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Accurate delineation of debris-flow-endangered areas (e.g., the maximum runout distance) is a necessary prerequisite for the
debris-flow risk assessment and countermeasures design. Recently, machine-learning models have been proved to be an effective
tool in predicting debris-flow parameters. However, existing machine-learning models are generally developed based on a very
limited number of observation data, which may result in the predictive model overfitting or underfitting. How to develop a robust
model for accurate forecasting of debris-flow-endangered areas still remains a difficult task. This paper proposes a hybrid method
for predicting debris-flow hazard zone by integrating machine-learning algorithms and an empirical regression model. The
proposed method takes the calculated maximum runout distance obtained from the empirical model as supplementary inputs
to increase the amount of training data to construct hybrid machine-learning models. Three commonly used machine-learning
models (i.e., multivariate adaptive regression splines (MARS), random forest (RF), and support vector machine (SVM)) are
developed based on the training datasets of a specific debris basin. Then, these three machine-learning models are combined
with an empirical relationship developed using the same training datasets to generate corresponding hybrid models. Finally, the
performance metrics (i.e., coefficient of determination (R2), root-mean-square error (RMSE), and mean absolute error (MAE)) of
the proposed hybrid models are comprehensively investigated and compared with the single predictive model (i.e., MARS, RF,
SVM, and the empirical model) under fivefold cross-validation. The proposed method is illustrated using 134 channelized debris-
flow events in Sichuan province, China. Results show that compared with the three individual machine-learning models, hybrid-
ization of machine-learning algorithms and the empirical model results in R2, RMSE, and MAE improved by 70.5%, 32.9%, and
41.1%, respectively. In contrast to the empirical model, the R2, RMSE, and MAE value of the proposed hybrid models are improved
by 29.6%, 22.3%, and 32.5%, respectively. The proposed hybrid models generally perform better than the single machine-learning
and the empirical model, providing a promising tool for accurate forecasting of a debris-flow-endangered area.

1. Introduction

Debris flow is a common geological hazard in the mountain-
ous areas, characterized by the rapid movements of saturated
soil, rocks, and organic debris down steep mountain chan-
nels or slopes [1–6]. Debris flows can cause serious damages
to the local residents, buildings, and infrastructures on the
depositional area [7–13]. Therefore, it is crucial to delineate

accurate debris-flow-endangered areas in order to provide a
practical guidance for the local authority in debris-flow-haz-
ard assessment and control measure designs.

The maximum runout distance, Lf, on a depositional fan
is one of the most important parameters for delineating the
debris-flow-endangered areas [14–17]. Currently, statistical
methods have been proved to be a simple and effective tool
for predicting the maximum runout distance of debris flow
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[18, 19]. The statistical methods generally relate the endan-
gered area with geometric–morphological factors and the
debris-flow volume through mathematical models based on
the field investigation data of historical debris flows [20–23].
Both empirical regression analysis and machine-learning
algorithms are widely employed to develop the mathematical
models, such as univariate or multivariate nonlinear regres-
sion [16, 17], multivariate adaptive regression splines
(MARS) [20], and support vector machine (SVM) [24–27].
The empirical models are generally developed by nonlinear
regression analysis, where the underlying regression func-
tions are preassumed by the experienced engineers or
researchers. However, the assumed form of empirical models
may not objectively capture the complex nonlinear relation-
ship between the debris-flow runout distance and its influ-
encing factors. Compared with the empirical models,
machine-learning models have the powerful capacity in cap-
turing the internal complex patterns from data and providing a
rational forecasting as a guidance [28–30]. Machine-learning
algorithms generally require sufficient data to guarantee their
accuracy. Insufficient sample size of training datasets may
affect the accuracy and generalization ability of the machine-
learning models. However, the number of site-specific investi-
gation data of a given debris basin is usually very limited. For
example, Xu et al. [27] applied only 53 shallow landslides and
22 loess-bedrock landslides in the Heifangtai terrace to con-
struct and validate the optimal machine-learning algorithms
for runout distance prediction of shallow and loess-bedrock
landslides, respectively. When a very limited number of data
are applied, themachine-learning models may be overfitting or
underfitting [28]. Thus, how to develop a robust model for
accurate forecasting of debris-flow-endangered areas still
remains a difficult task.

Different statistical models have their inherent mathemati-
cal theories and strengths. Currently, due to the ability to rea-
sonably describe complex relationships, machine-learning
models seem to have better accuracy than empirical models
in debris-flow runout forecasting [20]. However, the empirical
models derived from the historical debris flows still can provide
useful information for the preliminary assessment of endan-
gered areas. The empirical models show the main influencing
factors of debris-flow runout from the perspective of expert
experiences, thereby reducing data dimensions and avoiding
overfitting. Therefore, empirical statistical models can be
regarded as supplementary information for machine-learning
models. In this case, the limited investigation data are expanded
to increase the amount of training data to improve the robust-
ness and accuracy of the predictive model. However, hybridiz-
ing the machine-learning algorithms and empirical models is
scarcely seen in debris-flow runout prediction.

This paper proposes a hybrid method for predicting the
endangered areas of debris flow by integrating machine-
learning algorithms and an empirical regression model.
Firstly, the collected investigation data is randomly divided
into training and testing stages by k-fold cross-validation.
Three commonly used machine-learning models (i.e.,
MARS, RF, and SVM, see the Appendix) and a nonlinear
regression model (NLRM) are developed based on the

randomly selected training data, respectively. Then, the cal-
culated maximum runout distance by the empirical model is
considered as supplementary inputs and hybridized with the
machine-learning models to generate a hybrid training
model. Finally, the performance metrics (i.e., goodness-of-
fit, root-mean-square error (RMSE), and mean absolute
error (MAE)) of the hybrid models are comprehensively
investigated and compared with the single machine-learning
model and the empirical model under k-fold cross-valida-
tion. 134 datasets of channelized debris-flow events in
Wenchuan earthquake zone are used to illustrate the appli-
cability and reliability of the proposed approach.

The rest of this paper is organized as follows: Section 2
introduces the databases and data preparation. Section 3
elaborates the methodology. Section 4 presents the results
and discussion, following by discussion on limitations of
the paper, and Section 5 concludes the paper.

2. Databases and Data Preparation

2.1. Study Area. This study reanalyzed 134 datasets of chan-
nelized debris-flow events in Sichuan province, China [17].
The 134 debris flows occurred along the Yingxiu–Beichuan
fault zone (e.g., Beichuan, Qingping, and Longchi area)
between 2008 and 2012 [17]. The Yingxiu–Beichuan fault
triggered the 8-magnitude Wenchuan earthquake and
caused a number of landslides in Sichuan province. Loose
landslide debris deposited on the slopes or channels were
easily carried downstream to form debris flows by the tor-
rential rain, resulting in serious damages to the local people
on the depositional fan [12]. Previous studies in the study area
show that the maximum runout distance of debris flow on a
fan is mainly affected by the catchment internal relief (H), and
the debris-flow volume (VD) [17]. Therefore, these two
parameters are taken as input variables to predict the endan-
gered area of debris flow in the study area. More details can be
referred to Zhou et al. [17]. Figure 1 shows the histograms of
themaximum runout distance (Lf), and input variables (i.e.,H
and VD) as well as their mean values and standard deviations.
It can be seen that the distribution of these three parameters
approximates a lognormal distribution.

2.2. K-Fold Cross-Validation. To construct and validate a
predictive statistical model, the 134 debris-flow datasets in
the study area are randomly divided into training data for
model development and testing data for model validation.
Different random combinations of training datasets and test-
ing datasets may lead to fluctuations in model performance
evaluation. To avoid the bias in data selection, k-fold cross-
validation approach is employed for randomly selection of
the training and testing data [31, 32]. k-fold cross-validation
is a popular technique used in machine-learning and model
evaluation to assess the performance and generalization abil-
ity of a model. It randomly divides the original dataset into k
subsets D1, D2,…, Dk with an approximately equal size. The
process is then repeated k times. One of the k subsets is used
as testing data, and the other k-1 subsets are considered as
training data. The model is trained k times with k-1 folds as
the training data and the remaining fold as the validation

2 Advances in Civil Engineering



data. Then, the model’s performance is evaluated on each
validation dataset. After the k iterations, the performance
metrics obtained from each validation dataset are averaged
to provide a single evaluation metric for the model’s perfor-
mance. k-fold cross-validation ensures a predictive model is
evaluated on different subsets of the data, providing a more
comprehensive assessment of how well the model generalizes
to unseen data.

Previous studies show that a value of k= 5 (or 10) is very
common in the application of machine-learning algorithms
[31]. By taking k= 5, the datasets are randomly divided into
five equal parts, which are denoted as CR1, CR2, CR3, CR4,
and CR5, respectively. 80% and 20% of the total datasets are
training and testing data, respectively (as shown in Figure 2).
Among 134 datasets of debris flow in Wenchuan area, 107
sets of data are selected for training the models and 27 sets of

data are selected to evaluate the performance of predictive
models. Table 1 shows the ranges of H, VD, and Lf for train-
ing and testing data under fivefold cross-validation. It can be
seen that the data ranges of H, VD, and Lf for the fivefold
cross-validation are almost the same. The training data for
the five different splits of CR1, CR2, CR3, CR4, and CR5 are
then used to construct the machine-learning models and a
NLRM. The testing data for the five different splits are used
for validation.

3. Methodology

Various machine-learning models (e.g., C&RT, CHAID,
boosting tree, MARS, RF, and SVM) can characterize the
complex nonlinear relationship between input and output
parameters [28–30]. In this paper, three commonly used
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FIGURE 1: Histograms of Lf and input variables (i.e., H and VD): (a) VD, (b) H, and (c) Lf.
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machine-learning models (i.e., MARS, RF, and SVM) are
employed. The procedure for developing the hybrid predic-
tion model of the maximum runout distance of debris flow is
shown in Figure 3. First, the three machine-learning models
and a NLRM are developed independently. The hybrid mod-
els (e.g., MARS–NLRM, RF–NLRM, and SVM–NLRM) are
then generated by combining the NLRM with the machine-
learning models. The proposed method is briefly presented
as follows.

3.1. Multi-Nonlinear Regression Empirical Model. According
to the previous studies, the maximum runout distance of
debris flow is usually related to geometric–morphological fac-
tors and the debris-flow volume through statistical regression
analysis. The existing empirical models are typically exponen-
tial formulas [20], which can be expressed as follows:

Lf ¼ aVD
bHc; ð1Þ

where a, b, and c are the unknown parameters of the empiri-
cal model. By applying multi-nonlinear regression method,

the model parameters in Equation (1) can be obtained for the
five different splits of CR1, CR2, CR3, CR4, and CR5.

3.2. Machine-Learning Models. The core idea of machine-
learning algorithms is to apply data-driven learning to con-
struct models that can generalize well to the data, make
accurate predictions, and improve their performance over
time as they are exposed to more data. In this paper, three
common machine-learning models are used to construct the
training models, namely, MARS, RF, and SVM.

3.2.1. MARS Model. MARS is a nonparametric regression
analysis method that can be used for modeling multidimen-
sional nonlinear problems [33]. This method does not assume
a specific functional relationship between the input variables
and the output variable. Instead, it adaptively selects nodes to
partition the training dataset into independent segments with
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FIGURE 2: Schematic diagram of fivefold cross-validation.

TABLE 1: Ranges of VD, H, and Lf at training and testing stages.

Parameters VD (×103 m3) H (km) Lf (km)

Total data 1.2–3238.4 0.22–2.98 0.03–0.88
Cross-validation Training
CR1 2.7–3238.4 0.22–2.98 0.03–0.88
CR2 1.2–3238.4 0.22–2.48 0.03–0.88
CR3 1.2–3238.4 0.22–2.98 0.03–0.88
CR4 1.2–3238.4 0.26–2.98 0.03–0.88
CR5 1.2–3100.0 0.22–2.98 0.038–0.51

Cross-validation Testing
CR1 1.2–711.0 0.34–2.48 0.04–0.39
CR2 3.0–561.0 0.36–2.98 0.042–0.51
CR3 2.9–1034.0 0.26–1.60 0.038–0.50
CR4 4.5–3100.0 0.22–2.02 0.05–0.49
CR5 2.7–3238.4 0.26–1.98 0.03–0.88

Data preparation and k-fold cross-validation

Develop single machine learning and empirical model

MARS RF SVM NLRM 

 Develop hybrid models 

MARS–NLRM RF–NLRM SVM–NLRM 

 Model evaluation

FIGURE 3: Flowchart of hybrid model development.
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different gradients [34, 35]. Each segment of MARS is called a
basis function, and the endpoints of each segment are called
nodes. The basis functions are generated by MARS through a
stepwise search, and the node positions are selected by the
adaptive regression algorithm. By estimating the contribution
of the basis functions, it allows determining the additive and
interaction effects of the predictive variables. TheMARS algo-
rithm consists of two steps: forward selection and backward
pruning. The forward selection process involves partitioning
and fitting the sample data using spline functions to obtain
new basis functions and a fitted model. As a basis function is
added to the model space, interactions between basis func-
tions that are already in the model are also considered. Basis
functions are added until the model reaches some maximum
specified number of terms leading to a purposely overfit
model. The backward pruning process involves removing
basis functions with smaller contributions to the model while
maintaining the model’s accuracy. The basis functions main-
tained in the final optimal model are selected from the set of
all candidate basis functions used in the forward selection
step. Model subsets are compared using the less computation-
ally expensive method of generalized cross-validation (GCV).
Finally, the optimal model is selected as the regression model
to avoid overfitting.

Considering n independent or input variables X= (x1, x2,
…, xn). The dependent or output variable, y can be estimated
from a predefined function g(X) with a model error ε, which
can be given by

y ¼ g Xð Þ þ ε: ð2Þ

The predefined function g(X) can be approximated by
linear combination of basis functions and their interactions.
The MARS model of g(X) can be expressed as follows:

g Xð Þ ¼ β0 þ ∑
M

j¼1
βjωj Xð Þ; ð3Þ

where β0 is a constant; M is the number of basis functions;
ωj Xð Þ is the j-th basis function; βj is the coefficient of the j-th
basis function. The coefficients β0, β1,…, βM are determined
by the least square method. The basis function ωj Xð Þ can be
characterized by a piecewise linear function, which is written
as follows:

max 0; x − tð Þ ¼ x − t x ≥ t

0 x<t

(
; ð4Þ

where t is the value of knot.
The construction of MARS model is an adaptive process

where basis functions and knots are all entirely “driven” from
the training data. To obtain theMARSmodel in Equation (3),
the forward building procedure is performed on the training
data. Basis functions that produce the largest decrease in the
training model error are added until the predefined

maximum number of terms is reached. This procedure can
easily lead to an overfitting MARS model. Subsequently, the
backward procedure prunes extraneous variables and basis
functions with the least contributions based on the GCV
method. The GCV index is an indicator that penalizes the
complexity of large numbers of basis functions in the MARS
model in order to reduce overfitting problems. With the N
observations of training data, GCV for a model can be
obtained by:

GCV¼
1
N ∑

N
i¼1 yi − g xið Þ½ �2

1 − Mþc0× M−1ð Þ=2
N

h i
2 ; ð5Þ

where c0 is the penalizing parameter; g(xi) is the predicted
values using the MARS model in Equation (3). The penaliz-
ing parameter c0 is set as a default value of three according to
Friedman [33]. Based on the GCV index, the MARS model
with the minimum value of GCV is selected as the optimal
MARS model.

In addition, it should be noted that the maximum num-
ber of basis functions needs to be predefined. The optimal
preassumed M can be determined by comparing the evalua-
tion metrics of MARS model (e.g., RMSE) with different
preset values. The one with the lowest RMSE is considered
as the optimal predefined maximum number of basis func-
tions for the final MARS model.

3.2.2. RF Model. RF is a typical ensemble learning method
based on classification and regression trees (CART) [36]. RF
creates a collection of decision trees and combines their pre-
dictions through averaging to make the final prediction.
Decision trees can be divided into classification trees and
regression trees. Because the primary objective of this
research is to predict the endangered area of debris flow,
only the regression tree is discussed in this section. RF
regression uses the random sampling with bootstrap resam-
pling to extract multiple samples for the original sample,
model the regression tree for each bootstrap sample and
average the predictions of multiple decision trees to make
the final forecasting [37, 38].

Considering X= (x1, x2, …, xn) is an n-dimension input
vector that forms a forest. RF consists of a set of K trees
{y1(X), y2(X),…, yK(X)}. The ensemble produces K outputs
corresponding to each tree yk (k= 1, 2,…, K). The modeling
procedure of RF is as follows: draw a bootstrap sample from
the original data set. For each bootstrap sample, a total of
two-thirds of the sample of the new training sample is uti-
lized for deriving the regression function, and the remaining
one-third constitutes the out-of-bag (OOB) sample. Each
time, a regression tree is constructed using a randomized
training sample drawn from the original data set. The
OOB sample is utilized to validate accuracy. After the pre-
dictions of the k regression trees are collected, a regression
model sequence {y1(X), y2(X),…, yK(X)} is obtained. Then,
the final prediction is obtained by calculating an average of
all tree predictions, which is given by:

Advances in Civil Engineering 5



f xð Þ ¼ 1
K

∑
K

k¼1
yk xð Þ; ð6Þ

where f(x) represents the combined regression model, yk
represents an individual decision tree regression model,
and K is the number of regression trees. The number of regres-
sion trees at RF model structure is a critical hyperparameter,
which can be determined byGrid searchmethod. Grid search is
a hyperparameter tuning technique used in machine-learning
to systematically search through a predefined hyperparameter
space for the optimal combination that maximizes or mini-
mizes a chosen evaluation metric. It involves exhaustively
exploring various combinations of hyperparameters to identify
the one that yields the best performance. In this work, the
optimal value for the number of regression trees is selected
using the Grid search method.

3.2.3. SVM Model. SVM is a powerful supervised machine-
learning algorithm used for both classification and regression
[39]. Based on the statistical learning theory and structural
risk minimization principle, SVM optimizes a tradeoff
between the complexity and learning ability of the model
to obtain best generalization ability according to limited
sample information. Its basic idea is to map input vectors
into a high-dimension feature space via a kernel function and
construct an optimal separating hyperplane that best sepa-
rates or fits the data and maximizes the margin between the
different classes or regression targets [40, 41]. The hyper-
plane effectively separates the data points and is supered
by a small subset of critical data points, which is called sup-
port vectors. It can effectively handle high-dimensional data
and nonlinearly separable problems by using the kernel trick
to transform the data into a higher dimensional space.

Given a set of training data, (xi, yi), i= 1, 2,…, l, xi2Rn,
yi2R, a support vector machine for regression is to obtain a
function in the following form:

f xð Þ ¼ ω ⋅ ϕ xð Þ þ β; ð7Þ

where ω and β are the parameters to be determined from the
training set; ϕ xð Þ represents a high-dimensional feature
space that is nonlinearly mapped from the low dimensional
space x. ω and β can be determined by minimizing the regu-
larized risk function, which are defined as follows:

1
2

ωk k2 þ C
l
∑
l

i¼1
hε yi; f xið Þð Þ; ð8Þ

where ωk k2 is the regularized term; C is called as penalty
factor. 1l ∑

l
i¼1hε yi;ð f xið ÞÞ is the empirical error measured by

the ε-insensitive loss function, which is given by:

hε yi; f xið Þð Þ ¼ 0; yi − f xið Þ ≤ ε

yi − f xið Þj j − ε; otherwise

(
: ð9Þ

In order to obtain ω and β, kernel functions are usually
used to make computations performed directly in input
space, without calculating the ϕ xð Þ. At present, four basic
kernels have been widely used, namely linear kernel, polyno-
mial kernel, the radial-basis function and sigmoid kernel. In
this paper, the Gaussian radial basis function (RBF) kernel
function is used to construct the SVMmodel. More details of
the RBF kernel function can be found in [40]. In SVM regres-
sion, two critical hyperparameters, i.e., gamma parameter g
and penalty factor C need to be preset before the learning
process. Grid search method is employed to select the opti-
mal values of gamma parameter and penalty factor.

3.3. Hybrid Models. To improve the predictive accuracy of
the debris-flow runout distance, hybrid models are proposed
to integrate the robustness of machine-learning models with
the limitation of the empirical regression models. The maxi-
mum runout distance of debris flow obtained from the
NLRM using the training data is taken as auxiliary input
for the three machine-learning algorithms to construct the
training models. Taken the MARS–NLRM hybrid model as
an example. First, the 107 sets of training data for CR1 split in
Table 1 is used to develop the empirical relationship between
the maximum runout distance and its influencing factors (i.e.,
H and VD) using Equation (1). Then, the maximum runout
distance can be calculated by using the developed empirical
model for CR1 and the training data. The calculated maxi-
mum runout distance and the corresponding catchment H
and VD is applied as supplementary input data for the
MARS. To this end, a total of 214 training datasets are gener-
ated to construct the MARS–NLRM data-driven model.
Finally, the performance of established hybrid MARS–NLRM
model is evaluated by using the testing data for CR1 split.
Similar method is utilized for CR2, CR3, CR4, and CR5,
respectively. After completing the five iterations, the perfor-
mance metrics of the hybrid MARS–NLRM model derived
from each testing data are averaged to provide a final evalua-
tion for theMARS–NLRMmodel’s performance. As for other
two hybrid models (i.e., RF–NLRM and SVM–NLRM), the
same procedures are adopted to obtain their model evaluation
indexes.

3.4. Performance Metrics of Different Models. It is essential to
evaluate the accuracy and reliability of a predictive model.
Hence, the predictive accuracy and robustness of the pro-
posed hybrid models in the paper are assessed by three math-
ematical metrics, i.e., coefficient of determination (R2), RMSE,
and MAE. R2 is a statistical metric used to assess the good-
ness-of-fit of a predictive model. It reflects the proportion of
the variance between the predicted dependent variable and
the measured value, which is given by:

R2 ¼ 1 −
∑N

i¼1 Lmf ;i − Lpf ;i

h i
2

∑N
i¼1 Lmf ;i − Lmf

h i
2 ; ð10Þ
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where N is the number of the data; Lmf ; i represents the actual
measured maximum runout distance; Lpf ; i is the predicted
maximum runout distance; Lmf is the mean value of the
actual measured maximum runout distance. The value of
R2 ranges from 0 to 1, where a higher value indicates a better
fit of the model to the observed data.

RMSE quantifies the average discrepancy between the
actual measured values and the predicted values produced
by the predictive model, which is calculated as follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Lmf ;i − Lpf ;i

h i
2

N

s
: ð11Þ

A lower RMSE value indicates a better predictive perfor-
mance of the model, with smaller deviations between pre-
dictions and actual measurements. RMSE not only considers
the relationship between predicted and actual values but also
quantifies the magnitude of the errors.

MAE computes the absolute errors between the actual
values and predicted values, which are calculated as follows:

MAE¼
∑N

i Lmf ;i − Lpf ;i

��� ���
N

: ð12Þ

The MAE can characterize the accuracy of the predictive
model by considering the absolute size of the errors, which is
not affected by the RMSE.

These three statistical metrics are used to evaluate the
predictive models under k-fold cross-validation, where R2

reflects how well the model fits the data, RMSE gauges the
accuracy of the model, and MAE quantifies the absolute
errors. A good predictive model should ideally have a high
R2, a low RMSE, and a small MAE, demonstrating its ability
to effectively model the data and make accurate predictions
for unseen datasets.

4. Results and Discussion

4.1. Hyperparameters for Machine-Learning Models. The
empirical models for CR1, CR2, CR3, CR4, and CR5 are
developed based on the fivefold cross-validation by using
Equation (1). The model parameters of multi-nonlinear
empirical relationships for the five different splits are sum-
marized in Table 2. It is found that the values of model
parameters, i.e., a, b, and c, are very close to each other under
the fivefold cross-validation. Then, the maximum runout
distance is calculated by using the developed empirical mod-
els for the fivefold cross-validation, and used as supplemen-
tary inputs to establish the hybrid models. Totally, four single
model (i.e., NLRM, MARS, RF, and SVM) and three hybrid
models (i.e., MARS–NLRM, RF–NLRM, and SVM–NLRM)
are generated for CR1, CR2, CR3, CR4, and CR5,
respectively.

In machine learning, hyperparameter is the parameter
that is needed to be predefined before the modeling proce-
dure. For MARS, RF, and SVM, there are several

hyperparameters that have significant effects on the predic-
tive accuracy. Reasonable selection of the optimal hyperpara-
meters, is a necessary prerequisite for machine learning. To
tune hyperparameters in these three machine-learning algo-
rithms, Grid search is used to systematically search through a
predefined hyperparameter space for the optimal combina-
tion that minimizes RMSE.

As for the MARS model, the predetermined maximum
number of basis functions for CR1, CR2, CR3, CR4, and CR5
is determined with the minimum RMSE. The range of basis
functions is adjusted as 60. The optimal MARS models adopt
30, 40, 40, 30, and 28 basis functions of linear spline func-
tions for CR1, CR2, CR3, CR4, and CR5, respectively. As for
the MARS–NLRM modeling procedure, the optimal maxi-
mum number of basis functions for CR1, CR2, CR3, CR4,
and CR5 are 40, 30, 30, 30, and 40, respectively. As for the RF
and RF–NLRM model, a maximum value of regression trees
is defined as 500, i.e., NR= 500 trees. Through trial and error,
the tree numbers higher than 300 for the five different splits
have no significant effect on the model performance. As for
the SVMmodeling procedure, the ranges of C and g are set as
(0, 1,500) and (0, 10). The optimal C values of SVM model
for the five different splits are 1,024, 1,024, 8, 256, and 512,
respectively. The gamma parameter g equals to 0.177, 0.125,
0.177, 0.022, and 0.707, respectively. For the SVM–NLRM
model, the optimal C values for CR1, CR2, CR3, CR4, and
CR5 are 724, 512, 512, 0.707, and 0.5. Meanwhile, the opti-
mal g is found as 0.354, 0.25, 0.125, 2.828, and 8, respectively.
These optimal hyperparameters are applied in the machine-
learning algorithms to generate the single training model and
hybrid models.

4.2. Comparisons of Different Predictive Models. Table 3
shows the performance metrics of all the predictive models
under the fivefold cross-validation. It is shown that except for
MARS, NLRM, RF, and SVM have comparable predictive per-
formance. Under the fivefold cross-validation, the MARSmodel
shows the worst performance with the lowest average of R2,
largest mean of RMSE, and maximum mean of MAE. Mean-
while, it can be seen that the hybridmodels generally show better
performance than individual models in terms of R2, RMSE, and
MAE. From Table 3, the ranges of R2 values of NLRM, MARS,
RF, and SVM for the testing data are 0.292–0.840, 0.115–0.747,
0.252–0.722, and 0.233–0.619, respectively. However, the R2

ranges of MARS–NLRM, RF–NLRM, and SVM–NLRM are
0.542–0.861, 0.543–0.763, and 0.540–0.769, respectively. Com-
pared with NLRM, the R2 values of MARS–NLRM, RF–NLRM,

TABLE 2: Model parameters of multi-nonlinear regression empirical
models.

Cross-validation a b c

CR1 0.053 0.39 0.28
CR2 0.056 0.33 0.27
CR3 0.039 0.40 0.35
CR4 0.054 0.44 0.27
CR5 0.052 0.40 0.29
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and SVM–NLRM are increased by 30%, 30%, and 29%, respec-
tively. In contrast to MARS, RF, and SVM, R2 values of
MARS–NLRM, RF–NLRM, and SVM–NLRM are improved
by 108%, 40%, and 64%, respectively. It is obvious that the
performance metrics of hybrid models are significantly
improved, indicating the proposed hybrid method has better
goodness of data fitting. Figure 4 shows the R2 curves of training
and testing stages under fivefold cross-validation. It is clear that
except for RF, the R2 of MARS–NLRM, RF–NLRM, and
SVM–NLRM at the training stages are generally larger than
NLRM,MARS, and SVM. At the testing stages, the three hybrid
models’ R2 are obviously larger than the other four stand-alone
models’ R2 values. Although RF achieves a good training model,
the prediction model has a large deviation for the testing data.

Themain reason is that for a small sampling size, RF algorithm is
prone to overfitting, which will lead to the degradation of model
performance. However, after incorporating the supplementary
datasets fromNLRM, the RF–NLRMhas better data-fitting abil-
ity for both training and testing stages, showing better predive
accuracy. Similar results are also observed for theMARS–NLRM
and SVM–NLRM. This indicates that the hybridmodels’ perfor-
mance is better than individual models in model evaluation.

Figure 5 plots the RMSE curves of training and testing
stages under fivefold cross-validation. It is clear that at the
training stages, the hybrid models have smaller RMSE values
than stand-alone models except for RF. However, under
fivefold cross-validation, the RMSE values of MARS–NLRM,
RF–NLRM, and SVM–NLRM are all smaller than that of a

TABLE 3: Performance metrics of all the predictive models under fivefold cross-validation.

Model
Training data Testing data

R2 RMSE MAE R2 RMSE MAE

CR1

NLRM 0.804 0.086 0.057 0.575 0.057 0.047
MARS 0.783 0.062 0.045 0.457 0.070 0.055
RF 0.916 0.044 0.031 0.556 0.060 0.050
SVM 0.669 0.079 0.051 0.573 0.059 0.049

MARS–NLRM 0.818 0.052 0.034 0.715 0.048 0.036
RF–NLRM 0.871 0.044 0.029 0.717 0.044 0.030
SVM–NLRM 0.774 0.058 0.031 0.732 0.042 0.031

CR2

NLRM 0.770 0.083 0.056 0.638 0.076 0.054
MARS 0.696 0.071 0.052 0.747 0.061 0.048
RF 0.913 0.044 0.032 0.722 0.066 0.049
SVM 0.661 0.077 0.050 0.619 0.076 0.056

MARS–NLRM 0.749 0.057 0.036 0.688 0.056 0.035
RF–NLRM 0.859 0.043 0.028 0.727 0.051 0.035
SVM–NLRM 0.746 0.057 0.036 0.702 0.054 0.033

CR3

NLRM 0.768 0.078 0.053 0.292 0.104 0.069
MARS 0.772 0.062 0.049 0.115 0.117 0.084
RF 0.920 0.040 0.029 0.252 0.101 0.073
SVM 0.633 0.080 0.056 0.233 0.110 0.072

MARS–NLRM 0.850 0.050 0.033 0.542 0.074 0.045
RF–NLRM 0.899 0.041 0.028 0.543 0.074 0.047
SVM–NLRM 0.840 0.052 0.031 0.540 0.078 0.041

CR4

NLRM 0.801 0.081 0.052 0.553 0.092 0.065
MARS 0.670 0.073 0.055 0.476 0.103 0.070
RF 0.913 0.044 0.032 0.590 0.082 0.061
SVM 0.621 0.080 0.055 0.371 0.127 0.081

MARS–NLRM 0.785 0.051 0.033 0.719 0.068 0.044
RF–NLRM 0.857 0.042 0.027 0.744 0.061 0.041
SVM–NLRM 0.738 0.056 0.032 0.715 0.065 0.039

CR5

NLRM 0.660 0.065 0.056 0.840 0.076 0.051
MARS 0.583 0.072 0.054 0.517 0.257 0.150
RF 0.886 0.041 0.030 0.597 0.115 0.069
SVM 0.570 0.075 0.049 0.494 0.125 0.072

MARS–NLRM 0.713 0.055 0.034 0.861 0.060 0.035
RF–NLRM 0.831 0.043 0.029 0.763 0.081 0.043
SVM–NLRM 0.700 0.057 0.032 0.769 0.078 0.038
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single machine-learning model and NLRM at testing stages.
From Table 3, the ranges of RMSE values for NLRM, MARS,
RF, and SVM at testing stages are 0.057–0.104, 0.061–0.257,
0.060–0.115, and 0.059–0.127, respectively, while the RMSE
for three hybrid models are 0.048–0.074, 0.044–0.074, and
0.042–0.078, respectively. Compared with NLRM, the RMSE
values of hybrid models decrease about 24%, 22%, and 21%,

respectively. In contrast to MARS, RF, and SVM, RMSE
values for MARS–NLRM, RF–NLRM, and SVM–NLRM are
improved by 37.5%, 26.6%, and 34.4%, respectively. Obvi-
ously, hybridization of the empirical model and machine-
learning algorithms can significantly reduce the prediction
deviation of any individualmodel. The performance improve-
ment of individual machine learning is higher than that of the
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FIGURE 4: R2 curves of training and testing stages under fivefold cross-validation: (a) training data and (b) testing data.
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empirical model. Totally, the hybrid predictive models have
better performance and smaller deviations between predic-
tions and actual measurements compared with an individual
model.

Figure 6 plots theMAE curves of training and testing stages
under fivefold cross-validation. At the training stages, theMAE
values for the three hybrid models are lower than that of the
single model except for RF. However, the MAE values for
the hybrid models are significantly smaller than that of all the
individual predictive model at testing stages, implying that
hybridization of the machine-learning models and the empirical
model has better predictive accuracy. For example, the MAE
values of MARS for the testing dataset under fivefold cross-
validation are 0.055, 0.048, 0.084, 0.070, and 0.150, respectively.
While the MAE values of MARS–NLRM in the testing dataset
for the five splits are 0.036, 0.035, 0.045, 0.044, and 0.035,
respectively, which is obviously lower than that of MARS
and NLRM (i.e., 0.047, 0.054, 0.069, 0.065, and 0.051). This
shows that the integration of MARS with NLRM can greatly

reduce the absolute errors between the actual values and predicted
values, and improve the predictive accuracy. Similar results can
also be observed for the RF–NLRM and SVM–NLRM. It can be
found that hybridizing empirical statistical models and machine-
learning algorithms can expand the amount of training data to
improve the robustness and accuracy of the predictive model.

The average values of R2, RMSE, and MAE under the
fivefold cross-validation for all the predictive models are sum-
marized in Table 4. As shown in Table 4, the mean values of
R2 for the testing dataset of MARS–NLRM, RF–NLRM, and
SVM–NLRM are 0.71, 0.70, and 0.69, respectively. They all
outperform the NLRM (i.e., 0.58), MARS (i.e., 0.46), RF (i.e.,
0.54), and SVM (i.e., 0.46). R2 is improved by an average of
70.5% compared to the three machine-learning algorithms.
Compared with the NLRM, the total improvement of R2 aver-
age values for the hybrid models is about 29.6%.

It can also be seen that the mean values of RMSE for the
testing dataset of MARS–NLRM, RF–NLRM, and SVM–NLRM
are 0.061, 0.062, and 0.063, respectively, which are lower than
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FIGURE 6: MAE curves of training and testing stages under fivefold cross-validation: (a) training data and (b) testing data.

TABLE 4: Comparisons of performance metrics of the predictive models.

Model
Training data Testing data

R2 RMSE MAE R2 RMSE MAE

Single predictive model

NLRM 0.76 0.079 0.055 0.58 0.081 0.057
MARS 0.70 0.068 0.051 0.46 0.122 0.081
RF 0.91 0.042 0.031 0.54 0.085 0.060
SVM 0.63 0.078 0.052 0.46 0.099 0.066

Hybrid predictive model
MARS–NLRM 0.78 0.053 0.034 0.71 0.061 0.039
RF–NLRM 0.86 0.042 0.028 0.70 0.062 0.039
SVM–NLRM 0.76 0.056 0.032 0.69 0.063 0.037
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that of NLRM (i.e., 0.081), MARS (i.e., 0.122), RF (i.e., 0.085),
and SVM (i.e., 0.099). Compared with NRLM and the three
machine-learning algorithms, the average improvement of
RMSE values for the three hybrid models approximates 22.3%
and 32.9%, respectively. Similar results are also observed in
MAE. In contrast to the NLRM, the average MAE value of
MARS–NLRM, RF–NLRM, and SVM–NLRM decreases about
32.5%. Compared with the three machine-learning algorithms,
the average MAE value of corresponding hybrid models is
reduced by 41.1%. Furthermore, the three hybrid models gener-
ally exhibit comparable predictive performance with similar
indexes of R2, RMSE, and MAE. On the whole, the three hybrid
models have higher prediction accuracy and lower errors. This
implies that the proposed method can generate more accurate

and reliable predictions over the single machine-learning algo-
rithm and the empirical relationship.

4.3. Model Evaluations of Different Models at k = 1. The
results of k= 1 are selected as a representative to show the
performance of the hybrid models. Figure 7 shows the pre-
dicted runout distance values for NLRM, MARS, RF, SVM,
MARS–NLRM, RF–NLRM, and SVM–NLRM using testing
data versus measured values. From Figure 7, the estimated
values of the maximum runout distance using the single
model and hybrid models are all close to the measured
values. To further illustrate the performance of hybrid mod-
els, Figures 8–9 shows the comparisons of predictive perfor-
mance of hybrid models (i.e., MARS–NLRM, RF–NLRM,
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FIGURE 7: Predicted runout distance values for NLRM, MARS, RF, SVM, MARS–NLRM, RF–NLRM, and SVM–NLRM using testing data
versus measured values (k= 1).
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and SVM–NLRM) with single model (k= 1) for testing data-
set. As shown in Figure 8, the gray area represents the 95%
confidence interval for predictions of the maximum runout
distance. The blue square, purple triangle, and red circle in
Figure 8 represent the predicted Lf derived from the NLRM,
MARS, and MARS–NLRM, respectively. It is clear that
almost all the predicted data points fall into the 95% confi-
dence interval. The predicted Lf by using MARS–NLRM is
closer to the 1 : 1 line compared with NLRM and MARS. As
for the performance of RF–NLRM, the predicted values of Lf

are also closer to the actual values compared with NLRM and
RF, as shown in Figure 10. Similar results can also be found
in Figure 9. The predicted values derived from SVM–NLRM
are generally closer to the actual values than NLRM and
SVM. Especially, when the actual measured Lf equals to
0.39 km, the predicted values from NRLM, RF–NLRM, and
SVM–NLRM are 0.36, 0.38, and 0.39 km, respectively. It is
clear that the RF–NLRM and SVM–NLRM model can pro-
vide more accurate predictions of the maximum runout dis-
tance of extreme debris-flow events.
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FIGURE 10: Comparisons of predictive performance of SVM–NLRM with single model for testing dataset (k= 1).

NLRM
RF       

RF–NLRM

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

Pr
ed

ic
te

d 
L f

 (k
m

)

Measured Lf (km)

FIGURE 9: Comparisons of predictive performance of RF–NLRM with single model for testing dataset (k= 1).

12 Advances in Civil Engineering



Figure 11 displays as radar diagrams the results for the R2,
RMSE, and MAE statistical measures of accuracy for the four
single predictive model and three hybrid models for training
dataset under the first cross-validation. Figure 11 identifies
that the MARS–NLRM, RF–NLRM, and SVM–NLRM models
performmore accurately than the individual model in the calcu-
lation of the maximum runout distance of debris flow. Figure 12
plots the performance metrics of four single predictive model
and three hybrid models for testing dataset. It is apparent that
the three hybrid models have larger R2 and smaller deviations

between predictions and actual measurements (i.e., lower RMSE
andMAE) than the othermodels. Evaluation of the performance
of the predictive models shows that MARS–NLRM, RF–NLRM,
and SVM–NLRM outperform the empirical model and single
machine-learning algorithm both for the training data and the
validation data in terms of prediction accuracy. It is clear that
combing the empirical model and machine-learning algorithms
to predict the debris-flow runout zone can potentially overcome
the overfitting or underfitting of machine-learning models due
to the limited amount of sampling data.
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5. Summary and Conclusions

Accurate delineation of debris-flow-endangered areas (e.g., the
maximum runout distance) is a necessary prerequisite for the
debris-flow risk assessment and countermeasures design. This
paper proposes a hybrid method by integrating the machine-
learning models and an empirical regression model to predict
the maximum runout distance of debris flow. The proposed
method takes the calculated maximum runout distance by the
empirical model as supplementary inputs to increase the
amount of training data of machine-learning models. The pre-
dictive performance of the proposed hybrid models is compre-
hensively evaluated by three statistical accuracymetrics (i.e.,R2,
RMSE, and MAE) and compared with the single predictive
model (i.e., MARS, RF, SVM, and NLRM) under fivefold
cross-validation. The proposed method is illustrated by using

134 datasets of channelized debris-flow events in Sichuan prov-
ince, China. The following conclusions are drawn from the
results and analysis:

(1) For the individual predictive model, the MARS
model shows the worst performance compared
with the other single models (i.e., NLRM, RF, and
SVM). The NLRM, RF, and SVM models have com-
parable predictive accuracy in estimating the maxi-
mum runout distance of debris flow in Wenchuan
earthquake area.

(2) For the study area, all the proposed hybrid
MARS–NLRM, RF–NLRM, and SVM–NLRM models
provide more accurate predicted values of the maxi-
mum runout distance than NLRM, MARS, RF, and
SVM under fivefold cross-validation. After hybridizing
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FIGURE 12: Performance metrics of four single predictive model and three hybrid models for testing dataset (k= 1): (a) R2, (b) RMSE, and (c)
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empirical statistical models and machine-learning
algorithms, the amount of training data can be
expanded to overcome the overfitting or underfitting
of machine-learningmodels. Evaluation of the perfor-
mance metrics of the predictive models shows that
MARS–NLRM, RF–NLRM, and SVM–NLRM obvi-
ously outperform the empirical model and single
machine-learning algorithm both for the training
data and the validation data.

(3) Compared with the three individual machine-
learning model (i.e., MARS, RF, and SVM), hybrid-
ization of machine-learning algorithms and the
empirical model results in R2, RMSE, and MAE
improved by 70.5%, 32.9%, and 41.1%, respectively.
In contrast to the empirical model, R2, RMSE and
MAE values of the proposed hybrid models are
improved by 29.6%, 22.3%, and 32.5%, respectively.
The proposed hybrid method can obviously improve
the predictive accuracy and robustness, providing a
promising tool for predicting the debris-flow-endan-
gered area and enhancing the model generalization.

Abbreviations

GCV: Generalized cross-validation
MAE: Mean absolute error
MARS: Multivariate adaptive regression splines
MARS–NLRM: Hybridization of MARS model and a non-

linear regression model
NLRM: Nonlinear regression model
R2: Coefficient of determination
RBF: Radial basis function
RF: Random forest
RF–NLRM: Hybridization of RF model and a nonlinear

regression model
RMSE: Root-mean-square error
SVM: Support vector machine
SVM–NLRM: Hybridization of SVM model and a nonlin-

ear regression model.
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Additional Points

Limitations. In this paper, two crucial parameters (i.e., H and
VD) were considered as the input variables to develop the
predictive models. H was derived from the digital elevation
model (DEM). VD was indirectly estimated by the field-
observed thickness and depositional area. The quality and
resolution of remote sensing images can significantly influ-
ence the accuracy of input variables, affecting the perfor-
mance of the developed hybrid models. Moreover, various
other factors (e.g., debris-flow velocity and fan topography)
have great effects on the debris-flow runout. These factors
are not considered in this paper. If more field data of these

factors are available, they can also be incorporated into the
proposed method to reconstruct the hybrid training models
to improve the predictive accuracy of the endangered area.
These limitations do not affect the proposed method but
shared by all the statistical methods. In this paper, only three
commonly used machine-learning models (i.e., MARS, RF,
and SVM) are employed to generate the hybrid models to
predict the debris-flow runout. However, various machine-
learning algorithms (e.g., C&RT, CHAID, and boosting tree)
can also characterize the complex nonlinear relationship
between input and output parameters. Other machine learn-
ing algorithms can also be applied in this study to investigate
the performance of the hybrid models. This does not influ-
ence the feasibility of the proposed method in this paper. In
addition, the developed hybrid models for predicting the
maximum runout distance are suitable for the inputs within
the parameter ranges in this study (as listed in Table 1). The
performance of the proposed method largely relies on the
quality of available data. If the input variables are beyond
the parameter ranges in this study, the proposed hybrid
models may exhibit poor performance. In this case, the pro-
posed method should be used carefully.
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