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It is very difcult to obtain an accurate fnite element method (FEM) model to further analyze structural mechanical properties.
Terefore, as the main means of establishing accurate models, the model update has become a research hotspot in the dominion of
bridge engineering. Particle swarm optimization (PSO) has the characteristics of being easy to implement, but it is easy to fall into
the local optimum. Terefore, multistrategy cooperation particle swarm optimization (MCPSO) that balances exploration and
exploitation of particle swarm is proposed.Tis algorithm achieves the goal of balancing exploration and exploitation by adopting
diferent combinations of particle swarm velocity update strategies in diferent iteration stages. Te application efects of MCPSO
in the FEM model update of the continuous Warren truss steel railway bridge are compared and analyzed, and the results show
that the algorithm proposed in this paper outperforms the standard PSO (SPSO) algorithm. Tis paper provides a more efective
algorithm for bridge model updates.

1. Introduction

Particle swarm optimization (PSO) is a stochastic
population-based optimization method proposed by Shi and
Eberhart [1]. Since the algorithm was proposed, researchers
have carried out long-term research and improvement work
on it. It has the disadvantage that it is easy to fall into the
local optimum [2–4]. Tere are unimodal and multimodal
problems in engineering practice. Unimodal problems have
only one extreme point, while multimodal problems have
multiple extreme points. For unimodal problems, this is
advantageous, but when encountering multimodal prob-
lems, it is easy to obtain results that deviate from the global
optimum [5–7].Te current solution to this problem is often
to use some velocity update strategies to balance the ex-
ploration and exploitation of particle swarms in the solution
domain [7–9].

Te article [10, 11] indicates that multiswarm-combining
dynamical topology is an efective strategy to improve PSO.

Li et al. [12] proposed four strategies to update the particles’
positions called a self-learning particle swarm optimizer
(SLPSO), in which each particle has four cooperation
strategies implemented by an adaptive learning framework
and can choose the optimal strategy according to its own
local ftness landscape. Tang et al. [13] proposed multi-
strategy adaptive particle swarm optimization (MAPSO),
which evaluates the population distribution, alternates
strategy in real time, and has enhanced the research ability of
PSO variants. Gülcü and Kodaz [14] proposed PSO variants,
which set swarms as master and slave subswarms and make
them work cooperatively and concurrently. Bonyadi and
Michalewicz [15] conducted review research on PSO, and it
is believed that the combination of multiple speed update
strategies is one of the methods to improve the performance
of PSO. Wang and Song [16] separated particles near the
global best position and other particles and updated them in
the population in diferent ways. It has good performance
and high search precision than PSO and some other

Hindawi
Advances in Civil Engineering
Volume 2023, Article ID 9806200, 9 pages
https://doi.org/10.1155/2023/9806200

https://orcid.org/0000-0001-9147-8082
https://orcid.org/0000-0002-7700-8794
mailto:liyiq@stdu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9806200


optimization algorithms. Xia et al. [17] presented dynamic
multiswarm particle swarm optimization based on an elite
learning strategy (DMS-PSO-EL), in which the whole
computational process is divided into a former stage and
a later stage. Tang et al. [18] presented dynamic multiswarm
global particle swarm optimization (DMS-GPSO), which
consists of two novel strategies balancing exploration and
exploitation abilities.

However, benchmark functions are often used to test the
pros and cons of most PSO variants [19–22], which are one
sided.Te ultimate goal of researching algorithms is to apply
them to engineering practice and solve practical engineering
problems [23]. In order to solve practical engineering
problems, it is meaningful to design algorithms for this
engineering problem. Tis paper proposes a PSO variant
with combined strategies. Te algorithm evaluates the PSO
results through roulette and selects diferent particle speed
update methods according to the evaluation results, to
achieve the purpose of improving the performance of the
algorithm.

At present, researchers have developed some bridge
structure model update methods [24–27], and the use of
swarm intelligence algorithms to carry out bridge structure
model update research is also one of the current research
hotspots. Ho et al. presented a multiphase model update
approach to system identifcation of a real railway bridge
using vibration test results [28]. Bayraktar et al. (2010) [29]
obtained a railway bridge’s dynamic characteristics experi-
mentally, and according to them, the FEM model of the
bridge was updated by changing some uncertain parameters,
material properties and boundary conditions. Arisoy and
Erol [30] compared an FEM model and experimental dy-
namic properties of a steel railway bridge and updated the
FEM model by tuning material properties to match the real
bridge. Tran-Ngoc et al. [31] updated a large-scale steel truss
bridge using PSO and the genetic algorithm (GA) and found
that PSO provides a better accuracy FE model and reduces
the calculation cost compared to GA.

From the literature research, it is known that the re-
search on the improvement of particle swarm optimization
is one of the research hotspots of the current swarm evo-
lutionary algorithm. However, no one PSO variant is su-
perior to all algorithms.Terefore, for specifc problems, it is
necessary to popularize the application of improved PSO
algorithms and design targeted improved PSO algorithms.
At the same time, the current standard for using benchmark
functions to test algorithm performance is one sided. At-
tention should be paid to the comparative application efect
of algorithms in practical engineering, and efectively im-
proved algorithms should be recommended for solving
practical engineering problems.

Tis study makes several contributions to the current
literature. 1. It is not a simple mathematical average that the
article introduces roulette into particle swarm velocity
updating strategy evaluation but considers the distribution
of the particle updating process, which is more objective. 2.
Te improvement of the proposed algorithm is embodied in
the comprehensive strategy to realize an optimal combi-
nation of the existing PSO algorithm. Te proposed

algorithm is based on the evaluation result. Tis method can
be used as a frame to replace the subswarm velocity update
formula or introduce other optimization algorithms such as
the ant colony algorithm, bee colony algorithm, wolf colony
algorithm, and genetic algorithm to achieve the purpose of
improving the competitiveness of the algorithm.

Te remainder of the article is organized as follows:
Section 2 introduces the basic concepts of PSO and the
related PSO variants. Section 3 elaborates the improvement
strategies in proposed MCPSO. Section 4 applies the
MCPSO to the structural update problem for the continuous
Warren truss steel railway bridge, compares the results of
MCPSO and SPSO, and evaluates the efectiveness of
MCPSO. Finally, Section 5 provides the summary and
conclusion.

2. PSO and Related PSO Variants

Canonical PSO is a swarm intelligence algorithm inspired by
birds’ natural behavior in search of food. It imitates the
behavior they move, the positions they change, and tra-
jectories to search their destinations. In mathematics,
a single bird is regarded as a particle. Terefore, in the
simulation process, each particle has two position-related
characteristics, namely, the current position and moving
velocity. In the PSO algorithm, each particle describes
a feasible solution to a problem, a single particle is seen as
a point in a D-dimensional space, and a population of N
particles is used for an optimization problem generally. Te
position of the ith particle is represented as xi= (xi1, xi2, . . .,
xij, . . ., xiD), and its velocity is represented as
vi � (vi1, vi2, · · · , vij, · · · , viD). Te best previous searched
particle position with the best ftness value is saved and
denoted as pi= (pi1, pi2, . . ., pij, . . ., piD). Meanwhile, the
particle position with the smallest objective function value
among all the swarm particles is denoted as
g � (g1, g2, · · · , gj, · · · , gD). Te position and velocity of the
ith particle at iteration t of the PSO algorithm are denoted as
xi (t) and vi(t), respectively. Tus, the particle’s position
element is expressed as follows:

xij(t + 1) � xij(t) + vij(t + 1). (1)

From a variety of velocity update formulas, the classic
particle velocity update formulas that can cover all kinds of
velocity update strategies are selected as the subswarms’
velocity update formulas of the proposed algorithm in this
article.

2.1. SPSO. Shi and Eberhart [1] introduced standard PSO,
which added an inertia weight ω in PSO, to regulate the
efect of the previous velocity on the updated velocity. Te
particles’ velocities at iteration t+ 1 consist of three com-
ponents.Te frst part is the velocity at iteration t, the second
part is the individuality behaviors of the particles controlled
by the random number r1, ij uniformly distributed in [0, 1]
and c1 referred to as a cognitive parameter, and the last part
is the sociality behavior of the particle considering the
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random number r2,ij uniformly distributed in [0, 1] and c2
called a social parameter. Tus, the jth-dimensional

velocities of the particle xi at t + 1 iteration are manipu-
lated iteratively as follows:

vij(t + 1) � ω(t)vij(t) + c1(t)r1,ij(t) pij(t) − xij(t)􏽨 􏽩 + c2(t)r2,ij(t) g(t) − xij(t)􏽨 􏽩,

ζ(t) � ζe + ζb − ζe( 􏼁
tN − t( 􏼁

tN

,

(2)

where ζ is w, c1 or c2; if ζ is w, ζb= 0.9 and ζe= 0.2; if ζ is c1,
ζb= 2.5 and ζe= 0.5; and if ζ is c2, ζb= 0.5 and ζe= 2.5. tN is
total number of iterations.

Tis process of the velocity element vij(t + 1), position
element xij(t + 1), individual best element pij(t), and global
best g(t) is iterated until a predetermined stopping con-
dition is met.

2.2. UPSO. Focusing on the balance abilities between global
exploration and local exploitation, Parsopoulos and Varhatis
[8] proposed unifed PSO (UPSO). It distinguishes the local
and global velocity update of PSO. Te equations of global
and local velocity updates are shown as follows:

Gij(t + 1) � ξ vij(t) + c3r3,ij(t) pij(t) − xij(t)􏽨 􏽩 + c4r4,ij(t) g(t) − xij(t)􏽨 􏽩􏽮 􏽯,

Lij(t + 1) � ξ vij(t) + c5r5,ij(t) pij(t) − xij(t)􏽨 􏽩 + c6r6,ij(t) pn,ij(t) − xij(t)􏽨 􏽩􏽮 􏽯,
(3)

where ξ denotes the constriction factor, pn,ij(t) denotes the j
element of the personal best position of the best neigh-
borhood n of the particle xi(t), Gij(t + 1) is the global
version velocity of the ith particle on the jth dimension, and
Lij(t + 1) is the local version velocity.

Te velocity update of UPSO is calculated as follows:

vij(t + 1) � ur7,ij(t)Gij(t + 1) +(1 − u)Lij(t + 1), (4)

where u denotes the unifcation factor controlling the global
and local infuence on the velocity update, and

r7,ij(t) ∼ N μ, σ2􏼐 􏼑. (5)

2.3. CLPSO. Comprehensive learning particle swarm opti-
mization (CLPSO) [32] was proposed for better exploration.
Te velocity updates are as follows:

vij(t + 1) � ω(t)vij(t) + c7r8,ij(t) pfi(j)(t) − xij(t)􏽨 􏽩,

(6)

where fi determines which pij is used to guide the particle xij.
Te decision depends on the learning probability pci. Te
learning probability pci is expressed as follows:

pci � a + b
exp ((10(i − 1)/N − 1) − 1)

exp(10) − 1
, (7)

where a and b are the two parameters tuning the learning
probability, a= 0 and b= 0.5 in this article.

3. Strategy for Proposed PSO

Te proposed strategies improve PSO as follows: 1. Tree
algorithms are combined with diferent advantages, and the
characteristics of diferent algorithms are integrated to work

together to improve the performance of PSO variants. 2. Te
iterative process of the algorithm is divided into several
calculation periods to prevent the accumulation of the
limitations of a single algorithm strategy. 3. After a calcu-
lation period, each particle update position is evaluated by
objective function value change and the evaluation result
guides the number of particles allocated to diferent parti-
cles’ velocity update strategies in the next calculation period.

Te swarm grouping strategy is shown in Figure 1. Te
strategy with the best performance obtains the subswarm
with the largest number of particles, and it is the green part
in Figure 1. Te strategy with the second best performance
obtains the subswarm with a larger number of particles and
is shown as the blue part in Figure 1. Te strategy with the
worst performance obtains the subswarm with the least
number of particles, and it is the yellow part in Figure 1. Te
pros and cons of the strategy are evaluated in a computing
cycle, and the strategy with the largest change in the ob-
jective function in this cycle is the optimal strategy, and vice
versa. Figure 2 shows the graphical fowchart of the MCPSO
algorithm.

Tis research proposes a comprehensive strategy for the
PSO algorithm that dynamically adjusts the number of
subswarm particles. Te algorithm divides all particles into
S subswarms (S = 1, 2, or 3 in this article) with strategies S
and adjusts the particles in subswarms after each calcu-
lation period (Cp). Te subswarm with the strategy that
signifcantly reduces the objective function value is allo-
cated a larger number of particles. Te objective function
value’s average change is expressed as

∆fs(t) �
􏽐

Ts

j�1 f xj(t)􏼐 􏼑 − f pj(t)􏼐 􏼑􏽨 􏽩

Ts

, (8)
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where Ts is calculation times for the subswarm S with the
strategy S. Te best strategy is the strategy S resulting in
maximum ∆fs(t), the earlier stage of the calculation period,
or else it is that resulting in minimum ∆fs(t), the later stage
of the calculation period.

Te pseudocode of the MCPSO algorithm is shown in
Table 1. Ns (S ∈ {1, 2, 3}) is the proportion of subswarms S in
particles, N is the population size, and Cp is the calculation
period. It outputs the optimal solution g, and it is also the
particle position with the smallest objective function value
among all the swarm particles.

4. Engineering Application

In this section, MCPSO proposed in this paper is applied to
the FEM model update of the continuous Warren truss steel
railway bridge.

4.1. Objective Function. Natural frequencies and mode
shapes are well known as the sensitive factors for the changes
in structure properties.Te problem of FEMmodel update is
transformed into the optimization problem of minimizing
the objective function describing the gaps between the
measured responses and the calculated ones.

Te objective function for FEM model update is
expressed as [33]

fob � 􏽘
NF

j�1
wωj∆ω

2
j ,

∆ωj �
ωC

j − ωM
j

ωM
j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(9)

where wωj is the weight factor corresponding to the jth
natural frequency, NF is the number of frequencies and
mode shapes used in calculation, and ωC

j and ωM
j are the jth

calculated and measured natural frequencies, respectively.

4.2. Introduction of the Bridge. Te example bridge is
a continuous Warren truss steel railway bridge, with a span
of (48 + 3× 64 + 48)m, and the span layout diagram is shown
in Figure 3. Te main truss pattern is the Warren type, the
height is 11m, the internode length is 8m, and the center
distance of the main truss is 5.75m. Te upper and lower
chords of themain truss are welded H-shaped sections, some
diagonal bars are box-shaped sections, the bridge deck
structure is vertical and horizontal beams, and the upper and
the lower horizontal longitudinal connections are welded I-
shaped sections. Te section parameters are shown in Ta-
ble 2. Te bridge bearing adopts a steel bearing, and the
movable bearing is a roller bearing. Te bridge was built in
1996 and has been in service for more than 25 years. Cur-
rently, the main trains in operation are C70 trains, with an
annual transportation volume of about 50 million tons. Due
to the long service period of the bridge and the existence of
microdamages, force analysis can provide suggestions for
later maintenance, which is conducive to the safe operation
of the bridge.

Compared with other simply supported bridges, con-
tinuous truss steel girder bridges have greater vertical and
lateral stifness and their defection curves are relatively

End 

Determine Nb, Ns, Nw

Define and initialize input parameters 

Match velocity-updated strategies for 
sub-swarms 

Tested frequency 

Objective function value fob

Convergence Y

N

Evaluate the velocity-updated 
strategies 

FE model 

Figure 2: Graphical fowchart of the MCPSO algorithm.

MCPSO

Best

Second best

Worst

Figure 1: Particle swarm grouping to strategies.
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smooth. Continuous truss steel girder bridges usually have
only one fxed support for the whole bridge. In this article, the
fxed support of the continuous steel truss bridge is set at pier

2. Te braking force of the continuous steel truss bridge is all
here, so at the fxed support, the stress on the pier and
foundation of the seat will be greater than that of other parts.

Table 1: Pseudocode of the MCPSO algorithm.

Algorithm 1 Te pseudocode of MCPSO algorithm
Input:
(1) Initialize the parameters for all subswarms: N, tN, xmax, xmin, vmax, vmin, set Cp � 10, NS � (0.33N, 0.33N, 0.33N)
(2) Initialize the parameters of SPSO: wb � 0.9, we � 0.2, c1b � 2.5, c1e � 0.5, c2b � 0.5, c2e � 2.5
(3) Initialize the parameters of UPSO: ξ � 0.729, c3 � c4 � c5 � c6 � 2.05, u� 0.1, μ� 0, σ � 0.01
(4) Initialize the parameters of CLPSO: c7 �1.49445, a� 0, b� 0.5
(5) Evaluate the objective function values f(xi), i� 1, 2,. . .,N
(6) Evaluate the objective function values change using (8)
(7) while (t< tN) or (stop criterion) do
(8) if mod(t, Cp)�� 0
(9) Find the best strategy and allocate the most particles to it
(10) Particle population size with the best strategy, the second best strategy, and the worst strategy areNb � 0.7N,Ns � 0.2N, and Nw � 0.1N,
respectively
(11) end if
(12) Update velocity of particles in subswarms by MCPSO
(13) Update positions for all the subswarms
(14) Evaluate the objective value f of each particle i in the population
(15) Find out the best previous positions of individuals within one subswarm and the global best position, respectively
(16) end while
Output: g

Pier 1 Pier 2 Pier 3 Pier 4
Pier 5Pier 0

288

64 64 4848 64

Figure 3: Span layout of through continuous steel truss girder (m).

Table 2: Transverse section attribute (mm).

Truss Section form Section composition Truss Section form Section composition

Bottom chord

2-420×12

Side diagonal member

2-450×12
1-436×12 1-436×10
2-420×12 2-460×16
1-412×16 1-428×12

Top chord

2-420×12

Portal strut

1-220×16
1-436×12 1-220×12
2-420× 20 1-772×10
1-420×123 1-180×12
2-420×16 1-180×12
1-428×12 1-296×10

Hip vertical 2-260×16 Floor beam 2-240× 24
1-436×12 1-1252×12

Top lateral bracing 2-180×10 Brake frame 2-140×12
1-220× 8 1-196×10

Bottom lateral bracing 2-180×10 Stringer connection 1-100×100×10
1-220×10 1-90× 90×10

Stringer

2-240× 20

Inclined end post

2-460× 20

1-1020×12 2-420× 20
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4.3. Truss Steel Railway Bridge FEMModel. Te continuous
Warren truss steel railway bridge model is established by
using general fnite element software ANSYS, and the main
truss, longitudinal and transverse beams, and connection
systems are all simulated by three-dimensional Timo-
shenko beam element BEAM189, as shown in Figure 4.Te
connections between the main truss, beams, and con-
necting system are all rigid connections. In the design, to
reduce the height of the bridge building, the longitudinal
and transverse beams are set at unequal heights and rigid
beam unit MPC184 is used to simulate the rigid con-
nection between the longitudinal beams and transverse
beams. Te sleepers and rails are simulated by three-
dimensional Euler beam unit BEAM4, with the sleeper
interval being 0.4m and the rails 60 kg/m. Te element
sizes of the stringer, the rail, and the rest component are
0.2m, 0.1m, and 1.0m, respectively. Te steel is 16 Mnq,
the elastic modulus is 2.06 ×105MPa, the density is
7850 kg/m3, and Poisson’s ratio is 0.3. According to the
quality of the gusset plate and high-strength bolts of the
continuous steel truss bridge given by the design drawings,
MASS21 mass elements are used, which are evenly dis-
tributed at each node, and other auxiliary masses are
evenly distributed on the vertical and horizontal beams by
using MASS21 mass elements. Te element COMBIN14
spring simulates the base plate between the beam and rail
fastening or sleeper. Structural connections are achieved
through shared nodes and rigid connections. Te

longitudinal stifness of the bearing is R1, R4, R7, . . ., R28,
R31, R34, the vertical stifness of the bearing is R2, R5, R8,
. . ., R29, R32, R35, and the lateral stifness of the bearing is
R3, R6, R9, . . ., R30, R33, R36.

4.4. Results. Vertical and transverse acceleration sensors are
arranged in the frst, second, and third midspans to collect
the response data when the train passes through. Te free
attenuation data segment after the train passes through is
used for spectrum analysis to obtain the natural frequency of
the structure. Te natural vibration frequency measured of
the bridge is the frequency corresponding to the frst-order
transverse mode. Te range of parameters is determined
according to empirical values. Te reasonable parameter
range is [1× 108, 11× 1010] N/m.

Te FEM update purpose of the bridge based on the test
is to fnd an FEM model whose mechanical property is close
to the reality. Te updated results are shown in Table 3. Te
objective function values of SPSO and MCPSO are average
values with 30 analyses performed under the same condi-
tions. Te tested frequency is 2.48, while the calculated
frequencies after the FEM model update by SPSO and
MCPSO are 2.463 and 2.464. Figure 5 shows the convergence
of SPSO and MCPSO, and it shows that proposed MCPSO
updated the FEM model and fnally obtained a more op-
timized FEMmodel.Te updated FEMmodel can be used to
study the bridge response in a variant environment.

R1, R2, R3

R7, R8, R9

R4, R5, R6

R10, R11, R12

R16, R17, R18

R13, R14, R15

R16, R17, R18

R19, R20, R21

R13, R14, R15

R25, R26, R27

R31, R32, R33

R28, R29, R30

R34, R35, R36

R22, R23, R24

1
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U
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Figure 4: Finite element model of the bridge structure.
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5. Conclusions

An MCPSO algorithm method is presented in this
article, based on the PSO algorithm and the multiswarm
strategy. Te experiment adopted a new technique for di-
viding the population into three subswarms and used
strategies with diferent specialties to balance exploration
and exploitation searches. Te MCPSO algorithm method is
not easy to trap in the local optima, so it has a strong ex-
ploration and exploitation characteristic compared with that
of SPSO. Te following conclusions can be drawn:

(1) Tis paper proposes MCPSO, which divides the total
particle swarm into three subswarms. Te number of
subswarm particles is determined according to the
evaluation of the objective function value change.
Te results show that the comprehensive evaluation
strategy optimizes the computational performance of
the PSO variant.

(2) MCPSO algorithms achieved better performance
than the SPSO algorithms in terms of the estimation
accuracy and convergence velocity. A more accurate
and efective structural FEM model considering
damage possibility was obtained.

(3) Te velocity update performance of a single strategy
of the PSO variant algorithm with multistrategy
combination is more critical to the algorithm. If the
selected velocity update strategy is not suitable, the
performance improvement of the PSO variant al-
gorithm with the combined strategy will be not
obvious compared to that of a single strategy particle.

(4) Te structural parameters that afect the response of
the bridge structure include the section size change
caused by component damage and the stifness re-
duction caused by fatigue. Terefore, the model
update problem is essentially an inverse problem,
which is ill posed, and the optimized bearing stifness
value may not necessarily be the true value of bridge
structural stifness. More possible monitoring bridge
structure data are needed to make the calculation
model closer to the real state of the bridge.
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Table 3: Parameters of the range and update N/m.

Stifness SPSO MCPSO
R1 0.00E+ 00 0.00E+ 00
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R8 1.05E+ 11 1.07E+ 11
R9 9.23E+ 10 9.28E+ 10
R10 0.00E+ 00 0.00E+ 00
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R18 5.10E+ 09 5.12E+ 09
R19 0.00E+ 00 0.00E+ 00
R20 1.03E+ 11 1.01E+ 11
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R23 9.29E+ 10 9.14E+ 10
R24 2.71E+ 10 2.70E+ 10
R25 0.00E+ 00 0.00E+ 00
R26 9.47E+ 10 9.34E+ 10
R27 3.43E+ 10 3.45E+ 10
R28 0.00E+ 00 0.00E+ 00
R29 5.74E+ 10 5.72E+ 10
R30 6.41E+ 10 6.53E+ 10
R31 0.00E+ 00 0.00E+ 00
R32 1.43E+ 10 1.42E+ 10
R33 8.59E+ 08 8.51E+ 08
R34 0.00E+ 00 0.00E+ 00
R35 2.37E+ 10 2.39E+ 10
R36 1.15E+ 09 1.11E+ 09
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