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Assessing the most important cost-influencing factors is essential for enhancing the predictive ability of cost estimation for
building construction projects. The goal of this study is to examine and design a valid cost prediction model for assessing factors
that impact the cost estimation of public buildings in Addis Ababa. This research solves these issues that typically arise in predictive
cost estimation models in two major processes. First, the insights of 133 professionals gathered on the 38 cost-impacting elements,
and 15 top factors design, time or cost, and parties’ experience were determined. The suggested hybrid approach is based on the
Akaike information criterion (AIC) and principal component regression (PCR) employed, coupling a stepwise linear regression
model. According to the findings of the study, principal component analysis reduced important factors to 14 and efficiently solved
the problem of multicollinearity with a variance inflation factor of less than 2, while stepwise cross-validation solved the overfitting
problem at the lowest AIC. The cost prediction model sorted out five factors: design completion by the public body when bids are
invited; completion of the project scope definition when bids are invited; level of construction complexity; importance of project
completion within budget; and subcontractor experience and capability have all been identified as the main cost-determining
factors. The study’s contribution is the first approach (PCR–AIC) utilized in this work to explore numerous cost-estimating
components, eliminate those that were related to one another, and identify the most crucial ones that consisted of the majority of
the original variables’ attributes.

1. Introduction

In Ethiopia, public authorities’ cost estimates for construction
projects frequently diverge from those provided by the contrac-
tor and/or the designer. These variations result from various
practices, goals, and procedures. According to studies, one of
the causes of cost overruns in the Ethiopian construction sector
is the use of inaccurate cost estimation methodologies [1].
Interest in cost-estimating techniques and cost-influencing fac-
tor evaluation has grown as well [2, 3, 4]. The independent
variable with a high degree of correlation is likely to be excluded
from such models [5]. However, multiple regression is fre-
quently employed by researchers to find elements that affect
and estimate a project’s cost. This resulted in a limited number
of factors to be included in estimating project costs, and a
prediction of project costs would not be accurate. As a result,
there is an urgent need to tackle some of the core problems

impeding the estimation of increased performance and viabil-
ity, one of which is riddled with challenges presented by the
prevailing wide variations between anticipated and actual proj-
ect costs as a result of the absence of effective cost estimation
techniques. Although it is possible to simply eliminate one or
more predictors from a model to improve it [6], whether a
variable is kept or removed should be based on the underlying
theory [7]. Previous research, summarized by Xiong et al. [5],
identified loss of information when deleting variables and col-
linearity in a model. To overcome this difficulty, researchers
developed three widely used methods: ridge regression (RR),
partial least squares regression (PLS), and principal component
regression (PCR) [8]. Moreover, researchers applied powerful
machine learning techniques, including ANN and hybridmod-
els of ANN with fuzzy logic, CBR, and GA, to improve the
accuracy of the estimation when compared to other methods
[9]. As a fundamental form of CBR, K-nearest neighbor (KNN)
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and the hybrid model combining PCA and AIC were com-
pared by Xiong et al. [5] for “eliminating variables” and “cost
estimation accuracy,” and it was shown that the hybrid model
(PCA–AIC) improved the predictive cost model.

The previous research did not adequately address the
issue of multicollinearity and overfitting concerns for a cost-
estimating tool with acceptable predictability utilizing princi-
pal component analysis. Hence, this study seeks to answer the
issues of multicollinearity and overfitting without the loss of
the original characteristics of the cost estimation variables to
get a reliable building project cost estimate. It also contributes
to the limitations of the previous study conducted by Xiong
et al. [5] by testing the applicability of the approach in the context
of public building construction projects. It also addresses the
gaps of Chan and Park’s [3] and Ganiyu and Zubairu’s [10]
study, which employed a forecasted cost model to identify
variables affecting construction costs employing PCR; how-
ever, these works did not adequately address the problem of
multicollinearity and overfitting problems for good predict-
ability of the cost estimation tool using the principal compo-
nent analysis. As a result, the cost estimation model in this
study used a hybrid approach of the Akaike information crite-
rion (AIC) and PCR methods to assess the factors that influ-
enced cost estimation and, as an outcome, attempt to develop a
unique predictive cost model for public building projects in
Addis Ababa.

2. Research Design and Methodology

2.1. Research Design. For this study period, descriptive and
quantitative statistical research methods were used to answer
the three research questions. To address the three research
objectives, analysis and research findings are conducted
throughout six stages. Stage 1: establish the data sources for
the public building construction projects in Addis Ababa,
analyze the survey, and present the results in charts and tables.
Stage 2: determine cost-influencing factors from the historical
data completed in the literature review. Stage 3: construct
databases from various scholars and studies in the study area
based on the evaluation and referencing of tools used in the
research analysis. Stage 4: identifying the most important cost-
influencing factors by using principal component analysis, and
Stage 5 of the research process is followed. Stage 5: develop
predictive models: undertake data analysis and statistical
modeling using multivariate regression analysis and establish
the correlations between project costs and factors that are
important to cost estimation. Stage 6: test the predictive
model for overfitting and collinearity risks, and then apply
the PCR–AIC hybrid approach analysis if the risks exist and
develop the final model.

2.2. Study Variables. The dependent variable for the study is
construction cost. The independent variables for the study
were 38 parameters categorized into three groups: design-
related factors, time- or cost-related factors, and project par-
ties’ experience-related factors.

2.3. Sampling Size and Techniques.As the data on the finished
public buildings were gathered from those firms willing to
supply the information that the data must also reflect Addis
Ababa, consequently the researcher utilized a nonprobabilis-
tic purposive sampling approach. Around 34 public building
construction projects were finished in the city throughout the
previous 10 years, according to Birhanu [11]. As a result,
skilled experts who have taken part in projects as consultants,
contractors, or employers are chosen at random. With three
experts from each of the three parties, there would be a total
of 300 replies from the three parties mentioned above. As a
result, it is believed that the Bartlett et al. [12], formulae were
used to compute the relative necessary sample size. A total of
143 specialists who had participated in building construction
projects that were completed during the previous 10 years
made up the sample size for expert opinion to get an original
insight on 38 parameters.

2.4. Research Validity and Reliability. The test results of
Cronbach’s alpha achieved an overall high of 0.860, indicat-
ing the overall reliability of the research instrument for
factor analysis [13]. The data were further examined using
the Kaiser–Meyer–Olkin (KMO) test for sample adequacy,
which yielded a significant result of 0.696.

2.5. Principal Component Analysis. In this study, the princi-
pal components—common characteristics that significantly
contribute to and are significant for estimating building costs
—are extracted using the MATLAB program. These variables
are chosen based on eigenvalues, which are used to gauge how
much of the contribution common components make to the
model. According to Kaming et al. [14], which was evaluated
by Ganiyu and Zubairu [10], the total number of extracted
components must be fewer than or equal to the number of
original elements utilized in themodel. The elements that have
eigenvalues larger than or equal to 1 (eigenvalue 1), according
to Ganiyu and Zubairu [10], are the most important ones that
affect project cost. This study used the same selection criteria
for principal components as the studies that came before it
[3, 10, 11].

2.6. Regression Model Estimation. Regression analysis was car-
ried out by Chan and Park [3], utilizing a parametric estimat-
ing strategy. Accordingly, when modeling is done using the
K columns of X, L and Kmain components are employed, and
the regression equation is as follows:

by ¼ αþ βXCL þ 2; ð1Þ

where by represents the fitted values of an N-dimensional
response vector, α is a constant, X is an N rows by K columns
(N× L) matrix of the original variables, CL is a K rows by
L column (K× L) matrix containing the eigenvectors from
the selected principal components, β is an L-dimensional
vector of unknown regression parameters, and 2 is a random
vector that meets the basic normality assumptions of E(2)= 0
and var(2)= δ2.
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2.7. Prediction Model Selection Criteria. The AIC criterion
was utilized in this work to prevent overfitting and the PCR
method to address collinearity. To prevent overfitting with a
relatively small sample size, this statistic measures the amount
of information lost in the model fit when predictor variables
are added [15], as reviewed by Xiong et al. [5].

3. Results and Discussions

3.1. Questionnaire Response Rate. For this objective, detailed
questionnaires were prepared and delivered to significant sta-
keholders in the construction sector, including clients (project
owners), contractors, consultants, and other professional orga-
nizations. To increase the scope of the analysis, a total of 179
online questionnaires were given to customers (project own-
ers), consultants, and contractors, of which 133 were com-
pleted and 46 were invalid, yielding a rather high response
rate of 74.3%. A total of 56 construction projects’ costs were
gathered, along with expert opinions on the cost-influencing
factors fromAddis Ababa’s subcities various contractors, con-
sultants, clients, and other professional institutes.

3.2. Factors that Affect Public Building Cost Estimation in
Addis Ababa

3.2.1. Design-Related Factors. In this category, the “level of
design complexity” has the highest respondent score and is
the most important to cost estimation of public building con-
struction projects, whereas the “presence of special issues” has
the lowest score and is less important to cost estimation,
according to respondents. Figure 1 illustrates the level of
design complexity (DER1), construction complexity (DER2),
design completion (by owner) when bids are invited (DER11),
technological advancement (DER3), and project scope defini-
tion completion when bids are invited (DER10) as the top 5
design-related factors.

3.2.2. Time-/Cost-Related Factors. The time- and cost-related
factors ranking their importance to cost estimation of public
buildings indicated that “the consultant’s level of construction
sophistication” is highest, whereas “time given to the consul-
tant to evaluate bids” had the lowest factors of their impor-
tance to cost estimation.

Figure 2 illustrates the top 5 most important factors
selected by the respondents, which are the consultant’s level

of construction sophistication (TCR7), the owner’s level of
construction sophistication (TCR8), the bidding environ-
ment (TCR6), the importance of the project to be delivered
(TCR2), and the importance of the project to be completed
within budget (TCR1).

3.2.3. Project Parties Experience-Related Factors. The relative
importance of the ranking of project parties’ experience-related
factors indicates the highest factor important to cost estimation
of public buildings is “Contractor‘s experience with similar size
of project,” whereas the lowest is “client experience with similar
project,” which is least important to cost estimation.

Figure 3 illustrates the top 5 most important factors
selected by the respondents among the parties’ experience,
which include the contractor’s experience with similar size of
the project (PER6), communication among the project team
(PER9), the adequacy of the contractor’s plant and equipment
(PER16), the contractor’s experience with similar types of
projects (PER5), and the contractor’s staffing level (PER15).

3.3. Determining the Most Important Cost Influencing Factors

3.3.1. Design-Related Factors. Table 1 shows that the extracted
components of the first principal component (PCDF1) explained
37.19% of the overall variance, whereas the second principal
component (PCDF2) explained 10.8% of the remaining variation
that the first component did not explain. The third principle
(PCDF3) accounted for 7.88% of the dataset’s variance, whereas
the fourth principal component (PCDF4) contributed 7.24%.
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FIGURE 1: Top 5 ranked design-related factors (x-axis is factors,
y-axis is rank and relative importance index (RII)).
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FIGURE 2: Top 5 ranked time-/cost-related factors (x-axis is factors,
y-axis is rank and RII).
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FIGURE 3: Top 5 ranked experience-related factors (x-axis is factors,
y-axis is rank and RII).
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3.3.2. Time Cost-Related Factors. Table 2 illustrates time- and
cost-related factors. The first principal component’s eigen-
value is 2.98, whereas the second component’s eigenvalue is
1.68. The first principal component (PCTCF1) accounted for
39.4% of the total variance, while the second principal (PCTCF2)
component explained 18.2% of what was not explained by the
first component.

3.3.3. Project Parties Experience-Related Factors. Table 3 shows
that the first main component eigenvalue is 4.95 for the parties’
experience-related components, while the sixth component
eigenvalue is 0.97. It was found that the first principal com-
ponent (PCEF1) explained 27.54% of the overall variance,
whereas the second principal component (PCEF2) explained
12.46% of the remaining variation not described by the first
component. The third principle (PCEF3) accounted for 9.32%
of the variance not explained by all preceding components;
the fourth principal (PCDF4) accounted for 8.55%; the fifth
principal (PCEF5) explained 7.81%, and the sixth principal
(PCEF6) accounted for 5.81%.

3.4. Factor Loadings before and after Rotation. As illustrated
in Tables 4, 5, and 6 that factors’ loadings before rotation showno
complex structures on design-related and time- and cost-related

factors, whereas eight factors in the parties’ experience-related
factors encountered complex structures before rotation and
are not found in the rotated factors. Based on previous studies,
the study focused on minimizing the number of factors on
which the determinants have high loading. Varimax rotation
is applied to the extracted factors at each principal component.

Tables 7, 8, and 9, respectively, show the findings of the
design, time/cost, and experience-related aspects of the rota-
tion matrix. A varimax rotation is also performed on the
factors to generate factor loadings that are easier to read.
Rotation describes the behavior of variables under severe
conditions by maximizing the loading of each variable on
one of the principal components while minimizing the load-
ing on all other factors, and it is the best factor output solution
for interpreting factor analysis.

Tables 7, 8, and 9 show the factors with complex struc-
tures resolved on rotated loadings with values greater than
0.5. This confirms that rotated loadings have meaningful
interpretation, as can be seen from the design-related and
time- or cost-related rotated factor analysis. This iteration for
factor extraction solved the complex structure after rotation,
except for one factor. Furthermore, for experience-related
factors, the number of original factors is 17 and the number
of principal components is 6. This factor extraction iteration

TABLE 1: Total variance explained for design-related factors.

Factor
Initial eigenvalues Extraction sums of squared loadings

Total Percentage of variance Cumulative Total Percentage of variance Cumulative

DER1 4.71 37.19 37.19 4.71 37.19 37.19
DER2 1.41 10.80 47.99 1.41 10.80 47.99
DER3 1.02 7.88 55.87 1.02 7.88 55.87
DER4 0.98 7.24 63.11 0.98 7.24 63.11
DER5 0.90 6.54 69.65 — — —

DER6 0.76 5.75 75.40 — — —

DER7 0.70 5.22 80.62 — — —

DER8 0.60 4.63 85.25 — — —

DER9 0.55 4.20 89.46 — — —

DER10 0.44 3.47 92.92 — — —

DER11 0.34 2.82 95.74 — — —

DER12 0.31 2.30 98.04 — — —

DER13 0.26 1.96 100.00 — — —

TABLE 2: Total variance explained for time-/cost-related factors.

Factor ID
Initial eigenvalues Extraction sum of squared loadings

Total Percentage of variance Cumulative Total Percentage of variance Cumulative

TCR1 2.98 39.40 39.40 2.98 39.40 39.40
TCR2 1.68 18.20 57.61 1.68 18.20 57.61
TCR3 0.84 10.77 68.38 — — —

TCR4 0.70 9.95 78.33 — — —

TCR5 0.59 7.56 85.89 — — —

TCR6 0.34 5.45 91.35 — — —

TCR7 0.39 4.50 95.85 — — —

TCR8 0.48 4.15 100.00 — — —
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solved the complex structure of eight factors. From this, it is
concluded that the number of complex structures among the
variables increased with an increase in the number of original
variables and an associated increase in the number of principal
components. In this finding, factor rotation remains useful
for the removal of complex structures from original variables;
hence, it is similar to the finding of [16]. Finally, factors with the
highest loading factor under each principal component are
selected from the rotated loadings for predicting the cost model.

TABLE 3: Total variance explained for parties experience-related factors.

Factor ID
Initial eigenvalues Extraction sum of squared loadings

Total Percentage of variance Cumulative Total Percentage of variance Cumulative

PER1 4.95 27.54 27.54 4.95 27.54 27.54
PER2 2.23 12.46 40.00 2.23 12.46 40.00
PER3 1.54 9.32 49.32 1.54 9.32 49.32
PER4 1.22 8.55 57.87 1.22 8.55 57.87
PER5 1.00 7.81 65.68 1.00 7.81 65.68
PER6 0.97 5.83 71.51 0.97 5.83 71.51
PER7 0.88 5.18 76.69 — — —

PER8 0.74 4.81 81.50 — — —

PER9 0.71 4.33 85.83 — — —

PER10 0.60 3.05 88.87 — — —

PER11 0.17 2.50 91.37 — — —

PER12 0.19 2.22 93.59 — — —

PER13 0.22 1.94 95.53 — — —

PER14 0.49 1.75 97.28 — — —

PER15 0.40 1.21 98.49 — — —

PER16 0.36 0.86 99.35 — — —

PER17 0.33 0.65 100.00 — — —

TABLE 4: Design-related factors before rotation.

ID
Loadings before rotation

h2
PCDF1 PCDF2 PCDF3 PCDF4

DER1 0.61 0.09 0.47 0.13 0.62
DER2 0.60 0.15 0.45 0.03 0.58
DER3 0.58 0.34 −0.13 0.29 0.55
DER4 0.59 −0.05 0.17 0.28 0.45
DER5 0.63 0.31 0.01 −0.08 0.50
DER6 0.37 −0.60 0.15 0.31 0.62
DER7 0.80 0.11 0.00 0.02 0.66
DER8 0.44 −0.73 0.08 −0.31 0.82
DER9 0.74 −0.22 0.04 −0.19 0.63
DER10 0.69 −0.01 −0.25 −0.39 0.70
DER11 0.64 0.13 −0.29 −0.40 0.67
DER12 0.61 0.26 −0.26 0.21 0.55
DER13 0.36 −0.36 −0.55 0.46 0.77

h, sum of squared loadings for the factors.

TABLE 5: Time- and cost-related factors before rotation.

Factor ID
Loadings before rotation

h2
PCTCF1 PCTCF2

TCR1 0.80 0.07 0.64
TCR2 0.71 0.24 0.50
TCR3 0.70 0.10 0.48
TCR4 0.65 −0.00 0.42
TCR5 0.79 0.10 0.62
TCR6 0.55 −0.46 0.30
TCR7 0.15 −0.83 0.02
TCR8 0.00 −0.83 0.00

h, sum of squared loadings for the factors.

TABLE 6: Experience-related factors before rotation.

Factor ID
Loadings before rotation

h2
PCEF1 PCEF2 PCEF3 PCEF4 PCEF5 PCEF6

PER1 −0.49 −0.00 0.55 0.07 0.21 −0.51 0.86
PER2 −0.47 −0.30 0.50 −0.13 0.05 −0.12 0.59
PER3 −0.57 −0.32 0.37 0.30 0.05 0.13 0.66
PER4 −0.30 −0.18 0.55 −0.18 −0.08 0.62 0.84
PER5 −0.59 −0.29 −0.01 0.23 0.06 −0.02 0.49
PER6 −0.57 −0.39 −0.07 −0.25 0.18 0.14 0.60
PER7 −0.25 −0.37 −0.18 −0.72 −0.01 −0.08 0.75
PER8 −0.71 −0.28 −0.20 −0.05 −0.20 −0.09 0.69
PER9 −0.62 −0.04 −0.04 −0.16 −0.21 −0.35 0.58
PER10 −0.55 0.25 −0.08 −0.22 −0.56 0.09 0.75
PER11 −0.39 0.66 0.19 0.07 −0.41 −0.05 0.80
PER12 −0.60 0.52 0.01 −0.09 0.31 0.01 0.74
PER13 −0.50 0.61 −0.01 −0.19 0.31 0.29 0.85
PER14 −0.69 0.53 −0.13 0.12 0.15 −0.03 0.82
PER15 −0.63 −0.15 −0.32 0.20 −0.08 0.03 0.57
PER16 −0.57 −0.31 −0.26 0.50 −0.10 0.19 0.79
PER17 −0.42 −0.09 −0.48 −0.06 0.32 −0.00 0.53

h, represents the proportion of total variance explained by each principal
component in the principal component analysis (PCA).
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3.5. Selection of Factors/Variables for Predicting Cost Model.
According to the PCA analysis, the total of 38 factors from
the original model was reduced to 19 factors, out of which
eight design-related factors are found to be important and
explain 62% of the total variation in the data; hence, the eight
coefficients were selected for the cost estimation model. Sim-
ilarly, time- and cost-related two factors are found important
and explain 67% of the total variation. The parties’ experience-
related factors selected are nine factors that are found to be
important and explain 70% of the total variation. These 19
factors shall also be passed for further analysis for the principal
component selection for the final model, and in this analysis,
the first 19 factors together explain 66% of the variation; hence,
it is decided that that’s good enough. Then, for later analysis, it
would only keep those 19 factors. However, the selected factors
for the model shall have commonalities above the cumulative
variances; this further reduces the 19 factors in the next sec-
tion. The principal component analysis result selected that 19
variables are important for cost estimation from the three
groups of variables. Among these, the highest loading value
at each principal component selects 12 variables from the three
groups of factors.

3.6. Develop Predictive Cost Models

3.6.1. Selecting Principal Components for Regression. This
study criterion for selecting principal components for a
regression model follows similarly to these previous studies,
selecting the principal component whose eigenvalues and
percentage variance are greater than the average eigenvalues
and the percentage cumulative variance of the factor, respec-
tively. This analysis further reduced the 19 factors to 14 that
are included for regression analysis in the final model.
Among the 14 variables obtained by PCA, six factors were
identified by RII as top most rated factors, which include
design completion (by owner) when bids are invited, project
scope definition completion when bids are invited, level of
design complexity, level of construction complexity, impor-
tance for the project to be completed within budget, and
adequacy of contractor plant and equipment. Accordingly,
the cumulative percentage variances of design, time/cost, and
parties experience-related factors are 62%, 58%, and 70%,
respectively, whereas the average eigenvalues and specific
variances of the components are 2.03, 2.33, and 1.98, respec-
tively. The extraction of principal components that represent
the highest variation in the data was completed in the previ-
ous section, which sorted 19 factors for further analysis to
include in the final model. In this section, the most signifi-
cant principal component shall be selected to be used in the
model estimation.

Using the PCA factor analysis statistical package, among
the 13 original design-related factors four principal compo-
nents are selected so that the cumulative variance explains
62% of the variation. Using the [3] selection criterion based
on the significance of the contribution of the principal com-
ponent and compared with the average eigenvalue (2.03), the

TABLE 7: Rotated loadings of design-related factors.

ID
Rotated loadings

PCDF1 PCDF2 PCDF3 PCDF4

DESR1 0.13 −1.56E-01 0.76 −0.01
DESR2 0.20 −0.11 0.72 −0.08
DESR3 0.30 0.21 0.47 0.44
DESR4 0.12 −0.21 0.56 0.29
DESR5 0.50 0.10 0.48 0.11
DESR6 −0.13 −0.66 0.26 0.31
DESR7 0.51 −0.12 0.55 0.27
DESR8 0.31 −0.85 0.03 −0.04
DESR9 0.54 −0.44 0.38 0.10
DESR10 0.79 −0.20 0.16 0.10
DESR11 0.80 −0.05 0.14 0.09
DESR12 0.41 0.14 0.36 0.49
DESR13 0.10 −0.29 −0.08 0.82

TABLE 8: Rotated loadings time-/cost-related factors.

ID
Rotated loadings

PCTCF1 PCTCF2

TCR1 0.797 −0.057
TCR2 0.736 0.130
TCR3 0.704 −0.006
TCR4 0.640 −0.106
TCR5 0.795 −0.026
TCR6 0.468 −0.544
TCR7 0.015 −0.839
TCR8 −0.131 −0.824

TABLE 9: Rotated experience-related factor loadings.

Factor ID
Rotated loadings

PCEF1 PCEF2 PCEF3 PCEF4 PCEF5 PCEF6

PER1 −0.07 0.19 0.90 0.03 −0.05 −0.02
PER2 −0.15 −0.01 0.63 −0.22 −0.05 0.34
PER3 −0.51 0.04 0.46 0.08 0.02 0.42
PER4 −0.05 0.06 0.11 −0.08 −0.08 0.90
PER5 −0.61 0.09 0.30 −0.09 −0.01 0.10
PER6 −0.43 0.15 0.17 −0.54 0.08 0.26
PER7 0.00 −0.05 0.04 −0.86 −0.08 0.04
PER8 −0.62 0.06 0.19 −0.39 −0.32 0.01
PER9 −0.31 0.13 0.38 −0.33 −0.45 −0.14
PER10 −0.20 0.20 −0.05 −0.19 −0.78 0.13
PER11 0.04 0.40 0.14 0.31 −0.72 0.03
PER12 −0.11 0.81 0.20 −0.05 −0.16 0.00
PER13 0.01 0.89 −0.04 −0.06 −0.14 0.18
PER14 −0.32 0.77 0.14 0.08 −0.29 −0.11
PER15 −6.97E−01 0.18 0.03 −0.14 −0.18 −0.05
PER16 −0.88 0.01 −0.02 0.09 −0.06 0.09
PER17 −0.44 0.36 −0.09 −0.36 0.16 −0.21
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two principal components (PCDF1 and PCDF3) are selected
for the estimation of the regression model. The total percent-
age variance for the two principal components is 69%. Like-
wise, for the time- and cost-related factors, there are eight
factors and one principal component extracted that explained
58% of the variation. The eigenvalue for the component is
2.33; hence, the component (PCTCF1) selected t explains
67% of the total variance. Concerning the parties’ experience
related to the 17 original factors, six principal components
were selected that explained 70% of the total variance. The
average eigenvalue of these factors is 1.98; likewise, two prin-
cipal components (PCEF1 and PCEF3) that explain 80% of
the total variance are to be included in the regression model.

3.6.2. Grouping of Input Variables. The basis for selecting
significant principal components for regression grouped
into 14 variables out of the 19 originals. The components
that were grouped into five variables have new headers for
clarity. Design factors include PCDF1 (project scope definition)
and PCDF3 (project complexity), time/cost factors include
PCTCF1 (project cost and time performance), parties’ experi-
ence factors include PCFE1 (parties’ experience) and PCFE3
(parties’ commitment to time, cost, and quality), and design
factors include PCTCF1 (project cost and time performance).

3.6.3. Independent Variables. The use of principal component
analysis has reduced the original 38 factors to 19 variables.
These were further reduced to 14, which are also extracted
into five new variables and chosen to be the independent
variables of this study, as shown in Table 10. The sample
statistics of all the independent variables are presented in
Table 11.

3.6.4. Regression Model Estimation for Cost Prediction. The
initial and final project costs of 56 construction projects are
available from the data collection. Based on the cost of vari-
ation specified in the General Conditions of Contracts of
Ethiopia, Public Procurement Agency (PPA), 2011, as well
as the adequacy of interpretation and creation of a cost

prediction model, these projects were grouped into seven
categories. The classification based on the final cost amount
resulted in four models, which are as follows:

(i) Model 1: project final cost from Birr 300 million–3
billion.

(ii) Model 2: project final cost from Birr 120 million up
to 280 million.

(iii) Model 3: project final cost from Birr 50 million up to
120 million.

(iv) Model 4: project final cost from Birr 1 million up to
50 million.

Accordingly, the regression model for the cost variation
is classified into three models:

(i) Model 5: the projects with more than 25% of cost
variation.

(ii) Model 6: the projects with up to 25% cost variation.
(iii) Model 7: the projects with 0%−30% cost variation.

The seven models were created in MATLAB using the
Create a stepwise linear regression model of project cost as
the dependent variable and the XCL matrix as the indepen-
dent variables (14 reduced sets of cost influencing factors).
The results revealed that the six models created for different
project scopes in terms of project amount and cost of varia-
tion were generated as fitted linear models, whereas themodel
created based on the projects list showed variation up to 28%
and was found not to be fitted linear models. Although the
results of the six models were fitted to the linear model, it is
necessary to validate the models based on the provided crite-
ria, which will be utilized to identify the predictive models by
testing and validating the models.

Model 1: According to R2 and modified R2, the eight
factors account for 98% and 94.7% of the total variation of
the project cost, respectively. At the 1% significance level, the
F-ratio test suggests that the cumulative impact of the seven
factors is very significant. The regression model may be
quantitatively defined as given in Equation (2):

Project cost Yð Þ ¼ 209:25þ 4;914:7x1þ 3;071:7x2
− 1;101:3x4 − 826:81x5þ 1;055:5x7
þ 3;105x10 − 1;009:8x13þ 1;411:4x14:

ð2Þ

Number of observations: 14, error degrees of freedom: 5;
root mean squared error: 196; R-squared: 0.98, adjusted
R-squared: 0.947; F-statistic vs. constant model: 30, p-value
= 0.000825.

Model 2: As indicated by the original R2 and adjusted R2,
these variables account for 97.6% and 92.2% of the total
variance of the project cost, respectively. At the 1% signifi-
cance level, the F-ratio test suggests that the combined effect
of the seven factors is very significant. The regression model
may be quantitatively defined as stated in Equation (3):

TABLE 10: Categorized variables of the principal components.

Factor
ID

Given
name

PCDF1 PCDF3 PCTCF1 PCEF1 PCEF3

DSER11 x1 0.80 0.14 — — —

DESR10 x2 0.79 0.16 — — —

DESR9 x3 0.54 0.38 — — —

DESR1 x4 0.13 0.76 — — —

DESR2 x5 0.20 0.72 — — —

DESR7 x6 0.51 0.55 — — —

TCR1 x7 — — 0.80 — —

TCR5 x8 — — 0.80 — —

PER16 x9 — — — −0.88 0.01
PER8 x10 — — — −0.62 0.06
PER4 x11 — — — −0.05 0.06
PER13 x12 — — — 0.01 0.89
PER12 x13 — — — −0.11 0.81
PER14 x14 — — — −0.32 0.77
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Project cost Yð Þ ¼147:8þ 173:08x1þ 148:4x2
þ 161:56x3þ 118:38x5þ 144:58x7
þ 78:51x8þ 52:13x9þ 262:75x10
− 143:56x13:

ð3Þ
Number of observations: 14, error degrees of freedom: 4;

root mean squared error: 15; R-squared: 0.976, adjusted
R-squared: 0.922; F-statistic vs. constant model: 18, p-value
= 0.00678.

Model 3: At the 1% significance level, the F-ratio test
suggests that the combined effect of the seven factors is
very significant. The regression model may be quantitatively
defined as stated in Equation (4):

Project cost Yð Þ ¼ 55:69þ 50:13x1þ 58:82x2þ 141:59x3
þ 33:11x4þ 50:71x5þ 64:94x7
þ 59:7x10 − 58:62x13:

ð4Þ
Number of observations: 14, error degrees of freedom: 6; root

mean squared error: 8.05; R-squared: 0.962, adjusted R-squared:
0.917; F-statistic vs. constant model: 21.5, p-value=0.000754.

Model 4: The f-ratio test suggests that the combined effect
of the seven factors is highly significant at the 3% significance
level. The regression model may be quantitatively defined as
stated in Equation (5):

Project cost Yð Þ ¼ −1:3þ 52:78x1þ 15:55x2þ 66:15x3
þ 48:93x5þ 51:911x6þ 50:34x7þ 27:91x9
þ 64:47x10þ 75:52x11þ 44:21x12:

ð5Þ

Number of observations: 14, error degrees of freedom: 3;
root mean squared error: 4.31; R-squared: 0.979, adjusted
R-squared: 0.908; F-statistic vs. constant model: 13.8, p-value=
0.0266.

3.6.5. Collinearity Diagnosis. The VIF values revealed that the
predictor variables in the dataset have a multicollinearity
issue. Table 12 demonstrates that the VIF values for all values
are less than 2. This demonstrates that the variables did not
experience the multicollinearity issue. VIFs greater than 10
are typically used to indicate considerable collinearity [5].

3.6.6. Overfitting Diagnostics. Table 13 illustrates the model
estimation initial iteration result, which shows the values
overfitted with corresponding F-statistics, showing a mis-
leading p-value that is smaller than the 5% level of signifi-
cance. Stepwise regression cross-validation indicated that the
overfitting problem at the lowest AIC was solved at the 1%
level of significance, hence it is concluded that there is no
need to proceed with the AIC PCR model (Table 14).

3.6.7. Model Selection Comparison. The diagnoses of over-
fitting and collinearity showed that this dataset has neither
overfitting nor collinearity problems; hence, it is concluded
that the AIC–PCR solved the problem in this case. Therefore,
the final predicted model is selected based on the AIC and
SSE model selection criteria for comparison. Among the
seven models, Model 1 is used to carry out the model com-
parison; accordingly, two models, Model A and Model B are
generated based on stepwise regression analysis in the MATLAB
software. Model A is generated for the lowest SSE, and Model
B is generated for the lowest AIC values. The root mean
square value is used to compare the models [5] used mean

TABLE 11: Cost prediction variables sample statistics.

ID Mean SD Variance Median Skewness Kurtosis Jarqua–Bera Probability

DER11 4.02 0.98 0.95 4.00 −0.95 0.69 22.77 0.00
DER10 3.89 0.99 0.98 4.00 −0.77 0.26 13.59 0.00
DER9 3.81 1.00 1.01 4.00 −0.63 −0.05 8.82 0.01
DER1 4.12 0.84 0.70 4.00 −0.71 −0.09 11.12 0.00
DER2 4.03 0.90 0.81 4.00 2.06 15.41 1,409.38 0.00
DER7 3.92 1.04 1.09 4.00 −1.38 4.09 135.07 0.00
TCR1 3.66 1.03 1.07 4.00 −0.50 −0.24 5.84 0.05
TCR5 3.62 1.09 1.20 4.00 −0.51 −0.32 6.32 0.04
PER16 4.13 0.89 0.79 4.00 −1.24 2.05 57.58 0.00
PER8 3.96 0.95 0.90 4.00 −0.68 −0.15 10.40 0.01
PER4 3.74 0.87 0.75 3.00 −0.13 0.07 0.42 0.81
PER13 3.87 1.06 1.12 4.00 −0.56 −0.74 10.04 0.01
PER12 3.85 1.11 1.23 4.00 −0.55 −0.79 10.10 0.01
PER14 3.80 1.11 1.24 4.00 −0.56 −0.66 9.33 0.01

TABLE 12: VIF values from MATLAB.

ID x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

VIF 1.59 1.55 1.58 1.62 1.44 1.78 1.66 1.23 1.64 1.49 1.79 1.99 1.24 1.48
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squared error (MSE) to select the best models. Model A has a
RMSE of 371, whereas Model B has a RMSE of 196. The lowest
RMSE value indicates the lowest AIC value of a model. The
findings of the model under SSE demonstrated that the 12
factors deemed essential for cost estimation account for 98.5%
and 81% of the entire variation of the project cost, respectively,
as evidenced by the originalR2 and amendedR2. The F-ratio test
shows that the total impact of the seven variables has a level of
significance of 31% at the 5% significance level. The model
under the AIC criterion revealed that the eight factors
determined to be relevant for the cost estimate account for
98% and 94.7% of the total variation of the project cost, as
evidenced by the original R2 and modified R2, respectively. At
the 0.00% significance level, the F-ratio test suggests that the
combined effect of the seven factors is very significant. As a
result, it is determined that the AIC selection criteria, when
compared to the SSE, is the best-fit model for cost estimation
of public building construction projects at the 1% level of
significance, given that both approaches employed PCA for
factor analysis.

3.6.8. Testing and Validating Models. The prediction model
findings revealed that the impact of the number of factors on
the cost of the project varied with the volume of the final
project. The results also showed that the predicted model
best explained the actual project cost rather than the initial
cost. This was confirmed by Models 5–7 which were devel-
oped taking into account high-cost and low-cost variation of
projects, but the models were rejected because of the highest

percentage error estimation report when compared to previ-
ous studies. To test the validity of each of the six models, the
predicted values of the project cost were computed using the
mean average percentage error of estimation (MAPE) and
found to be 12.8%, 2.6%, 4.4%, 14.26%, 850%, and 282%,
respectively. In their investigation, Chan and Park [3] dis-
covered that the average percentage error of the estimate was
roughly 13%. This analysis projected better error for four
models and two models (Models 5 and 7) from the selected
projects based on cost variance indicated the largest error of
estimation when compared to previous studies by Chan and
Park [3] and Xiong et al. [5]. To test and validate the models,
mean absolute percentage error (MAPE) is employed to
determine the predictive ability of the models. Table 15
shows that the five principal components chosen for the
prediction model explain: 45%, 47%, 68%, 47%, and 68% of
the total variation. The average variation explained by the
five principal components is 55%:

R2 ¼ Explained variation
Total variation

: ð6Þ

The R2 and adjusted R2 values for Model 1 are approxi-
mately 56% and 59%, respectively, for Model 2, 56% and
61%, for Model 3, 57% and 62%, and for Model 4, 56%
and 62%. Model 6 was rejected because it did not fit in linear
regression, whereas Models 5 and 7 were rejected due to the

TABLE 13: Four models iteration and corresponding AIC values and iterations.

Model
name

Lowest
AIC

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

Model 1 191.15 214.63 213.3 212.2 212.69 209.74 206 203.01 204.69 206.58 202.26
Model 2 117.97 146.54 147.67 149.2 151.18 153.16 154.79 155.52 157.44 150.62 141.05
Model 3 99.4 122.88 121.09 122.52 124.31 125.55 127.43 125.55 120 121.27 122.16
Model 4 81.05 98.14 99.55 99.07 100.88 102.86 102.83 100.28 100.97 102.17 95.58

TABLE 14: Four models iteration and corresponding AIC values iterations 11–21.

Model
name

Iteration
11

Iteration
12

Iteration
13

Iteration
14

Iteration
15

Iteration
16

Iteration
17

Iteration
18

Iteration
19

Iteration
20

Iteration
21

Model 1 204.01 205.37 inf inf inf 194.44 193.85 191.85 192.59 191.15 193.56
Model 2 142.95 136.28 inf inf inf 119.94 120.3 142.39 140.51 138.75 117.97
Model 3 121.27 117.38 118.67 117.38 100.8 102.63 100.8 99.4 102.27 — —

Model 4 97.06 82.99 81.25 81.05 82.54 81.05 85.22 85 92.03 91.11 89.41

TABLE 15: The approximate models R2 values.

Models R2 Adj R2 Explained (%) Model R2 (%) Model adj R2 (%)

Model 1 0.98 0.947 55 56 59
Model 2 0.976 0.922 55 56 61
Model 3 0.962 0.917 55 57 62
Model 4 0.979 0.908 55 56 62
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highest percentage of error reported. These four results con-
trasted favorably with previous research on cost estimation
and prediction models, as indicated by published (as reviewed
by Ganiyu and Zubairu [10]) values of R2 of 20.8% [17], and
41% [3] and 20% [10], and 58.6% using neural networks [18].
As a result, the findings of this study are consistent with those
of Emsley et al.’s [18] study. The study’s results were better
than those of [3, 5] estimates of 13% and 41.9%, respectively,
according to the MAPE, which showed that the three models
were 12.8%, 2.6%, and 4.4%, respectively.

Figure 4 illustrates that, even though Model 1 has a very
high RMSE value, the other three models demonstrated a
smooth increase. Model 4 has the lowest RMSE and AIC
values, as well as the best-adjusted R2, accounting for 62%
of variance with 10 factors set among the 38 original sets of
components, but its MAPE result reveals that its predictive
power is poorer when compared to the other models. As a
consequence of the breadth of this study, the results showed
that the most predictive model could not be chosen among
the four models since it required further extensive investiga-
tion. Consequently, the most essential factors that happened
in all four models were found to be very important for the
cost estimation of public buildings in Addis Ababa. Among
the 14 factors identified by PCA, five were represented in the
four models: design completion (by owner) when bids are
invited, project scope definition completion when bids are
invited, level of construction complexity, importance for the
project to be completed within budget, and subcontractor
experience and capability. The validity of the study’s findings
is demonstrated by the fact that all of these important factors
—design (three factors), time/cost (one factor), and project
party experience (one factor)—were among the top 5, except
for subcontractor experience and capability, which was rated
among the top 6 but included nonetheless because it was one
of the factors chosen by the regression model.

4. Conclusion and Recommendation

This study intended to create a cost prediction model for
public building projects in Addis Ababa utilizing PCA–AIC
criteria and stepwise multiple linear regression models cre-
ated in MATLAB software. The results of the study led to the
following conclusions: The results showed that five out of 14
factors were recognized by the cost prediction model fitted to

the four models, and those factors represented by all the
models were chosen as being highly essential. These factors
include design completion by the owner when bids are
invited; completion of the project scope definition when
bids are invited, level of construction complexity, importance
of project completion within budget, contractor and subcon-
tractor experience, and capability have all been identified as
the main cost-determining factors. The found variables were
among the top 6 rated in the study and were relevant for the
cost estimation of public building construction projects in
Addis Ababa at the 5% level of significance. The study dis-
covered four cost-estimating models in the study region for
projecting the building cost of projects for different project
cost categories. In comparison to prior research, the results
of four prediction models showed improved R2 and adjusted
R2 values in the final model, which identified 14 factors that
explained 55% of the total variation. The study also con-
cluded that the AIC selection criteria are the best-fit model
with the lowest RMSE value for cost estimation of public
building construction projects at the 1% level of significance,
as opposed to the SSE, which had a higher RMSE value as
long as both methods used PCA for factor analysis. The
study concluded that the estimated model enhanced the
study’s outcomes. This is supported by higher R2 values
observed in comparison to earlier investigations. In addition,
the average percentage error of estimation has been reduced
by the three models to 12.8%, 2.6%, and 4.4%, as compared
to 13% indicated by prior research. The study was able to
construct a predictive cost model utilizing the 14 factors that
have a substantial influence on project cost, which repre-
sented 55% of the model. Although the PCA has reduced
the enormous number of components to a modest and cru-
cial number in comparison to earlier research, the study’s
number of factors with distinct cost categories has shown a
varied set of criteria typically considered crucial to cost esti-
mation. This study introduces a novel method (PCR–AIC)
for identifying the most important factors for estimating the
cost of public building construction projects in Addis Ababa.
By applying this method, the study eliminates the redundant
factors and retains the essential ones that capture the major-
ity of the original variables’ attributes. This study’s contribu-
tion is relevant for future similar projects in this location, as
they can use the identified factors to estimate the cost at an
early stage more accurately and efficiently. However, to arrive
at a highly trustworthy prediction model, future research
should conduct a more extensive analysis based on the pro-
curement method, project complexity, and location. Future
research could also investigate the model’s applicability uti-
lizing the nonlinear technique with other estimating compo-
nents, which would be a significant contribution to this work.
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The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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