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Surface water potential is the availability of water on the surface of the Earth. It is a fnite renewable resource, of which the quantity
and quality are both space- and time-dependent. Careful estimation of the surface water potential of a river basin is very essential
for the future development of any kind of water-related project in countries like Ethiopia. Te surface water potential of the
ungauged subwatershed of Jewuha watershed was estimated using the hydrological model of Soil and Water Assessment Tool
(SWAT) and simple regionalization techniques. Te study used diferent data inputs collected from various sources and feld
observations. Te performance of the hydrological model was analyzed using performance checker parameters. After calibrating
and simulating using observed fow, the model showed it was very well to simulate the hydrology of the watershed with
a coefcient of determination (R2), Nash–Sutclife efciency (NSE), and percent of bias (PBIAS) of 0.74, 0.73, and 0.80 for
calibration and 0.71, 0.70, and 7.90 for validation, respectively, in Jewuha watershed. From the total watershed area of 680 km2,
163.68 million m3 of runof was generated by the model annually. In conclusion, the watershed has high surface water potential,
and the rivers in the subwatershed also have enough surface water that may be used for agricultural development.

1. Introduction

Surface water potential is the availability of water on the
surface of the Earth. It is a fnite renewable resource, of
which the quantity and quality are both space- and time-
dependent. Lakes and rivers, which have served as the major
sources of water throughout human history, constitute less
than 0.3% of nearly 3% of the Earth’s freshwater [1].
However, the availability of freshwater in many regions is
likely to decrease due to population growth, in-
dustrialization, land use, and climate change; unfortunately,

demand for water increases across the world. Terefore, the
careful estimation of the surface water potential of a river
basin is very essential for the future development of any kind
of water-related project in countries like Ethiopia.

Stream fow time series measurements are needed for
assessing and characterizing the hydrologic behavior of river
basins within modeling frameworks. However, in most
catchments in Ethiopia, particularly in Jewuha watershed,
the rivers are ungauged. Most watersheds have no hydro-
logical data for hydrologic applications, thus tools for
prediction in the ungauged watershed are indubitably
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required [2]. Also, accurate information on stream fow is
the basis for the planning and designing of water resources
schemes such as irrigation project development, water
supply, hydropower, food forecasting, and control and then
to have a sustainable ecosystem. For better managing and
assessing the associated risks and impacts, river water re-
sources need amore detailed study. However, still, nothing is
done to assess the water potential of the subwatershed in
the area.

To tackle such problems, regionalization of gauged data
hydrological parameters to an area of data scarce region is
necessary. In the previous studies, the prediction of fow for
the ungauged subwatersheds was done using hydrological
model simulation. But distributed hydrological models are
spatially complex and deal with large numbers of unknown
parameters, thus parameterization techniques have to be
applied. But the major problems when using distributed
hydrological models are the nontransferability of model
parameters through spatial resolution and the transferability
of parameters across scale and space [3]. Several studies have
shown that shifting model parameters across calibration
scales generates a bias in the simulation of water fuxes and
states. Similarly, variations occur when parameters are
transferred across locations [4–6]. However, the hydrolog-
ical model combined with other spatial regionalization
techniques relatively makes it accurate and reliable to
transfer the model parameters for gauged to ungauged
watersheds.

Hydrologic models represent the most efective and
viable means of predicting water availability and distribution
systems under an array of demand loading and operating
conditions. To assess the long-term dynamics of the hy-
drologic response to an environmental change, deterministic
process-based models are used to assess the water potentials
of the area [7]. Today, there are diferent hydrological
models from simple to complex features available to sim-
ulate the hydrological process at the basin and watershed
levels to assess the surface water potential such as physical
models, conceptual models, and empirical models. Most of
these hydrological models are applied in Ethiopia to simulate
sediment yield and surface runof at watershed and basin
scale [8–11], but none of this estimate the water potential of
the area in ungauged subwatersheds. Regionalization is the
process of transferring hydrological information (parame-
ters) of a model such as SWAT from a gauged watershed to
an ungauged watershed to predict the stream fow for the
ungauged station. Tere are diferent regionalization tech-
niques existed such as spatial proximity (Kriging, Inverse
Distance Weighted (IDW)), physical similarity approach,
and regression-based approach. Regionalization is impor-
tant for understanding the hydrological characteristics and
analysis of sustainable water resource management of
ungauged watersheds [12]. Te physical similarity is
expressed based on the similarity of catchment attributes
such as catchment size, information on topography, land
use, geology, elevation, soil characteristics, and climate
variables. Te physical similarity regionalization technique
states that a catchment with similar attributes has similar
hydrological characteristics [12]. From the diferent

regionalization techniques, spatial proximity methods are
mostly applicable [12, 13]. Herein, spatial proximity with
inverse distance weighting (IDW) was applied to take the
SWATcalibrated model parameters of the gauged watershed
to the ungauged watershed.

Te spatial proximity regionalization technique is based
on the spatial distance between catchment centroids that are
interpolated as a function of the geographic location. It can
be done with inverse distance weighting, kriging, or regional
pooling for a model. Te spatial proximity regionalization
approach has been used by many researchers [12, 13].
According to Oudin et al. [12], the spatial proximity re-
gionalization technique is better for small watersheds that
have gauged stations that are not densely located in the
watershed. Also, the result reveals that when two catchments
are closer, they have similar hydrological process. Van Liew
and Mittelstet Aaron [14] compare the three regionalization
approaches, namely, regional averaging, spatial proximity
(nearest neighbor), and donor techniques to regionalize
parameters in the Soil and Water Assessment Tool (SWAT)
on eleven watersheds located in the dissected plains and
rolling hill landforms in the eastern portion of the State of
Nebraska, USA. From the three regionalizationmethods, the
regional average gave better results than the other two;
however, all three approaches were considered un-
satisfactory in the study area. Roth et al. [3] studied model
parameter transfers for stream fow and sediment loss
prediction with SWAT in a tropical watershed. Minchet
watershed is a highland of Ethiopia. Te result shows that
calibration and validation of the fow performed very well for
the subcatchment and for the entire catchment using model
parameter transfer. Terefore, for this study, spatial prox-
imity with the inverse distance weighting method was used
to transfer the model parameter from the gauged to the
ungauged subwatersheds to estimate the surface water
potential.

Terefore, the objective of this study was to assess surface
water potential using the combined SWATmodel and spatial
proximity regionalization technique for the ungauged
subwatershed of Jewuha watershed, Middle Awash basin,
Ethiopia.

2. Materials and Methods

2.1. Study Area. Te names of the rivers are given based on
the town’s name near the rivers. Jewuha, Robi, and Ataye
rivers originated from the Guassa mountain and joined the
Awash river basin. During its fow from the mountain to the
Awash river, diferent perennial and semiperennial (efuent)
tributaries are joined in Jewuha river such as Sewur river and
Lomi Wonz. Jewuha watershed is positioned with geo-
graphic coordinates between 39°44′55″ to 40°10′4″E and
10°00′3″ to 10°21′10″Nwith an elevation range from 1109 to
3383m above sea level with an area of 680 km2 (Figure 1).

Te distribution of the rainfall in the area is a bimodal
rainfall type that has a short rainy season that occurs be-
tween March and April and a long rainy season that occurs
between June and August, with a dry season from December
to February. Te rainfall in the area varies from 218 and
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259mm; however, in the rainy season, the value changes
between 1200mm and 1500mm in the highland, but it
reduces to 600mm to 900mm in the lowland areas (Table 1).

Te other factor which characterizes the watershed is the
temperature which is critical to the water balance. In the
study area watershed, the temperature highly infuences
evapotranspiration and recharge. Unlike evapotranspira-
tion, recharge is low when the temperature is high. Te
average value of 12.57°C has been recorded in the summer
season and 20.6°C has been recorded in winter (dry season).
However, the total average value of temperature in the
watershed is 20°C.

Diferent land cover types have been found in the study
area in terms of areal coverage; the important land cover
units are trees, shrubs, grassland, cropland, vegetation
aquatic or regularly fooded, bare areas, and built-up areas.
Te agricultural/cropland is the principal land use of the
watershed distributed throughout the study area. Table 1
shows the general watershed characteristics of the given
watershed.

2.2. Materials and Data Type

2.2.1. Meteorological Data and Quality Analysis.
Meteorological and hydrological data were collected with
their respected organizations such as Ethiopia National
Meteorological Agency and the Minister of Water and
Energy, respectively. Te meteorological data includes daily
data of precipitation, maximum and minimum temperature,
relative humidity, wind speed, and solar radiation/sunshine

hour, and they were collected from the National Meteoro-
logical Agency of Ethiopia (NMAE) from 1988 to 2017 for
Ataye, Jewuha, Efeson and Shewa Robit gauge stations.
Also, the daily stream fow data of Jewuha, Ataye, and Robi
river gauging stations were collected (Figure 2).

Te quality of the climate data was checked using
Alexanderson’s Homogeneity test. Meteorological data se-
ries has great importance for the study and analysis of
climatological and hydrology. Nevertheless, meteorological
time series data are sufering from diferent factors which it
makes inhomogeneous. Terefore, homogeneity analysis of
this time series data is necessary to identify a change in the
statistical properties of the data which is caused by either
natural or man-made factors. Tis includes change in land
use and relocation of the observation station. Among the
diferent statistical homogeneity test, Standard Normal

Figure 1: Location of the study area.

Table 1: Watershed characteristics.

Characteristics
Watershed

Jewuha Ataye Robi
Size (km2) 680 240 290
Annual precipitation (mm) 1051 1428 972
Annual mean temperature (℃) 20 22 25
Forest (%) 12.2 10 13
Urban (%) 0.17 0.2 0.25
Agriculture (%) 46.3 35.2 38.1
Surb land (%) 24.61 20 22.2
Average slope (%) 0.16 0.21 0.13
Mean elevation (m) 2246 2431 2150
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Homogeneity Test (SNHT) was used [15]. SNHT is usually
applied to a series of ratios that compare the observations
with an average. SNHT test describes a statistic T(k) to
compare the mean of the frst k years of the record with that
of the last k-n years as follows:

T(k) � kz
2
1 + 9n − kz
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If a break is located at the year K, then T(k) reaches
a maximum near the year k�K. Te test statics T0 is defned
as

T0 � max(T(k)) · · · for 1≤ k< n. (2)

In this study, the homogeneity was computed by SNHT
in excel using the XLSTAT statistical software. As the
computed p-value is greater than the signifcance level
alpha� 0.05, the null hypothesis H0 was accepted and the
precipitation data set is homogeneous. If the mean of the
frst k value is the same with the mean of the k-n value then
the data is homogenous. When the data is not homogeneous
by removing the data value, it makes the data non-
homogeneous and flls it by considering that the data is
missed. As shown in Table 2, the p-value is greater than the
signifcance level alpha; therefore, all the stations are
homogeneous.

Figure 3 reveals the result of Alexanderson’s homogeneity
test for precipitation, in which mu is mean value of pre-
cipitation in the given station. Herein, data means the value of
the annual PCP (Precipitation) of station. As shown in the
graph, the straight line does intersect the annual precipitation
data in one line. Tis expresses that the precipitation data are
homogeneous for the given stations (Figure 3).

2.2.2. DEM, LULC, and Soil Data. Te spatial data which are
necessary for the input of the SWATmodel including a soil
map, digital elevation model, and land use/land cover were

obtained from diferent sources.TeDigital ElevationModel
(DEM) was obtained from https://earthexplorer.usgs.gov
website and soil map were extracted from the https://
www.fao.org/soils-portal/data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/. However, land use
land cover data were obtained from Water and Land Re-
source Center ofce, Addis Ababa, Ethiopia.

2.3. SWAT Model. Te soil and water assessment tool
(SWAT) is a well-known hydrological modeling tool that has
been applied in various hydrologic and environmental
simulations [7, 16, 17]. Mainly, SWAT is applied for water
resource and stream fow assessment, to know the efect of
a watershed, the efect of land use management on agri-
culture and water quality, and the climate change efect on
the hydrology of a watershed [18]. Te model estimates
relevant hydrologic components such as evapotranspiration,
surface runof and peak rate of runof, groundwater fow,
and sediment yield for each HRUs unit. Te water balance
equation in the SWAT model is used to simulate the hy-
drologic cycle (equation).

SWt � SWo + 
n

i�1
Rday − Qsurf − Ea − Wseep − Qgw , (3)

where SWt is the fnal water content (mm), SWo is the initial
soil water content on the day i (mm), t is time in day, Rday is
precipitation amount on specifc days i (mm),Qsurf is the runof
amount on specifc day i (mm), Ea is evapotranspiration
amount on day i (mm H2O), Wseep is the amount of water
percolated into the vadose zones on a day i (mm), day i (mm
H2O), and Qgw is the return amount of fow on a day i (mm).

Te routing phase defnes the movement of water,
sediment, etc. into the outlet through the channel network.
Flow is routed through the channel using the variable
storage routing method or the Muskingum method
(equation (4)). In the variable storage routing method,
storage routing is based on the continuity equation for
a given reach segment.

∆Vt − Vo � ∆vs, (4)

where Vi � volume of infow during the time step (in m³);
Vo � volume of outfow during the time step (in m³);
∆Vs � change in volume of storage during the time step (inm³).

Te SWAT model consists of several primary compo-
nents, including surface runof estimated using diferent
methods. Te most commonly used method for estimating
surface runof in SWAT models is the modifed SCS-CN2
[19] with daily time step or Green-Ampt Mein–Larson in-
fltration equation [20] with hourly or subdaily time steps.
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Figure 2: Mean monthly stream fow.

Table 2: Alexanderson’s SNHT for homogeneity of yearly rainfall.

Station name Mean value p-value Alpha
Shewa Robit 972 0.097 0.05
Jewuha 1051 0.797 0.05
Ataye 1428 0.818 0.05
Efeson 1106 0.137 0.05
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Te SCS curve number method is low data-intensive than
the Green-Ampt method. Terefore, the SCS curve number
method (equation (5)) was used to estimate the surface
runof volume in this study.

Qsurf �
Rday − Ia 

2

Rday − Ia + S 
, (5)

where Qsurf is the depth of runof in (mm), Rday is efective
precipitation in (mm), Ia is the initial abstraction which
includes surface storage, interception, and infltration before
runof (mm), and S is the retention parameter (mm). Te
retention parameter changes spatially due to changes in soil,

land use, management, and slope and temporally due to
changes in soil water content. Te retention parameter is
defned as

S � 25.4
100
CN

− 100 , (6)

where CN is the curve number for the day as a function of
soil permeability, land use, and antecedent moisture content.
Te initial abstraction, Ia, is commonly approximated as
0.2S, and equation (5) becomes.

Qsurf �
Rday − 0.2S 

2

Rday + 0.8S 
. (7)
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Figure 3: Result of Alexanderson’s homogeneity test for precipitation.
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Runof begins when P is greater than 0.5S. Tus, the
potential retention parameter depends on the slope of the
watershed, soil, and land use practices [6]. Te potential
maximum retention of S is related to the dimensionless
parameter CN using equation (6).

2.3.1. Model Input. As shown in Figure 2.3, the SWATmodel
is a data-intensive model which requires DEM (Digital Ele-
vation Model), soil map, and land use/land cover (LULC)
with their attributes tables (Table 2) in shape fle and .txt
format, climate, and hydrological data (river discharge) [21].

2.3.2. SWAT Model Setup

(1) Hydrological Response Unit (HRU). In SWAT, a watershed
is divided into multiple subbasins, which are then further
subdivided into HRUs that consist of homogeneous land use,
management, topographical, and soil characteristics. Hydro-
logical response units are a parcel of land that has homoge-
neous land characteristics. HRU consists of two parts, i.e., land
use land cover, soil, slope classifcation, and HRU defnition.
After watershed delineation, the study area was discretized
based on land use, soil, and slope, then overlaid to produce
multiple HRUs.Te defnition of the watershed was given 10%
for soil, 5% for LULC, and 15% for slope.Tis classifcation was
depending on the objective of the study and was obtained from
the literature [22]. Defnition of SWAT land use and soil code
for Jewuha watershed is described in the table below (Table 3).

Te Digital Elevation Model was used in combination with
soil and land use data for the defnition of hydrological response
units.Te hydrological response unit is the smallest unit of land
in the watershed with homogeneous physical characteristics.

(2) Sensitivity Analysis. Quantifying model sensitivity to
parameter changes is an important step in understanding
model performance and a crucial undertaking before model
calibration; therefore, it addresses whether the appropriate
quantity and quality of data can be obtained to provide
realistic model outputs given the parameter sensitivity. In
SUFI-2, to perform the sensitivity analysis, it includes two
types, namely, one-at-a-time (OAT) and global sensitivity
analysis. In the OAT technique, the response of the output is
identifed by changing only one parameter at a time [23]. But
this technique needs to know the interval of the parameters
and it results in eccentricity from the nominal parameter

value. In global sensitivity analysis, all the parameter values
are perturbed simultaneously and it makes it easier to
identify the interaction between the parameters.

(3) Model Calibration. Te prediction of the uncertainty of
SWATmodel calibration and validation results was analyzed
by the SWAT calibration uncertainties program known as
SWAT-CUP [23]. Among diferent algorithms, SUFI-2 was
used for the calibration of the SWAT model. To show the
intimate relationship between the simulation result, expressed
as 95PPU, and the observation expressed as a single signal
(with some error associated with it), two statistics values are
used [16]. Tese are the p-factor and r-factor, which gave
a good measure of the strength of the calibration results. Te
p-factor is the percentage of measured data bracketed by the
95PPU band, and the r-factor is a measure of the thickness of
the 95PPU (equation (8)). Te value of the p-factor and R-
factor is between 0, 1, and 0 up to infnity, respectively. A p-
factor of 1 and R-factor of 0 indicates that the simulations are
exactly corresponding to the observed data [23].

rfactor �
(1/n) 

n
t�1 Q

s,97.5%
t − Qs,2.5%

t 

σobs
, (8)

where Qs,97.5%
ti and Qs,2.5%

ti are the upper and lower boundary
of the 95PPU at time t and simulation i, respectively, nj is the
number of data points, and σobsj is the standard deviation of
the jth observed variable. Generally, the structure of the
SWAT model is shown in the (Figure 4) in a short and
precised manner.

(4) Model Performance Evaluation. SWAT model perfor-
mance was evaluated using statistical variables (Table 4).
According to reference [24], the statistical tests that are used to
evaluate the SWAT model include root mean square error
(RMSE), nonparametric tests, t-test, objective functions, au-
tocorrelation, and cross-correlation. For this study,
Nash–Sutclife efciency (NSE) (equation (9)), percent bias
(PBIAS) (equation (10)), and coefcient of determination (R2)
(equation (12)) that is recommended by [25] are used (Table 4).

NSE � 1 −


N
i�1 Oi − Pi( 

2


N
i�1 Oi − Oi( 

2
⎡⎢⎣ ⎤⎥⎦, (9)

PBIAS �


N
i�1 Oi − Pi( x100


N
i�1Oi

 , (10)

Table 3: Defnition of SWAT land use and soil code for Jewuha watershed.

Value LULC type SWAT code % of
area coverage Soil code % of

area coverage
1 Forest-mixed FRST 12.2 Be9-3c-26 45.51
2 Wood land (forest deciduous) FRSD 8.17 Re47-2c-239 5.4
3 Shrub land/brush RNGB 24.61 Vp14-3a-286 49.09
4 Agriculture land AGRL 46.3
5 Grass land RNGE 2.1
6 Bare land BARR 6.35
7 Wet land WETN 0.1
8 Settlement- low density URLD 0.17
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where Pi � simulated fow, Oi � observed fow, Oi � the mean
of observed data, P is predicted fow, and the remaining
variable is stated above and N is the total number of
observations.

2.4. Prediction of Flow for the Ungauged Sub-Watersheds.
Te parameter regionalization is to transfer the calibrated
parameters from gauged to ungauged catchments based on
geographical proximity, functional similarity, and regression
with catchment characteristics. Geographical proximity with
inverse distance weighting was used for parameter re-
gionalization for the ungauged watershed (equation (12)).

IDW was used to estimate the weight of the ungauged
subwatershed of Jewuha watershed (equation (13)). Te
distance between the two watersheds was determined using
GIS. Te gauged watersheds of Ataye, Robi, and Jewuha are
used to estimate the ungauged part of the Jewuha watershed.
Tis regionalization technique was verifed using leave-
one-out cross-validation, in which a single gauged site is
considered ungauged, and the transferred parameters to that

site are entered through the SWAT model, and then the
simulated fow was validated using SWAT-CUP with the
observed fow. Te general formula for spatial proximity
with the IDW method to regionalize the calibrated pa-
rameters of the gauged watershed is

Zug � 
n

i�1
WiZi, (12)

where Zug is the estimated model parameter at the ungauged
watershed; n is the total number of observed points (gauges);
Zi is the calibrated parameter value at gauged watershed; Wi

is the weight contributing to the interpolation

Wi �
1/d2

1 


n
i�1 1/d2

1 
, (13)

where di is the distance between the centroids of gauged and
ungauged subwatershed

3. Results and Discussion

3.1. SWATModel SensitivityAnalysis. Te sensitivity of each
parameter was selected based on the absolute value of
p-value and t-value. Te lower the p-value and the higher
the t-value, the more sensitive the parameter. Te result of
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Solar
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Topography

Hydrography

Soil

LULC

Hydrological Model
SWAT

Water Balance

Sensitivity Analysis

Calibration and Validation

Efciency Analysis

Simulation

Results Statistical Analysis

Figure 4: SWAT model fow structure.

Table 4: General performance ratings of simulated discharge.

Performance rating NSE PBIAS R2

Very good 0.75<NSE< 1 PBIAS<±10% 0.75<R2< 1
Good 0.65<NSE< 0.75 ±10%<PBIAS<±15% 0.65<R2< 0.75
Satisfactory 0.5<NSE< 0.65 ±15%<PBIAS<±25% 0.5<R2< 0.65
Unsatisfactory NSE< 0.5 PBIAS>±25% R2< 0.5
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the global sensitivity procedure shows that about ffteen
parameters (Table 5) were found to be sensitive under the
category of high to low sensitivity. On the global setting
procedures, 1000 numbers of iterations were selected in
gaining the most sensitive input parameters. Te SWAT-
CUP parallel processing technology fastened the simulation
processes by allowing two parallels simulation processing at
one time. SWAT-CUP parallel processing currently allows
SUFI-2 to perform faster using parallel computing
technology [26].

Some model parameters (Table 5) of the catchment were
assessed for their sensitivity during the calibration process.
Curve number (R_CN2), saturated hydraulic conductivity
(R_SOL_K), ground water delay (days) (V_GW_DELAY),
Manning’s “n” values for overland fow (R_OV_N), and
available water capacity of the soil layer (R_SOL_AWC) are
the top fve sensitive parameters. A similar study studied by
Khalid et al. [27] sensitivity analysis in the watershed model
using the SUFI-2 algorithm, in Langat River Basin, uses the
absolute value of p-value and t-value to indicate the sen-
sitivity of the parameter. Te study shows that CN2.mgt,
GW_Delay.gw, SLOPE.hru, SOL_AWC.sol, and SOL_K.sol
are the most sensitive parameters, which is almost similar to
this study. Tis similarity may have happened due to land
use land cover and ground water similarity of the watershed
because the two watersheds have similarity in watershed
management and ground model parameters. Another re-
searchers conducted by Setegn et al. [22] studied hydro-
logical modeling on lake Tana basin watershed. Ethiopia
tests the performance and feasibility of the SWATmodel for
prediction of stream fow. During sensitivity analysis, ESCO,
CN2, ALPHA_BF (days), REVAPMN.gw (mmH2O) (days),
SOL_AWC (mm of H2O), GW_REVAP, CH_K (mm/hr),
and GWQMN.gw (mm H2O) are the most sensitive pa-
rameters which is similar to our study due to its physical
similarity of the watershed except ESCO and ALPHA_BF
due to the fact that the SWAT model performs well to
simulate the ground water in lake Tana basin watershed than
in middle Awash sub-basin, and also, the study considers the
impact of sub-basin discretization which resulted in a better

representation of the hydrological processes and produced
streamfow yield which had a better model efciency in
comparison to those who are not considered in basin
discretization.

Te increase in R_SOL_AWC.sol indicates that it re-
duces the surface runof and base fow and then it reduces
the water yield of the watershed. Also, decrease in
R_CN2.mgt shows that the surface water reduces the wa-
tershed during simulation (Table 5). V_RCHRG_DP.gw low
value (close to 0) that is obtained (Table 5) indicates the
watershed, where rivers are predominantly are not
recharged by aquifers. In Table 5, the prefx R indicates the
existing parameter is replaced by (one plus the given value
multiplied by the existing value), and V indicates that the
existing value is simply replaced by the given value.

3.2. Model Calibration and Validation. Using the river
discharge data obtained from the Minister of Water, Irri-
gation and Energy (MoWIE), the SWAT model was cali-
brated at a monthly time scale from 1990 to 1997 and
validated from 1998 to 2003. SWAT model is considered
calibrated upon propagation of parameter uncertainties of
the 95% prediction uncertainties (95PPU) between the 2.5th
and 97.5th percentiles covers more than X% of the measured
data (i.e., 100–X) % of the data is treated as outliers. Also, the
average distance between 2.5th and 97.5th prediction per-
centiles is less than the standard deviation of the measured
data (Figure 5).

Here, PCP is the mean annual precipitation in the
watershed, and L95PPU and U95PPU are lower and upper
95% prediction uncertainties, respectively.

3.3. Model Performance Evaluation. Te performance of the
model was evaluated using a time series plot of observed and
simulated value and the statistical measures such as R2, NSE,
and PBIAS. Te statistical analysis of the watershed showed
good agreements between observed and simulated monthly
fow (Figure 6). Te p-factor is a good measure of the
strength of calibration results. P-factor is the percentage of

Table 5: Sensitive parameters.

Parameter name Fitted value Min_value Max_value t-stat p value Rank
R_CN2.mgt −0.0735 −0.3 0.2 −16.5807512 0 1
R_SOL_K.sol −0.7226 −0.9 −0.7 1.82861450 0.0680751 2
V_GW_DELAY.gw 141.33300 43 150 1.20256725 0.2297342 3
R_OV_N.hru 1.4713 0.8 1.5 1.1415040 0.2542270 4
R_SOL_AWC.sol 0.7475 0.1 0.8 −1.07160796 0.2844324 5
V_GW_REVAP.gw 0.1933 0.1 0.2 −0.82199461 0.4114863 6
R_SOL_Z.sol 2.4949 2.2 2.5 0.73047918 0.4654522 7
V_RCHRG_DP.gw 0.00673 0 1 0.67145492 0.5022524 8
V_GWQMN.gw 4539.5 4500 5000 −0.6579447 0.5108877 9
R_SLSUBBSN.hru 0.2226 0.1 0.3 0.58538000 0.5585661 10
R_EPCO.hru −0.0818 −0.1 0.1 −0.53285232 0.5943813 11
R_ESCO.hru −0.0298 −0.1 0.1 −0.51351192 0.6078285 12
V_ALPHA_BF.gw 0.1414 0 0.2 −0.42358385 0.6720582 13
R_HRU_SLP.hru −0.6435 −0.9 −0.4 0.3507220 0.7259501 14
V_REVAPMN.gw 81.5 50 150 −0.33305690 0.7392361 15
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measured data bracketed by the 95PPU band, and its value is
ranged between 0 and 1. When its value ranges between 0.7
and 1, the percentage of uncertainty is very good; thus, as
shown in the (Table 6), p-factor was 0.83, 0.75, and 0.8 for
Robi, Jewuha, and Ataye rivers. Tis value shows that the
95PPU band is within acceptable ranges in the watershed.
Similar study reported by Daba [28] in the upper wash sub-
basin shows that the SWAT model had a very good
agreement between the simulated and observed data with
NSE= 0.8 and R2 = 0.85. When comparing the result of this
study with the previous paper conducted by Daba [28], the
performance of the model is less because in the middle of the
Awash basin, there are more small-scale hydraulic structures
which afect the observed fow data which are unable to
obtain the data to enter the SWAT model. However, both

calibration and validation results fulflled the requirements
suggested by [25, 29] for R2> 0.6 and NSE> 0.5.

3.4. Surface Water Potential of the Watershed. Te result
shows that (Table 7), in the study area, the surface water
runof of the watershed is 240.71mm (12%), rainfall is
1100.56mm, and 453.28mm (23%) of potential evapo-
transpiration. From the total watershed area of 680 km2,
163.68 million m3 annual runof was generated. As shown in
Table 7, the highest rainfall and surface runof are recorded in
August. A similar study in lake Tana basin studied by Setegn
et al. [22] hydrological modeling in the lake Tana shows that
the model performs very good to model the surface water
compared to the ground water in the wet season.
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Based on the previous result, we can discuss that the
model can better predict the surface runof than the
groundwater due to lateral fow contribution to stream fow
during April and May and from July to September season.
Te reason may be the soil and land use data quality and
estimation of the curve number at dry moisture condition.
Since the SCS curve number is a function of the soil’s
permeability, land use and antecedent soil water that con-
dition the estimation of curve number at dry moisture
condition (wilting point) might not be efcient in that
watershed.

3.5. Weight Estimated to Transfer the Model Parameter.
Te model parameter which is obtained during the cali-
bration was transferred to the ungauged subwatershed by
multiplying the weight of the two watersheds. Te weight
was estimated by fnding the centroid of the Euclidean
distance between the donor watershed and the ungauged sub
watersheds. Herein, only Jewuha and Robi gauged station
(Table 8) was used to transfer the model parameters.

However, Ataye gauged station was very far apart from the
ungauged subwatershed relative to Jewuha and Robi; due to
this, it was only used for the validation of spatial proximity
regionalization technique.

3.6. Parameter Regionalization Using Spatial Proximity
Technique. Te fow from the gauged watershed to the
ungauged watershed was estimated through parameter re-
gionalization using the spatial proximity (SP) technique by
Inverse Distance Weighting (IDW). For verifcation of the
regionalization technique in the watershed, the statistical
parameters of the objective function are good, and this
shows that applying the spatial proximity technique to
transfer the model parameters to the ungauged sub-
watershed to estimate was acceptable. A similar study by
Gitau and Indrajeet [30] evaluated the use of regionalization
as a means of obtaining SWATmodel parameters for use in
ungauged watersheds. Te study evaluated two re-
gionalization methods, namely, global average and
regression-based estimates in terms of their predictive

Table 6: Model performance.

Objective function
Calibration Validation

Jewuha Ataye Robi Jewuha Ataye Robi
R2 0.74 0.76 0.82 0.72 0.75 0.73
NSE 0.73 0.74 0.81 0.7 0.7 0.71
PBIAS −0.8 −3 9.1 7.9 −5 13
p-factor 0.75 0.82 0.83 0.74 0.75 0.88

Table 7: Average monthly water balance values of the watershed.

Month Rain (mm) SURF Q (mm) LAT Q
(mm)

Water yield
(mm) ET (mm) PET (mm)

January 36.22 7.67 6.24 30.55 6.63 32.85
February 50.79 11.16 9.1 35.12 8.56 32.45
March 88.23 17.04 14.21 51.92 19.53 40.1
April 95.09 18.43 17.4 63.92 28.35 41.19
May 62.25 11.43 9.46 51.16 35.41 48.99
June 31.31 1.76 3.91 25.94 28.19 40.21
July 200.43 39.7 31.28 89.7 23.45 32.30
August 314.23 93.86 53.63 205.74 23.09 32.51
September 123.34 24.5 28.96 140.13 21.11 38.11
October 39.13 5.42 9.72 87.64 11.44 41.9
November 32.92 5.72 5.63 54.1 7.98 39.07
December 26.62 4.02 5.96 36.47 6.56 33.6
SURF Q is the surface runof, LAT Q is the later fow in the watershed, ET is evapotranspiration, and PET is potential evapotranspiration.

Table 8: Weight estimated in the ungauged subwatershed.

Gauged watershed Subwatershed Distance Weight
Jewuha Gida 5505 0.82
Jewuha Lomi 12369 0.17
Jewuha Gundift 5693 0.83
Robi Ashmaq 16191 0.29
Robi Samet 10417 0.71
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abilities using measured data from three diferent water-
sheds. Te model performance which is obtained was
comparable as with the observed fow during calibration.

Te parameters which are estimated in (Table 9) are
entered into the SWATmodel and simulated to estimate the
available surface water potential at the outlet of each sub-
watersheds in Jewuha watershed (Table 10).

4. Conclusion

To estimate the surface water potential, the SWAT model
was calibrated and validated by the observed fow. During
the calibration and validation of the model in the watershed,
the model was performing well in all watersheds to simulate
the hydrology of the watershed with R2 0.74, 0.76, and 0.82,
NSE 0.73, 0.74, and 0.81, and PBIAS −0.8, −3, and 9.1 for
Jewuha, Ataye, and Robi watersheds, respectively.Temodel
in Jewuha and Ataye overestimates and underestimates in
the Robi watershed. However, a comparable measure has
been taken to counterbalance these problems during a cal-
ibration process. Spatial proximity regionalization com-
bined with the SWATmodel was used to estimate the surface
water potential of the ungauged subwatershed in the Jewuha
watershed. Te regionalized model parameters were ob-
tained using data from the watershed situated in the vicinity
of the watershed. Tese parameters were tested on three
gauged watersheds in Jewuha, Ataye, and Robi, validating

using leave-one out cross-validation techniques. Overall, the
model performed well when these parameters were used on
the test watersheds, thus, we are confdent that the pa-
rameters would give satisfactory results when used in Jewuha
ungauged subwatersheds. Also, surface water potential ob-
tained in the ungauged subwatershed is sufcient to develop
any hydraulic structures for the sake of obtaining agricul-
tural productivity in the area or for water supply.

Data Availability
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