
model could accurately identify the type and location
of the damage causative agent, and at the same time
inversely perform the corresponding intensity. In
summary, the model could accurately identify the
type and location of the damage causative agent,
and at the same time inversely perform the corre-
sponding intensity. The implementation of PSO
results in a faster convergence speed, eliminating the
need for manual parameter tuning and improving the
accuracy of species and location identification. How-
ever, the addition of bank slope action somewhat
reduces the accuracy of intensity prediction but still
satisfies the objectives of this study.

6.1. Future and Prospects. An important direction for this
topic in the future is to integrate the wharf monitoring
data with numerical simulation and intelligent algorithms
for multivariate data fusion to realize the long-term intelli-
gent multivariate monitoring of the Xintian Port. The inver-
sion of DIF of overhead vertical high pile wharf is a research
topic of great practical significance. The results predicted by
the inversion model are the important parameters of the
digital twin model of Xintian Port Wharf, which is the
important foundation of intelligent monitoring. As a result

of the study’s limitations—which include the intricacy of the
research object and the realities of technical considerations—
the following recommendations for further research are
made:

The DIF used in this article are simplified loads, which
are the design values extrapolated from the pertinent speci-
fications and increased by 20%–50%. Future research will
concentrate on the range of loads used in Xintian Port’s
real operations. The mechanical environment around the
wharf itself is complicated; rather than focusing on a single
load in this study, it is more common for many loads to
occur simultaneously. Future studies will primarily focus
on the inverse detection of various loads.
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