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Stair slabs are some of the most common structural members with zigzag shapes in various buildings. However, the calculated
defection is usually overestimated during the design of stair slabs. In this article, the overestimated defection is amended by
utilizing step stifness. To this end, it is assumed that the stress distribution of a unit cell in stair slabs is linear or bilinear under
a constant bending moment. Stair slabs can be approximately regarded as fat slabs to derive the equivalent thickness based on the
same bending strain energy. Subsequently, fnite element (FE) models are established to verify that the obtained equivalent
thickness can be applied to reinforced concrete (RC) stair slabs. To improve computational efciency, the normalized models of
stair slabs are adopted for further analysis. On this basis, a novel design method is proposed considering step stifness for RC stair
slabs. Furthermore, numerical examples are presented to compare the improved design method with the FE method and the
conventional method. Te results demonstrate that the design method considering step stifness can not only ensure structural
safety but also reduce concrete and steel consumption, making the design of stair slabs more economical and reasonable.

1. Introduction

Reinforced concrete (RC) stair slabs are supported on two
opposite sides to connect planes at diferent heights, having
the advantages of simple appearances, clear load trans-
mission paths, and convenient construction. Te shape of
stair slabs is generally zigzag. In the previous studies [1–3],
the analysis and design of stair slabs were conducted using
the minimum cross-sectional depth perpendicular to the
bottom surface. In some cases, it is found that the designed
stair slabs are quite thick to control defection, leading to
a headroom problem. However, the experiments [4] pointed
out that steps play a part in resisting the external loads,
signifcantly contributing to the overall stifness of stair
slabs. Terefore, it is necessary to properly consider the
positive infuence of step stifness on defection control
during design.

Accurate estimation of the stifness of stair slabs is
a crucial issue. As fexural members, stair slabs can be
considered as beams with periodically variable cross

sections. In the past several decades, diverse methods have
been proposed to solve the problems relating to the stifness
of variable cross-section beams, such as defection prediction
and vibration analysis. Some studies [5–7] concentrated on
deriving the exact element stifness matrix of beam elements
with linearly variable cross-section dimensions based on the
Euler–Bernoulli and Timoshenko beam theories. After that,
displacement interpolation functions were improved to
apply the beam elements to more member types with var-
iable cross sections [8, 9]. Romano [10] established the
fourth-order diferential equations to get the analysis so-
lutions of defection for varying cross-section beams. Yoon
and Lee [11] added three warping degrees of freedom to each
node of beam elements to consider the shear defection of
varying cross-section beams. Huang et al. [12] divided the
actual defection into the homogenized defection and the
warping defection to predict the efective stifness of pe-
riodic beams. For vibration analysis of step beams with the
abrupt change of cross sections, the conventional methods
are the fnite element (FE) method, the Rayleigh method,
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and the component modal analysis [13, 14]. Moreover, a few
innovative approaches were developed to improve the ac-
curacy and efciency of vibration analysis, such as Green’s
functionmethod [15], the composite element model [16], the
Adomain decomposition method [17], the diferential
quadrature element method [18], the discrete singular
convolution algorithm [19], and the elemental impedance
method [20].

Despite these advances, the predicted stifness and
natural frequency of variable cross-section beams are larger
than the experimental results in most cases. El-Mezaini et al.
[21] attributed it to neglecting the stifness reduction caused
by the small stress regions existing in the variable cross-
sectionmembers. On the basis of the explanation, Zheng and
Ji [22, 23] created a unifed expression of equivalent inertia
moment for periodic beams to estimate defection and
natural frequency. In addition, Xu et al. [24] removed the
small stress regions on steps to secure an analytic solution of
equivalent thickness for RC stair slabs. Tough it is con-
venient and efcient to predict the stifness of variable cross-
section members via the calculation formulas [22–24], the
stress distribution in members is oversimplifed in the
derivation process. As a result, the application of such
methods is limited to the range of members with simple
shapes. In terms of periodic beams with a complicated
microstructure, further studies [25–27] combined the as-
ymptotic homogenization method and the fnite element
method to compute the efective stifness of the beams.
However, for the asymptotic homogenization method, the
fnite element analysis requires to be implemented iteratively
in diferent boundary conditions, increasing computational
cost. Consequently, more accurate and efcient approaches
should be developed to obtain the overall stifness of peri-
odically variable cross-section members.

Tis article aims to propose a novel method to calculate
the defection of stair slabs with consideration of step stifness.
In the elastic range, the stress distribution in a unit cell is
assumed to derive the equivalent thickness of stair slabs.Ten,
the nonlinear FE analysis is conducted to ensure the appli-
cability of the obtained equivalent thickness in RC stair slabs.
Based on the Chinese codes [28, 29], an improved design
method for RC stair slabs is suggested. Subsequently, nu-
merical examples are implemented to illustrate the reliability
and advantages of the proposed design method in compar-
ison with the FE method and the conventional method.

2. Theoretical Analysis for Equivalent
Thickness of Stair Slabs

A stair slab consists of an inclined slab and a series of
identical steps, as shown in Figure 1(a). Te relationship
among geometric parameters of the stair slab is expressed as
follows:

k � tan θ �
h

b
, (1)

where k is the slope of the stair slab, θ is the inclined angle of
the stair slab, h is the height of each step, and b is the width of
each step.

For simplicity of analysis, a unit cell is taken from the stair
slab with the width w, as depicted in Figure 1(a). Te unit cell
can be split into two parts. One part is subjected to very small
stresses and expressed as “the part ABC,” and the other part,
of which upper boundaries are called “the path A-C-D,” could
efectively provide stifness for the stair slab. Te assumed
normal stresses in the path A-C-D for the unit cell are il-
lustrated in Figure 1(b). A Gaussian coordinate system of the
unit cell is established in Figure 1(c). Te corresponding
equivalent fat slab is shown in Figure 1(d).Te length of each
unit cell along the x direction s is written as follows:

s �

������

b
2

+ h
2

􏽱

. (2)

2.1. Basic Assumptions. In the unit cell analysis model as
illustrated in Figure 1(c), the geometry of the unit cell is the
combination of a triangular step and a rectangular slab. Te
basic geometric parameters, which determine the di-
mensions of the unit cell, contain the height of the step h, the
width of the step b, the thickness of the slab t, and the width
of the slab w. Note that the material of the unit cell considers
only concrete, but steel rebars are excluded. Tis is because
themain factors to infuence the overall stifness of stair slabs
within the elastic range are the geometry, dimensions, and
properties of concrete, rather than the quantity, positions,
and properties of steel rebars. Furthermore, the boundary
conditions of the analysis model are a pin support at one end
and a roller support at the other, making the unit cell remain
pure bending when a bending moment is applied.

To simplify the derivation process of equivalent thick-
ness within the elastic range, the assumptions relating to the
unit cell in Figure 1(c) are as follows:

(1) To make stairs as comfortable to walk up and down
as possible, the height h and the width b in a step
should satisfy the following equation [30]:

T � 2 h + b, (3)

where T is the characteristic length of steps, which
varies from 550 to 700mm and should be close to
630mm [30].

(2) Te material of the unit cell is homogeneous, iso-
tropic, and linearly elastic. Its elastic modulus is
represented by E.

(3) A constant bending momentM is applied in the unit
cell so that the upper part of the unit cell is in
compression and the lower part is in tension, as
shown in Figure 1(c).

(4) Te part ABC in Figure 1(c) is denoted as “the in-
efective region” due to the extremely small contri-
bution to the stifness of stair slabs, and the other
part is termed “the efective region” [22]. Two lines
AC and CD are the upper boundaries of the efective
region in Figure 1(c). Te angle of the line AC with
respect to the x direction is assumed to be 30°. Te
projection lengths of the lines AC and CD on the x

2 Advances in Civil Engineering



axial are s1 and s2, respectively. Te lengths s1 and s2
are obtained as follows:

s1 �

�
3

√
ks

�
3

√
k + 1

,

s2 �
s

�
3

√
k + 1

.

(4)

(5) Te normal stress distribution in the unit cell is
linear or bilinear as shown in Figure 1(c), and the
slope of the normal stress changes at y= t. Te
normal stress function σb

x(x) in the path A-C-D in
Figure 1(b) is given as follows:

σbx(x) �

−
6M

wt
2, x � 0,

0, 0<x≤ s1,

−
6M

s2wt
2 x − s1( 􏼁, s1 < x≤ s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

(6) Te location of the neutral axis and the radius of
curvature in the unit cell vary linearly in the range of
x= s1 to x= s.

(7) Te bending strain energy in the unit cell is the same
as that in the corresponding equivalent fat slab.

θ

The jth floor

The ith floor

b

Lc

t

Inclined slab

Step

h
A unit cell of
the stair slab

x0 s1 s

6M
wt2

−

σb
x

30°

x

y

A

B

C

D

0
s2

b
h

Te ineffective region

t

θ

Upper boundaries of the effective region

Neutral
surface

MM

Ι

Ι

Ι

Ι

z

y

ow
Ι-Ι

t

s1

Equivalence

s

(a) (b)

(c)

(d)

t

s

t a

t e

Figure 1: Schematicdiagrams of a stair slab and the analysis model of a unit cell. (a) A stair slab consisting of an inclined slab and a series of
identical steps. (b)Te assumed normal stresses in the path A-C-D for the unit cell. (c)Te normal stress distribution of the unit cell. (d)Te
equivalent fat slab.
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2.2. Derivation of Equivalent Tickness. For simplicity, the
inefective region is omitted in the analysis process. Within
the elastic range, the derivation of equivalent thickness is
given in the following:

In Figure 1(c), the vertical distance function u(x) from
the x axis to the lines AC and CD is written as follows:

u(x) �

x
�
3

√ + t, 0≤x≤ s1,

−k(x − s) + t, s1 < x≤ s.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Using equations (1) and (3), the height h and the width w

in a step can be derived as follows:

h �
Tk

2k + 1
,

b �
T

2k + 1
.

(7)

In the range from x= 0 to x= s1, the stress distribution on
the cross section at x= x0 is plotted in Figure 2. For ease of
analysis, the distance function g(x) from the x axis to the
neutral axis and the curvature function φ(x) are introduced.

In Figure 2, the resultant force Ft on the tension zone at
x� x0 is calculated as follows:

Ft � 􏽚
g x0( )

0
Ewφ x0( 􏼁 g x0( 􏼁 − y( 􏼁dy,

�
1
2

Ewφ x0( 􏼁g
2

x0( 􏼁.

(8)

It is noticed that the resultant force on the compression
zone at x= x0 is composed of the resultant force Fc1 in the
range from y � g(x0) to y= t and the resultant force Fc2 in
the range from y= t to y= u(x0). Te resultant forces Fc1 and
Fc2 are computed as follows:

Fc1 � 􏽚
t

g x0( )
Ewφ x0( 􏼁 y − g x0( 􏼁( 􏼁dy

�
1
2

Ewφ x0( 􏼁 t − g x0( 􏼁( 􏼁
2
,

(9)

Fc2 � 􏽚
u x0( )

t

Ewφ x0( 􏼁 t − g x0( 􏼁( 􏼁

u x0( 􏼁 − t
u x0( 􏼁 − y( 􏼁dy

�
1
2

Ewφ x0( 􏼁 t − g x0( 􏼁( 􏼁 u x0( 􏼁 − t( 􏼁.

(10)

Based on the equilibrium condition that the resultant
force on the tension zone is equal to that on the compression
zone, the relationship among the resultant forces Ft, Fc1, and
Fc2 is given by the following equation:

Ft � Fc1 + Fc2. (11)

Consequently, equations (8)–(11) together result in the
location of the neutral axis at x � x0, which is expressed as
follows:

g x0( 􏼁 �
tu x0( 􏼁

t + u x0( 􏼁
. (12)

In addition, considering that the normal stress distri-
bution is linear at x= s, the distance of the neutral axis to the
x axis at x= s is t/2. Ten, according to equation (12) and the
sixth assumption (the location of the neutral axis varies
linearly in the range of x= s1 to x= s), the location function
g(x) of the neutral axis in the range of x= 0 to x= s is
summarized as follows:

g(x) �

tu(x)

t + u(x)
, 0≤ x≤ s1,

−

�
3

√
kt(x − s)

2 2
�
3

√
t + s1( 􏼁

+
t

2
, s1 <x≤ s.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

It is important to note that, in the range of x� s1 to x� s,
the resultant forces in the x direction acting on the cross
sections might not be zero when using equation (13).

On the other hand, in Figure 2, equilibrium requires that
the bending moment M and the sum of the moments
provided by the resultant forces Ft, Fc1, and Fc2 about the
neutral axis are identical numerically, namely,

M �
2
3

g x0( 􏼁Ft +
2
3

t − g x0( 􏼁( 􏼁Fc1

+
1
3

u x0( 􏼁 + 2t − 3g x0( 􏼁( 􏼁Fc2.

(14)

By substituting equations (8)–(10) into equation (14), the
curvature at x= x0 can be obtained as follows:

φ x0( 􏼁 �
12M

η x0( 􏼁Ewt
3 , (15)

where η(x0) is the value of the infuence coefcient function
η(x) of step stifness on the curvature when x= x0. Te
infuence coefcient function η(x) is defned as follows:

η(x) �
2
t
3 (t + u(x)) tu(x) + 3g

2
(x)􏼐 􏼑􏽨

− left t
2

+ 4tu(x) + u
2
(x)􏼐 􏼑g(x)], 0≤x≤ s1.

(16)
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Figure 2:Te stress distribution on the cross section at x� x0 in the
range from x� 0 to x� s1.
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Moreover, the linear variation of normal stress at x= s
determines the curvature at x= s, which is equal to
12M/Ewt3. Afterwards, combining equation (15) and the
sixth assumption (the radius of curvature varies linearly in
the range of x= s1 to x= s), the curvature function φ(x) in the
range of x= 0 to x= s is given as follows:

φ(x) �

12M

η(x)Ewt
3, 0≤x≤ s1,

φ s1( 􏼁φ(s)s2
φ s1( 􏼁 − φ(s)( 􏼁 x − s1( 􏼁 + φ(s)s2

, s1 <x< s,

12M

Ewt
3, x � s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

It should be noted that, in the range of x� s1 to x� s, the
external moment M could probably not be equal to the
moment produced by the stress distribution about the
neutral axis when using equation (17).

Subsequently, the distance function d(x, y) from the
neutral axis is introduced as follows:

d(x, y) � g(x) − y, 0≤y≤ u(x). (18)

Te function d(x, y) is positive when a given point is
below the neutral axis and negative when above it.

Hence, the normal stress function σx(x, y) in the unit cell
is formulated as follows:

σx(x, y) �

Eφ(x)d(x, y), 0≤ x≤ s, 0≤y≤ t

σbx(x) − Eφ(x)d(x, t)

u(x) − t
(y − u(x)) + σbx(x), 0≤ x≤ s, t<y≤ u(x).

⎧⎪⎪⎨

⎪⎪⎩
(19)

As a consequence, the bending strain energy Ve in the
unit cell is derived as follows:

Ve � 􏽚
s

0
􏽚

u(x)

0

σ2x(x, y)w

2E
dy􏼠 􏼡dx. (20)

By the seventh assumption (the bending strain energy
remains the same after the stair slab is equivalent to the fat
slab), the Ve can be rewritten as follows:

Ve �
6M

2
s

Ewt
3
e

, (21)

where te is the equivalent thickness of stair slabs.
From equation (21), the equivalent thickness te is solved

as follows:

te �

�����

6M
2
s

EVew

3

􏽳

. (22)

Note that the equivalent thickness te depends only on the
characteristic length T, the inclined angle θ, and the
thickness t, namely,

te � te(T, θ, t). (23)

To evaluate the contribution of steps to the stifness of
stair slabs, the additional thickness of stair slabs ta is
introduced as illustrated in Figure 1(d) and written as
follows:

ta � te − t. (24)

Te additional thickness ta can be calculated from
equations (1)–(24). Te computation has been implemented
in MATLAB in this study.

2.3. Solutions andDiscussion. Table 1 lists the summary of ta
with diferent θ and t when T is 630mm. Te curved surface
diagram of ta varying with θ and t when T is 630mm is
visualized in Figure 3(a).Te curves of ta varying with twhen
θ= 20 and 40° and T= 550, 630, and 700mm are shown in
Figure 3(b).

As can be seen from Figure 3(a), the additional thickness
ta increases with the growth of the inclined angle θ and the
thickness t. Te growth rate of the additional thickness ta is
approximately constant with respect to the inclined angle θ,
whereas it decreases with the increase in the thickness t. It
can be concluded that the larger the inclined angle θ and the
thickness t are, the more contribution the steps make to the
stifness of stair slabs.

In Figure 3(b), when the inclined angle θ and the thickness
t are determined, the diference of the additional thickness ta
between T=630mm and T=550mm is close to that between
T=700mm and T=630mm. Te result indicates that the
additional thickness ta is approximate to increase linearly as the
characteristic length T increases and the contribution the steps
make to the stifness of stair slabs is positively related to the
characteristic length T. Furthermore, it is recommended that
when the inclined angle θ varies from 20 to 40° and the
thickness t varies from 60 to 260mm, Table 1 is applied to the
design of stair slabs, neglecting the efect of the characteristic
length T on the additional thickness ta. Tis is because the
maximum diference between the additional thickness ta in
Table 1 and its actual value is not larger than 3mm in this
situation, which is acceptable in engineering practice.

3. Finite Element Analysis and Validation

In this section, two RC stair slabs with diferent thicknesses (i.e.,
t� 70 and 84mm) in the experiment [4] are taken as objects to
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establish FE models. Furthermore, nonlinear analysis is per-
formed in the ABAQUS/Standard analysis procedure to verify
the applicability of the obtained equivalent thickness in RC
stair slabs.

3.1. Solid Model Establishment. Figure 4(a) depicts the ge-
ometry and reinforcement of the stair slabs in the experi-
ment [4]. Te two stair slabs are placed parallel to the
horizontal plane with a pin support at one end and a roller
support at the other. Te height and width of the steps are
155 and 260mm, respectively. Te used steel rebars with
grade HPB300 represent the hot-rolled plain rebars with
a yield strength of 300MPa. However, the method of

applying loads on the stair slabs is not described in detail for
the experiment [4]. It is speculated that the loads might be
imposed by putting mass blocks in the grooves between
adjacent steps. Subsequently, these mass blocks could be
simplifed into the uniformly distributed line loads (denoted
as p) positioned at the bottom edge of each groove, as shown
in Figure 4(a).

Te FEmodels of the stair slabs are illustrated in Figure 4(b).
For the stair slabs with t� 70 and 84mm, the respective
equivalent thicknesses are 87 and 102mmby equations (1)–(22).
Te FE models of the equivalent fat slabs are visualized in
Figure 4(c). In the two types ofmodels, the layout of longitudinal
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m
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t (mm)

28.0

21.0
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24.0
20.0

260220180140100
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m

)

(b)

Figure 3:Te relationship among ta, T, θ, and t. (a)Te curved surface diagram of ta varying with θ and twhen T is 630mm. (b) Curves of ta
varying with t when θ� 20 and 40° and T� 550, 630, and 700mm.

Table 1: Summary of ta with diferent θ and t when T is 630mm.

t
(mm)

Additional thickness ta (mm) with diferent inclined angle θ (°)
20° 22° 24° 26° 28° 30° 32° 34° 36° 38° 40°

60 14.2 14.6 15.1 15.5 15.9 16.2 16.6 16.9 17.3 17.6 18.0
70 15.2 15.7 16.2 16.6 17.1 17.4 17.8 18.2 18.6 18.9 19.3
80 16.1 16.6 17.1 17.6 18.0 18.4 18.8 19.2 19.6 20.0 20.4
90 16.8 17.4 17.9 18.4 18.8 19.3 19.7 20.1 20.5 20.9 21.3
100 17.4 18.0 18.5 19.1 19.5 20.0 20.4 20.8 21.2 21.6 22.0
110 17.9 18.5 19.1 19.6 20.1 20.6 21.0 21.4 21.9 22.3 22.7
120 18.4 19.0 19.6 20.1 20.6 21.1 21.5 22.0 22.4 22.8 23.2
130 18.8 19.4 20.0 20.6 21.1 21.5 22.0 22.4 22.9 23.3 23.7
140 19.1 19.8 20.4 20.9 21.5 21.9 22.4 22.9 23.3 23.7 24.2
150 19.4 20.1 20.7 21.3 21.8 22.3 22.8 23.2 23.7 24.1 24.6
160 19.7 20.4 21.0 21.6 22.1 22.6 23.1 23.6 24.0 24.5 24.9
170 19.9 20.6 21.2 21.8 22.4 22.9 23.4 23.9 24.3 24.8 25.2
180 20.1 20.8 21.5 22.1 22.6 23.2 23.7 24.1 24.6 25.1 25.5
190 20.3 21.0 21.7 22.3 22.9 23.4 23.9 24.4 24.9 25.3 25.8
200 20.5 21.2 21.9 22.5 23.1 23.6 24.1 24.6 25.1 25.6 26.0
210 20.7 21.4 22.1 22.7 23.3 23.8 24.3 24.8 25.3 25.8 26.2
220 20.8 21.6 22.2 22.9 23.5 24.0 24.5 25.0 25.5 26.0 26.4
230 21.0 21.7 22.4 23.0 23.6 24.2 24.7 25.2 25.7 26.2 26.6
240 21.1 21.9 22.5 23.2 23.8 24.3 24.8 25.4 25.9 26.3 26.8
250 21.2 22.0 22.7 23.3 23.9 24.5 25.0 25.5 26.0 26.5 27.0
260 21.3 22.1 22.8 23.5 24.0 24.6 25.1 25.6 26.2 26.6 27.1
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reinforcements is the same as that in Figure 4(a), whereas the
distribution steel is ignored for simplicity.

For the sake of computational efciency, the normalized
models are introduced as shown in Figure 4(d). Te nor-
malized models are the stair slabs with a width of 80mm,
having only one longitudinal reinforcement. Te area of the
longitudinal reinforcement is defned as the normalized area
AN

s and written as follows:

A
N
s �

20πD
2

S
, (25)

where D and S denote the diameter and spacing of the
longitudinal reinforcements in the original stair slabs,
respectively.

3.2. Element Types and Boundary Conditions. According to
mesh size sensitivity analysis, appropriate element types and
mesh sizes are selected for FE analysis in this study.Te steps
are discretized using six-node linear tetrahedral elements
(C3D6) with a mesh size of 20mm. Eight-node linear
hexahedral elements (C3D8) are used to mesh the stair slabs
excluding steps and the fat slabs, havingmesh sizes of 20, 10,
and 20mm in the x, y, and z directions, respectively. Te
steel rebars are modeled using two-node linear truss
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Figure 4: Te confguration of the RC stair slabs in the experiment [4] and solid FE models including meshing, loads, and boundary
conditions (unit: mm). (a) Geometry and reinforcement of the stair slabs in the experiment [4]. (b) Stair slab models. (c) Equivalent fat slab
models. (d) Normalized models.
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elements (T3D2) with a mesh size of 20mm. Te embedded
region constraints are adopted to simulate the bonding
between steel rebars and concrete, neglecting the relative slip
of steel rebars to concrete.

Te details relating to boundary conditions are given by
BC1 and BC2 in Figures 4(b)–4(d). What is more, two analysis
steps are created in these FEmodels.Te gravity load is defned
in the frst analysis step. For the equivalent fat slab models, the
gravity load is replaced by the uniformly distributed surface
load to ensure that the gravity load in the fat slab models is the
same as that in the stair slabmodels.Te surface loads are taken
as 3.28 and 3.61 kN/m2 when t� 70 and 84mm, respectively. In
the second analysis step, the uniformly distributed line loads
(p) are applied to the FE models.

3.3. Material Properties. Te mechanical and physical
properties of concrete and steel rebars are listed in Table 2.

Te concrete damaged plasticity (CDP) model [31, 32]
accurately describes the main failure mechanisms of con-
crete (i.e., compressive crushing [33] and tensile cracking),
having widespread application in FE simulation of various
members such as slabs [34], columns [35], walls [36, 37], and
joints [38, 39]. Te mechanical behavior of concrete requires
to be defned in the CDP model, including plastic behavior,
compressive behavior, and tensile behavior.

For plastic behavior of concrete, basic parameters and
their values are as follows: the dilation angle Φ= 30°, the
plastic potential eccentricity δ = 0.1 [40], the ratio of strength
in biaxial compression to uniaxial compression fb/fc = 1.16
[40], the ratio of the second stress invariant on the tensile
meridian to that on the compressive meridian Kc = 2/3 [40],
and the viscosity parameter μ= 0.0025.

In addition, compressive behavior and tensile behavior
are determined by the uniaxial stress-strain relationship of
concrete, as shown in Figure 5.

Figure 5(a) illustrates the uniaxial compressive stress-
strain (σc − εc) curve of concrete, which is expressed as
follows [29]:

σc �

fcEcεc
fc + εc/εcp􏼐 􏼑

n
Ecεcp − fc􏼐 􏼑

, εc ≤ εcp,

fc εc/εcp􏼐 􏼑

αc εc/εcp􏼐 􏼑 − 1􏽨 􏽩
2

+ εc/εcp􏼐 􏼑
, εc > εcp,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where εcp is the peak strain of concrete in compression and αc is
the descending segment parameter in the compressive stress-
strain curve of concrete. Te εcp and αc are obtained as follows
[29]:

εcp � 700 + 172
��

fc

􏽱

􏼒 􏼓 × 10− 6
,

αc � 0.157f
0.785
c − 0.905.

(27)

Figure 5(b) depicts the uniaxial tensile stress-strain
(σt−εt) curve of concrete, which is written as follows [29]:

σt �

ft 1.2
εt

εtp
􏼠 􏼡 − 0.2

εt

εtp
􏼠 􏼡

6
⎡⎣ ⎤⎦, εt ≤ εtp.

ft εt/εtp􏼐 􏼑

αt εt/εtp􏼐 􏼑 − 1􏽨 􏽩
1.7

+ εt/εtp􏼐 􏼑
, εt > εtp,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

where εtp is the peak strain of concrete in tension and αt is
the descending segment parameter in the tensile stress-strain
curve of concrete. Te εtp and αt are represented as follows
[29]:

εtp � f
0.54
t × 65 × 10−6

,

αt � 0.312f
2
t .

(29)

In ABAQUS, the concrete compression hardening data
are defned by the inelastic strain εinc , and the concrete
tension stifening data are given by the cracking strain εckt .
Te εinc and εckt are formulated as follows [40]:

εinc � εc −
σc
Ec

,

εckt � εt −
σt
Ec

.

(30)

For steel rebars, the constitutive relationship is assumed
to be an ideal elastoplastic model. In other words, the stress
is initially proportional to the strain, but the stress remains
the same with the increase of the strain after steel
rebars yield.

3.4.Results andValidation. For the stair slabs with t= 70 and
84mm, Figure 6 compares the load-displacement curves in
the experimental results [4] and the simulation results. Te
values of the maximum defection ∆G due to gravity are
detailed in legends. It is noted that the horizontal axis in

Table 2: Mechanical and physical properties of concrete and steel rebars.

Concrete Steel rebar
Cubic compressive strength, fcu (MPa) 17∗ Yield strength, fy (MPa) 314∗
Cylinder compressive strength, fc (MPa) 12.92 Elastic modulus, Es (GPa) 210
Tensile strength, ft (MPa) 1.88 Poisson’s ratio, ]s 0.30
Elastic modulus, Ec (GPa) 23.58 Density, ρs (kg/m3) 7850
Poisson’s ratio, ]c 0.20
Density, ρc (kg/m3) 2400
Notes. ∗denotes the data measured in the experiment [4]; according to the Chinese code (GB 50010-2010) [29], fc � 0.76fcu, fc � 0.395f0.55

cu , and Ec � 105/
(2.2 + 34.7/fcu).
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Figure 6 denotes the displacement at midspan due to the line
loads p, not containing the ∆G. Subsequently, taking the stair
slab with t= 84mm as the object, it is assumed that the
maximum moment (taken as 0.96 kN·m) under gravity is
imposed on the unit cell at midspan. Ten, equations
(1)–(19) can be used to derive the theoretical results of the
normal stress distribution in the unit cell. For the unit cell at
midspan, Figure 7 compares the normal stress distributions
due to gravity in the simulation results and the theoretical
results.

In Figures 6(a) and 6(b), the simulation results of the
stair slab models are in good agreement with the experi-
mental results [4], and most of the deviations are less than
10%. It means that the chosen constitutive models and

material parameters are reasonable in this study. On the
other hand, it can be observed that the initial stifness of the
equivalent fat slab models is close to that of the stair slab
models. Tis implies that the obtained equivalent thickness
can be reliably applied in RC stair slabs within the elastic
range. However, the deformation of the fat slab models is
signifcantly larger than that of the stair slab models after
concrete cracking. Te reason might be attributed to the
diference in damage development between the fat slabs and
the stair slabs. In the fat slabs, the curvature at the midspan
increases rapidly due to cracking, leading to a sharp re-
duction of the overall stifness. In the stair slabs, initial cracks
might simultaneously occur at several cross sections with the
minimum depth around the midspan so that the curvatures

σc

fc

0 εcp εc

1

Ec

6εcp

(εc,σc)

εc
in

σc/Ec

(a)

σt/Ec

1

Ec

(εt,σt)

σt

εtεtp 6εtp

ft

εt
ck

0

(b)

Figure 5: Te uniaxial stress-strain relationship of concrete. (a) Compression. (b) Tension.
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Figure 6: Load-displacement curves in the experimental results [4] and the simulation results for the stair slabs with diferent thicknesses.
(a) t� 70mm. (b) t� 84mm.
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at these cross sections increase slowly to alleviate the decline
of the overall stifness. Besides, the discrepancy in the
simulation results between the normalized models and the
stair slab models is very small. In terms of the computation
time, the former is about one-seventh of the latter. Tus, the
stair slab models can be substituted with the normalized
models to improve computational efciency for further
analysis.

For the stress contour in Figure 7(a), it is assumed that
the regions where the magnitude of stress does not exceed
0.33MPa (i.e., one-tenth of the magnitude of the maximum
compressive stress) are defned as the regions with small
stresses. Tese regions exist near the neutral surface and the
part ABC of the step. For the stresses in the path A-C-D in
Figure 7(b), the stress distributions in the simulation results
and the theoretical results are similar. Still, they have evident

diferences because of the stress concentrations around
points A and D. On each section in Figure 7(c), it can be seen
that the location of the neutral axis in the simulation results
is generally higher than that in the theoretical results. On the
tension zone, the stresses in both the simulation results and
the theoretical results are approximately proportional to the
distance from the neutral axis. On the compression zone, the
stress distribution is nonlinear in the simulation results but
linear or bilinear in the theoretical results. As can be ob-
served from Figures 7(b) and 7(c), the theoretical results are
larger than the simulation results in most cases, causing the
overestimation of the calculated bending strain energy by
equation (20). Afterwards, it is confrmed from equation
(22) that the obtained equivalent thickness is slightly con-
servative so that the overall stifness of stair slabs is
underestimated.Tis can explain why the values of the ∆G in
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Figure 7:Te normal stress distributions due to gravity in the simulation results and the theoretical results for the unit cell at midspan of the
stair slab with t� 84mm. (a)Te stress contour in the simulation results. (b) Comparison of the stresses in the path A–C-D. (c) Comparison
of the stresses at x� 0 or 300, 80, 154, and 225mm.
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the fat slab models are larger than those in the stair slab
models in Figure 6.

It can be concluded that there are two main sources of
errors when the stair slabs are equivalent to the fat slabs.
One is that the errors between the assumed stresses and their
actual values in the unit cell within the elastic range, and the
other is the diference in damage development between the
stair slabs and the fat slabs after concrete cracking.

4. Proposed Design Method for Stair
Slabs considering Step Stiffness

In engineering practice, RC stair slabs are sloped to make all
treads parallel to the horizontal plane. During design, the
uniformly distributed loads (denoted as q) are imposed
perpendicular to treads, as shown in Figure 8(a). If the
negative moments at supports are neglected, the stair slab
can be regarded as a simply supported beam in Figure 8(b).
In the following, the design process of stair slabs considering
step stifness is presented based on two design codes of
China, i.e., the Load Code for the Design of Building (GB
50009-2012) [28] and the Code for Design of Concrete
Structures (GB 50010-2010) [29].

Te thickness t of stair slabs can be initially estimated as
follows:

t � max 10 × f loor
Lc

300
􏼒 􏼓, 80mm􏼚 􏼛, (31)

where foor(x) denotes the rounding function that decreases
a given number x to the next highest integer and Lc is the clear
span of stair slabs. Te unit of Lc in equation (31) is mm.

Te load q consists of the dead load qD and the live load
qL. Te dead load qD is expressed as follows:

qD � qG + qa, (32)

where qG denotes the gravity load, and qa denotes the ad-
ditional load (e.g., the handrail load, the surface layer load,
and themortar load).Te gravity load qG can be calculated as
follows:

qG �
h

2
+
st
b

􏼠 􏼡ρcgG, (33)

where gG is the acceleration of gravity usually taken as 9.8m/s2.
For strength design, the thickness t is used because the

strength of stair slabs is determined by the bearing capacity
of the cross sections with the minimum depth. Based on the
fundamental combination of loads [28], the maximum
bending moment MS at midspan is obtained as follows:

Ms � 0.125 cDqD + cLqL( 􏼁wL
2
c , (34)

where cD and cL are the partial factors of the dead load and
the live load, respectively.

After that, the required steel area As in the stair slab with
the width w is derived as follows [29]:

As � max ξw t − cs( 􏼁
α1fc

fy

, ρminwt􏼨 􏼩, (35)

where ξ is the relative height of the compression zone, α1 is
the ratio of the average stress on the compression zone to the
cylinder compressive strength of concrete, cs is the distance
from the center of longitudinal reinforcements to the bottom
of the stair slab, and ρmin is the minimum reinforcement
ratio. ξ is formulated as follows [29]:

ξ � 1 −

����������������

1 −
2MS

α1fcw t − cs( 􏼁
2

􏽳

. (36)

To avoid the crushing of the concrete on the com-
pression zone before the longitudinal tension reinforcement
yield, the following inequality should be satisfed [29]:

As ≤ ξbw t − as( 􏼁
α1fc

fy

, (37)

where ξb is the relative height limit of the compression zone.
For the defection calculation, the equivalent thickness te

is adopted to consider the benefcial infuence of steps on the
overall stifness of stair slabs. Based on the quasi-permanent

θ
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q

q
q

q
q

q
q

(a)

θ

Lc

q

Δ

(b)

Figure 8: Te simplifed stair slab model during design. (a) Te uniformly distributed loads on the treads of the stair slab. (b) Te simply
supported beam model.
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combination of loads [28], the maximum bending moment
MD at midspan is computed as follows:

MD � 0.125 qD + ψqqL􏼐 􏼑wL
2
c , (38)

where ψq is the coefcient of the quasi-permanent value for
the live load.

Subsequently, the short-term stifness Bs of stair slabs is
expressed as follows [29]:

Bs �
EsAs te − cs( 􏼁

2

1.15ψ + 0.2 + 6AsEs/w te − cs( 􏼁Ec( 􏼁
, (39)

where ψ denotes the strain nonuniformity coefcient of the
longitudinal tension reinforcements between cracks. ψ is
written as follows [29]:

ψ � min max 1.1 −
0.4wte te − cs( 􏼁ft

MD

, 0.2􏼨 􏼩, 1.0􏼨 􏼩. (40)

Correspondingly, the short-term defection ∆s at mid-
span is given as follows:

∆s �
5MDL

2
c

48Bscos
2 θ

. (41)

Under sustained loads, the defection of stair slabs can
signifcantly increase due to the creep and shrinkage of
concrete. Te Chinese design code [29] specifes a defection
magnifcation factor to consider the combined efects of
creep and shrinkage for fexural members under long-term
loads. Tus, the long-term defection ∆ at midspan of stair
slabs can be represented as follows:

Start

Estimate initially t by equation (31)

Compute MS by equation (34) and MD by equation (38)

Obtain As using t and MS by equations (35) and (36)

As ≤ ξbw (t-cs)α1 fc/fy t = t + 10 mm

Obtain Δ
using te and MD by
equations (39)-(42)

Δ ≤ Δmax

| Δ - Δmax |/Δmax  ≤ 5%As = 1.1As

Determinate te by 
equations (1)-(22), or 

Table 1 and
equation (24)

Yes

No

Yes

No

No

Yes

Calculate qG using equation (33) and qD using equation (32)

End

Input:
Load parameters: qa, qL, γD, γL, ψq

Geometric parameters: T, θ, Lc, w
Material parameters: fc, ft, fy, Ec, Es, ρc, α1, cs, ρmin, ξb, λ

Output:
Thickness of the stair slab: t

Steel area in the stair slab with the width w: As

Figure 9: Te fow chart of the design method considering step stifness for RC stair slabs based on the Chinese codes [28, 29].
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∆ � λ∆s, (42)

where λ denotes the defection magnifcation factor and is
taken as 2.0 when no reinforcement is provided on the
compression side of stair slabs [29].

When the clear span Lc is less than 7m, the maximum
permissible defection ∆max of stair slabs is defned as follows
[29]:

∆max �
Lc

200 cos θ
. (43)

Based on the Chinese codes [28, 29], Figure 9 shows the
fow chart of the design method considering step stifness for
RC stair slabs.

5. Assessment of the Proposed Design Method

In this section, several numerical examples are presented to
illustrate the reliability and advantages of the proposed
design method in comparison with the FE method and the
conventional method. Te design parameters in Table 3 are
used in all examples.

In the FE method, the normalized models are adopted to
perform nonlinear analysis in the ABAQUS/Standard
analysis procedure. Te parameters in the CDP model, in-
cluding Φ, δ, fb/fc, Kc, and μ, are identical to those used in
Section 3.3. Diferent from the modeling method demon-
strated in Figure 4(d), only one analysis step needs to be
created for these models. In the analysis step, the uniformly

distributed loads based on the quasi-permanent combina-
tion [28] are perpendicularly imposed on all treads, as
depicted in Figure 8(a). In addition, the normalized area AN

s

is taken as 80As/w in these models.Te conventional method
is obtained by substituting te in Figure 9 by t, ignoring the
efect of step stifness. In the conventional method, it is
suggested that the expression |∆−∆max|/∆max is set to no
more than 50% to ensure that the thickness and the re-
inforcement ratio of stair slabs are economical and practical.
In this study, the proposed design method and the con-
ventional method were implemented in MATLAB.

5.1. Comparison between the Proposed DesignMethod and the
FE Method. According to the proposed design method, the
required thickness and steel area in the stair slabs are tab-
ulated in Table 4. During the design process of these ex-
amples, the values of the short-term defection ∆s can be
given by equation (41). It should be noted that the results in
Table 4 are also used to establish the normalized models. By
the FE method, the derived displacement at midspan is
denoted as the short-term defection ∆sFEM. Table 5 com-
pares the short-term defection at midspan in the design
results (∆s) and the simulation results (∆sFEM). Te scatter
plot in Figure 10 visualizes the relationship between the
design results (∆s) and the simulation results (∆sFEM). Te
simulation results consider the plastic behavior of concrete
and are approximate to the actual instantaneous defection
of stair slabs to a certain extent. Te ratio of the ∆s to the
∆sFEM, denoted as n, can represent the accuracy of the design
results. Te closer the value of n is to 1.0, the more accurate

Table 3: Design parameters for RC stair slabs.

Type Parameters
Load parameters qa � 2.5 kN/m2, cD � 1.3, cL � 1.5, and ψq � 0.3
Geometric parameters T� 630mm and w � 1000mm

Material parameters
fc � 14.3N/mm2, ft � 1.43N/mm2, fy � 360N/

mm2, Ec � 30GPa, Es � 200GPa, ρc � 2400 kg/m3, α1 � 1.0, cs � 25mm, ρmin � 0.2%,
ξb � 0.5176, and λ� 2.0

Table 4: Te required thickness and the steel area in the stair slabs.

θ (°) Lc (mm)
qL � 2 kN/m2 qL � 3.5 kN/m2 qL � 5 kN/m2

t (mm) As (mm2) t (mm) As (mm2) t (mm) As (mm2)

25

3910 140 662 140 785 140 913
4560 170 763 170 894 160 1211
4890 180 926 180 984 180 1129
5540 210 1062 210 1228 210 1271
5870 230 1017 230 1168 220 1519

30

4090 150 707 150 830 150 958
4380 160 847 160 901 160 1037
4960 190 861 190 997 190 1136
5550 220 971 220 1114 220 1260
6130 250 1199 250 1240 240 1590

35

3930 150 675 150 788 140 1080
4450 170 862 170 909 170 1037
4980 200 867 200 995 190 1303
5500 230 961 220 1248 220 1406
6030 250 1210 250 1369 250 1393
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the design results. Notice that the structural safety requires
that the value of n should not be less than 1.0.

In Table 4, the thickness t and the steel area As increase
with the growth of the clear span Lc. As the live load qL rises,

the steel area As grows, whereas the thickness t might de-
crease in some situations. Tat is because the relatively thin
stair slabs require more steel area during strength design,
contributing to controlling defection to some extent.

Table 5: Te short-term defection at midspan in the design results (∆s) and the simulation results (∆sFEM).

θ (°) Lc (mm)
qL � 2 kN/m2 qL � 3.5 kN/m2 qL � 5 kN/m2

∆s (mm) ∆sFEM (mm) n ∆s (mm) ∆sFEM (mm) n ∆s (mm) ∆sFEM (mm) n

25

3910 10.1 4.7 2.1 9.9 4.9 2.0 9.7 5.2 1.9
4560 11.7 6.4 1.8 11.5 6.6 1.7 12.1 7.8 1.6
4890 12.8 7.5 1.7 13.3 8.3 1.6 13.0 8.5 1.5
5540 14.7 9.8 1.5 14.3 9.9 1.4 15.0 10.6 1.4
5870 16.2 10.8 1.5 15.7 10.9 1.4 15.7 11.5 1.4

30

4090 11.4 5.8 2.0 11.1 6.0 1.9 11.0 6.3 1.7
4380 12.1 6.7 1.8 12.6 7.4 1.7 12.4 7.6 1.6
4960 14.2 8.6 1.7 13.9 8.9 1.6 13.6 9.1 1.5
5550 16.0 10.4 1.5 15.5 10.6 1.5 15.2 10.7 1.4
6130 16.6 11.7 1.4 17.3 12.4 1.4 17.2 13.1 1.3

35

3930 10.9 5.2 2.1 10.7 5.6 1.9 11.7 6.9 1.7
4450 12.7 7.3 1.7 13.3 8.0 1.7 13.0 8.2 1.6
4980 14.6 8.8 1.7 14.3 9.0 1.6 14.8 10.2 1.5
5500 15.9 10.0 1.6 16.0 11.2 1.4 15.7 11.3 1.4
6030 17.9 12.4 1.4 17.4 12.5 1.4 18.3 13.4 1.4

Note. n�∆s/∆sFEM.

3900 mm < Lc < 4500 mm 
4500 mm ≤ Lc ≤ 5500 mm 
5500 mm < Lc < 6200 mm

n = 1.0

n = 2.2 n = 1.3

5.0

10.0

15.0

20.0

Δ s (m
m

)

5.0 10.0 15.0 20.00
ΔsFEM (mm)

Figure 10: Te scatter plot between the design results (∆s) and the simulation results (∆sFEM).

Table 6: Te required thickness and the steel area in the stair slabs when θ� 30°.

Lc
(mm)

Proposed design method Conventional method
qL � 2 kN/m2 qL � 3.5 kN/m2 qL � 5 kN/m2 qL � 2 kN/m2 qL � 3.5 kN/m2 qL � 5 kN/m2

t
(mm)

As
(mm2)

t
(mm)

As
(mm2)

t
(mm)

As
(mm2)

t
(mm)

As
(mm2)

t
(mm)

As
(mm2)

t
(mm)

As
(mm2)

4090 150 707 150 830 150 958 170 920 170 972 170 1111
4380 160 847 160 901 160 1037 180 1012 180 1173 180 1338
4960 190 861 190 997 190 1136 210 1161 210 1212 210 1371
5550 220 971 220 1114 220 1260 240 1210 240 1378 230 1770
6130 250 1199 250 1240 240 1590 270 1375 270 1554 260 1972
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As can be seen from Table 5 and Figure 10, when the
clear span Lc is in the range of 3900 to 6200mm, the ratio n
varies from 1.3 to 2.2 and tends to decrease as the Lc in-
creases. Te results demonstrate that the proposed design
method is reliable and can assure the safe performance of RC
stair slabs. And the calculated defection has higher accuracy
with the growth of the clear span Lc. Despite this, there exist
two sources of errors in the proposed design method. One is
that the Chinese design code [29] specifes the minimum
stifness at cracking cross sections as the overall stifness to
compute defection, neglecting the stifness variation along
the stair slab span; the other is that the diference in damage
development between fat slabs and stair slabs after concrete
cracking is not considered in the design process.

Consequently, to further improve the accuracy of the
new defection calculation method, some efective measures
should be taken, including perfecting the assumption of the
stress distribution in a unit cell and considering the char-
acteristic of the stifness variation and the damage devel-
opment for stair slabs in the design process.

5.2. Comparison between the ProposedDesignMethod and the
Conventional Method. Based on the proposed design
method and the conventional method, Table 6 lists the re-
quired thickness t and steel area As in the stair slabs when
θ= 30°. Compared with the conventional method, the steel
area As drops by 12 to 26 percent while the thickness t is
reduced by 10 to 20mm in the proposed design method. It is
concluded that the proposed designmethod can decrease the
consumption of concrete and steel.

6. Conclusions and Outlook

In this article, the equivalent thickness of stair slabs is de-
rived theoretically and verifed by nonlinear analysis. For
reinforced concrete (RC) stair slabs, a novel design method
considering step stifness is proposed. Subsequently, several
numerical examples are presented to illustrate the reliability
and advantages of the proposed design method. Te main
conclusions are drawn as follows:

(1) Te equivalent thickness only depends on the
characteristic length of steps, the inclined angle of
stair slabs, and the thickness of stair slabs. Te larger
these parameters are, the more contribution the steps
make to the stifness of the stair slabs.

(2) Te obtained equivalent thickness is slightly con-
servative and can be reliably applied to RC stair slabs
within the elastic range. After concrete cracking, the
deformation of the equivalent fat slabs is larger than
that of stair slabs due to the diference in damage
development. Te stair slab models can be
substituted with the normalized models to improve
computational efciency.

(3) Compared with the fnite element method and the
conventional method, the design method consider-
ing step stifness can not only ensure structural safety

for RC stair slabs but also decrease the consumption
of concrete and steel.

Tis article provides a simple and efcient way to evaluate
the stifness of RC stair slabs and calculate their defections.
Te proposed design method can help engineers in design
ofces optimize the thickness of stair slabs, achieve the
lightweight design of stairs, and solve headroom problems
possibly occurring at staircases. Moreover, the method
contributes to saving building costs and could be applied to
the safety assessment of existing stair structures. Future
studies will further improve the accuracy of this defection
calculation method by more exact assumption of the stress
distribution in a unit cell and more full consideration of the
stifness variation and the damage development for stair slabs.
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