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This research focuses on a comprehensive comparative analysis of shear strength prediction in slab–column connections, inte-
grating machine learning, design codes, and finite element analysis (FEA). The existing empirical models lack the influencing
parameters that decrease their prediction accuracy. In this paper, current design codes of American Concrete Institute 318-19 (ACI
318-19) and Eurocode 2 (EC2), as well as innovative approaches like the compressive force path method and machine learning
models are employed to predict the punching shear strength using a comprehensive database of 610 samples. The database consists
of seven key parameters including slab depth (ds), column dimension (cs), shear span ratio (av/d), yield strength of longitudinal
steel ( fy), longitudinal reinforcement ratio (ρl), ultimate load-carrying capacity (Vu), and concrete compressive strength ( fc).
Compared with the design codes and other machine learning models, the particle swarm optimization-based feedforward neural
network (PSOFNN) performed the best predictions. PSOFNN predicted the punching shear of flat slab with maximum accuracy
with R2 value of 99.37% and least MSE andMAE values of 0.0275% and 1.214%, respectively. The findings of the study are validated
through FEA of slabs to confirm experimental results and machine learning predictions that showed excellent agreement with
PSOFNN predictions. The research also provides insight into the application of metaheuristic models along with ANN, revealing
that not all metaheuristic models can outperform ANN as usually perceived. The study also highlights superior predictive
capabilities of EC2 over ACI 318-19 for punching shear values.

1. Introduction

Flat slabs are favored in the construction of reinforced concrete
(RC) structures due to their economic and efficient nature
[1, 2]. They are positioned directly over columns without
beams, which facilitates a direct transfer of load from the
slab to the columns. The absence of beams offers several
advantages, including reduced building height, easy integra-
tion of vertical shafts, layout flexibility, simplified reinforce-
ment placement, faster construction, and form simplification
[2–4]. The design of a flat slab is mainly controlled by

punching shear that exists at the vicinity of the slab–column
connection due to high shear stresses. The punching leads to a
complete loss of shear capacity at the slab–column connec-
tion, leading to brittle failure of the slab–column connection
[5], as shown in Figure 1. Due to this failure, the loads are
redistributed to the adjacent structural elements leading to a
progressive failure. Determination of punching shear failure
of the flat slab is a complex task due to numerous factors and
may be caused due to large column loads, insufficient concrete
strength [6], inadequate slab thickness [7], insufficient shear
reinforcement [8], small column heads, and poor construction
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quality. Numerous experimental studies have been conducted
to assess the performance of flat slabs. Some of the empirical
models have been used in the design codes [9]. The existing
empirical models [10–15] were developed from the experi-
mental values using the regression analysis. Therefore, their
performance is dependent on the database used to determine
the punching shear strength. The results of these empirical
models have shown variation in their results, resulting in
under or overprediction of punching shear values [16].

Despite having various methodologies to determine the
punching shear strength of flat slabs, these approaches only
work under specific frameworks. Such difficulties in the empir-
ical methods can be avoided by using machine learning (ML)
algorithms. Researchers have used artificial neural networks
(ANNs) in the prediction of load carrying capacity of RC
members [17], the elastic behavior of normal and high-strength
concrete [18], the structural behavior of slabs [16], the ultimate
strength of beams [19], the rutting performance of asphalt
mixtures containing steel slag aggregates [20], and prediction
of the behavior of shear connectors in concrete [21]. These
machine learning models have demonstrated their effective-
ness in determining the performance of various structural
members. ANN has been used to predict the load-carrying
capacity of structural members like the strength prediction of
RC beams [22, 23] and columns [24–26]. However, ANN
suffers from local optima problems resulting in incomplete
exploration of the dataset leading to wrong predictions. The
performance of ANN can be optimized using metaheuristic
algorithms. There are numerous ways in which ANN can be
optimized including optimizing the architecture of the neural
network, weight optimization, activation nodes, and parame-
ters involved in the network [27]. The major advantages of
metaheuristic algorithms over ANN are their ability to pro-
vide the optimum value of weights of the network after per-
forming optimization and their ability to elude being trapped
in local minima and multivariability [28].

A hybrid model of adaptive neuro-fuzzy inference sys-
tems combined with a genetic algorithm and particle swarm
optimization has been used to predict the shear strength of

RC beams [29]. The hybrid model predicted shear strength
with greater accuracy compared to standalone models. In
another study, an informational Bat ANN was applied to
predict the punching shear strength of RC flat slabs without
shear reinforcement [30]. The research investigated 30 dis-
tinct topologies of the model to identify the best possible
prediction model with minimized errors and the highest R2

values. Nolan Concha et al. [31] implemented a hybrid neu-
ral network of particle swarm optimization to predict the
shear strength of steel fiber RC deep beams [32, 33]. The
hybrid model predicted the strength of a steel fiber-RC
deep beam with a correlation coefficient of 0.997. The
high accuracy of these hybrid prediction models provides
a suitable tool to predict structural performance. Sandeep
et al. [34] used machine learning to predict the shear
strength of RC beams. Researchers used atom search opti-
mization (ASO) algorithm combined with neural network
to predict the shear strength of beams. These results were
then compared with the prediction results of various
hybrid and standalone models including ANN, genetic
algorithm, particle swarm optimized neural network, and
support vector machines.

The present study is aimed at the prediction of punching
shear strength at the slab–column connection in flat slabs
using a comprehensive dataset of flat slabs and to provide a
comparison of the performance of current design codes
(CDCs) with the prediction models. This study aims to pre-
dict the punching shear of a flat slab by using three different
ML models, one of which is feedforward neural network
(FNN) the particle swarm optimization-based FNN (PSOFNN),
and Bat algorithm-based FNN (BATFNN). A comprehensive
dataset consisting of 610 samples is collected from previously
published research. The parameters involved in the dataset
are column parameter (b), slab depth (ds), column dimension
(cs), longitudinal steel yield strength ( fy), percentage of longi-
tudinal steel ratio (ρl), ultimate load carrying capacity (Vu),
and concrete compressive strength ( fc). These data are con-
verted to seven different subsets of concrete slab (SCS) using
the parameters from the original database to evaluate the
influence of different parameters on the punching shear
strength of a flat slab. The working of the prediction models
is evaluated using mean square error, mean absolute error
(MAE), and R-value. The predicted punching shear values
are compared with calculated values from CDCs and com-
pressive force path (CFP) that revealed that design codes
result in punching shear values less than the actual experi-
mental values [35–37]. From the prediction results performed
in this study, it has been observed that PSOFNN provided
more accurate predictions for punching shear strength than
ANN and BATFNN. To validate the prediction results of
PSOFNN, finite element analysis (FEM) is used, which pro-
vided good correspondence with the predicted results from
PSOFNN and ANN.

2. Empirical Models

This research adopts the innovative CFP method, as intro-
duced by Kotsovos [38], to enhance the punching shear
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FIGURE 1: Punching shear failure at slab–column connection.
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strength of flat slabs. The CFP method strategically designs
structural elements to ensure the efficient transmission of
compressive forces from the slab to the columns, thereby
reducing tensile stresses at the slab–column interface and
enhancing punching shear strength. Key design considera-
tions within the CFP method encompass the geometry and
dimensions of the column, the size and spacing of reinforce-
ment, and the arrangement of reinforcement around the
column. The method aims to establish a force path for com-
pressive forces that minimizes tensile stresses at the slab–
column interface. A pivotal feature is the incorporation of
a wider column head, facilitating a more efficient distribution
of compressive forces from the slab to the column and miti-
gating tensile stresses. Effective reinforcement design is par-
amount in improving the punching shear strength within the
CFP method. This involves arranging reinforcement around
the column in a circular or square pattern, with suitable spac-
ing and size. Placing the reinforcement close to the slab sur-
face maximizes its effectiveness in reducing tensile stresses.
Additionally, the use of shear studs or connectors enhances
the bond between reinforcement and concrete, facilitating the
more efficient transfer of compressive forces and overall slab
strength. The CFP method stands out for its simplicity and
adaptability across various structural systems. Particularly
beneficial for structures with large flat slabs and heavy column
loads, it addresses the critical design consideration of punch-
ing shear failure in such scenarios.

The CDCs, such as American Concrete Institute 318-19
(ACI 318-19) and Eurocode 2 (EC2), were developed with a
focus on providing economical and safer structural designs
through a limit-state design approach based on theoretical
frameworks. However, these design methods, effective for
steel structures, prove less suited for concrete structures
under ultimate load conditions, as highlighted by Kotsovos
[38]. The unreliability of CDCs has been observed in struc-
tural elements like columns, beams, beam–column joints,
and walls, where experimental results often deviate signifi-
cantly from CDC predictions. In contrast to CDCs, the
CFP method introduces significant improvements. The first
enhancement involves determining the areas within struc-
tural members where applied loads are transferred from their
point of application to the supports. The second improve-
ment focuses on strengthening these areas to enhance struc-
tural ductility and load-carrying capacity, addressing the
limitations of CDCs. This method, as outlined by Kotsovos
[38], successfully meets all code performance requirements
at both structural and material levels. The CFP method thus
presents a promising alternative, ensuring more accurate
predictions and aligning with the principles of safer and
more economical limit state design.

Truss analogy models in mechanics, as applied to the
ultimate limit response (ULR) of concrete slab, provide a
theoretical framework for load transfer [17]. In this method,
force transmission is conceptualized in a triangular fashion.
It is notable that the equations employed by ACI and EC2
are empirical [39, 40], leading to data fitting, and are prone
to structural failures, including collapse [41]. The nature
of analysis formulas in CDCs introduces a significant

divergence between values calculated using CDCs and exper-
imental values. Despite this discrepancy, CDCs are fre-
quently utilized by engineering professionals due to their
ease of application in testing flat slab–column connections
at the ULR. Several parameters, including slab depth (ds),
column dimension (cs), shear span ratio (av/d), longitudinal
reinforcement yield strength ( fy), longitudinal reinforcement
ratio (ρl), ultimate load carrying capacity (Vu), and compres-
sive strength of concrete ( fc), are considered by CDCs in
determining the punching failure of slabs. The SCS response
is predicted using Equation (1) for ACI 318-19 based bound-
ary conditions, as shown in Figure 2:
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1
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The following equation is used in EC2 for the prediction
of slab response, as shown in Figure 3:
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where ρx and ρy are x and y direction reinforcement ratios of
the slab, respectively. CDC is based on the truss analogy
approach; however, CFP is based on the structural response
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FIGURE 2: ACI-based boundary for SCS.
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of an arch-like frame at ULR as represented in Figure 4. The
equations are as follows:

WII;2 ¼WC þ 2λcdð Þ; ð6Þ

λc ¼ 2 −
100ρlfy
500

� �
1þ 0:01 fc − 60ð Þ½ � : ð7Þ

3. Soft Computing Methods

Soft computing methods such as machine learning are an
alternative to the analytical approach. This study uses three
such techniques based on machine learning including feed
FNN, particle swarm optimization-based FNN (PSOFNN),
and bat algorithm-based FNN (BATFNN). The author’s pre-
vious work [42] included only ANN as a soft computing
approach for determining the punching shear strength of
flat slabs and since then the ACI code has also been revised.
This study includes two more techniques of PSOFNN and

BATFNN and an updated version of ACI 318-19 for calcu-
lating the shear strength of flat slabs.

3.1. Artificial Neural Network (ANN). ANN is a powerful
artificial intelligence tool developed to mimic the workings
of the human brain [43]. Neural networks have several
unique features that enable them to be implemented in vari-
ous fields of study. They can be used in data processing,
image processing, prediction, and classification [19]. The
ANN architecture consists of neurons and layers, where
the layers are divided into input, hidden, and output layers
[20] that contain neurons. The input layer receives the data
from the model, these data are transferred to the hidden
layers. The neurons are linked together through weights
which are multiplied by the neurons generated values which
are then added with the bias. These weights are randomly
initialized, and they are updated on each iteration to lessen
the difference between the input and the predicted values for
the later iterations. Multilayer feedforward ANN (MLFNN)
consists of an interconnected perceptron in which data flows
from the input to the output layer. The number of layers in
the network is the number of layers of the perceptron. A
simple neural network consists of a single input and output
layer, this is called a one-layer FNN. Adding intermediate
hidden layers to the network increases the complexity of the
network. Hidden layers perform the computation on the data
using activation functions that enable the output layer of the
ANN to perform predictions [18]. The inputs and predictions
are evaluated by the neural network for errors and these errors
are propagated from the output node to the input node.
The neural network keeps on reducing errors based on the
provided conditions during the initialization of the network
training. These conditions can be the number of iterations, the
performance goal of the network, and maximum validation
failures.

3.2. Particle Swarm Optimization. Particle swarm optimiza-
tion is an intelligent optimization algorithm belonging to a
class of nature-inspired algorithms called metaheuristics. It is
based on the social behavior of animals like birds and fish.
Fish and birds modify their movements to seek food and
avoid predators [44]. It is applied in various fields of science
and engineering. PSO uses several particles to make a swarm
that searches for the best solution in the search space. In
PSO, every particle has three main parameters that are the
velocity of the particle, particle position, and the previous
best position of the particle [45, 46]. With each successive
iteration of the PSO, the particles try to converge to the best
position ~xiðtþ 1Þ : by adjusting their position ~xiðtÞ : and veloc-
ity ~viðtÞ : by keeping track of their experience, as shown in
Figure 5.

The particle in the swarm having the best personal value
for fitness is taken as the global best. A summary of working
of the PSO is creating a swarm population consisting of
particles having a velocity and position, every particle has a
memory of its best position that is termed as personal best
and there exists a common best experience among members
of the swarm known as global best. Every member updates
their position based on their personal best and global best

u1
u1

u1

u0 u0

θ = 45
d

d/2

c

d/2

c

FIGURE 3: EC2-based boundary for SCS.
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which helps them to converge [47]. The working of the PSO
algorithm is represented in a flowchart in Figure 6. In this
study, the hyperparameters of the PSO are optimized using a
grid search to identify the combination that results in opti-
mal model performance. The hyperparameters of the PSO
algorithm are swarm size, inertia weight, cognitive weight,
social weight, maximum iterations performed for convergence,
and velocity limits. The size of the swarm determines the
number of particles employed for optimization. The potential
of discovering a global optimum increases as the size of the
swarm does, but it does become computationally expensive.
The best value of the swarm size is based on the problem being
solved as it depends on the complexity of the problem, its
dimensionality, size of the search space thus it may vary.

The inertia weight, cognitive weight, and social weight
are what govern the algorithm’s behavior when it comes to
exploration and exploitation. The influence of the particle’s
former velocity on its current movement is determined by
the inertia weight. The inclination of the particle to travel
toward its optimal position is controlled by the cognitive
weight. A higher value indicates that the particle’s previous
best position will have a bigger influence on the current
movement. The tendency of the particle to move toward
the swarm’s optimal position on a global scale is controlled
by the social weight. The inclination of the particle to go in
the same direction as it did in the previous iteration will rise
as inertia weight increases. Increasing cognitive weight can
make the algorithm more aggressive in its exploration of the
search space by increasing the tendency of the particle to
advance toward its own personal best position. Increasing
the value of all these three weights can make the algorithm
converge faster but also increase the chances of getting stuck
in a local optimum.

3.3. BAT Algorithm. The bat algorithm (BA) was proposed
by Yang [48] to imitate the echolocation behavior of bats

[49]. The echolocation ability of bats enables them to not
only search for prey but also differentiate between prey and
obstacles in the path. Bats produce loud sound pulses and
when these pulses bounce back from the objects in the path,
bats listen to those echoes. Bats can vary the pulse frequency
and the number of pulses produced per second; the pulse
emission rate increases as the bats approach the prey. The
loudness also varies with the pulse emissions, from loudest
while searching for food to quieter as the prey is in proximity
[49, 50]. Bats use the delay in the time of emissions, detection
of echo, and variations in loudness to detect the orientation
and distance of the prey, its type, and its speed. Bats have
other sensitive senses like smell, and some even have good
eyesight, but the BA is based on only echolocation. Figure 7
shows the bat algorithm working from the initialization of
bats to the definition of the objective function, to the optimi-
zation of the function and respective adjustment of the
parameters involved until the stopping criteria, are fulfilled.
The population size, maximum and minimum values of the
search space, the frequency range, loudness, and pulse emis-
sion rate (α) are some of the parameters that affect the opti-
mization process in bat Algorithm. The careful selection of
the hyperparameters for the BA is crucial for the algorithm’s
performance in optimization procedures. These hyperpara-
meters have a noticeable impact on the algorithm’s behavior
as it moves through the convergence, exploration, and
exploitation stages. The strength of the algorithm’s explora-
tion and exploitation efforts is influenced by the “loudness”
parameter. The algorithm tends to explore new areas in the
search space more thoroughly as “loudness” is increased.

3.4. Data Development and Analysis. A database comprised
of 610 flat slab samples is curated from the published litera-
ture to predict the punching strength of slabs and the exper-
imental setup used for the testing is shown in Figure 8. The
dataset includes the following input parameters: slab depth
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FIGURE 5: Adjustment of velocity and position in PSO algorithm.
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(ds), column dimension (cs), shear span ratio of flat slab (av/
d), longitudinal reinforcement yield strength ( fy), longitudi-
nal reinforcement ratio (ρl), ultimate load carrying capacity
(Vu), and concrete compressive strength ( fc). The critical
parameters are selected based on the physical models of
CDCs. The statistical analysis of the dataset parameters
including the minimum, maximum values, average, standard
deviation, and covariance is given in Table 1 [42, 51]. The
distribution of data in each parameter is represented by his-
tograms, as shown in Figure 9. These histograms represent
the variation of data used in experimental setups to measure
the punching shear strength of the slab. The dataset provides
several observations related to the experimental setup
parameters and the resulting punching shear strength.

Almost all parameters show a left-skewed distribution with
only yield strength displaying a near-normal distribution. In
almost all parameters, maximum data are present in the first
one-third portion of the data, including 400 values of b less
than 942.45mm, 594 values of d less than 219mm, 563
values of c less than 300mm, 573 values of ρ less than
2.37%, 493 values of fc less than 43.1MPa, and 598 values
of Vu less than 1,625 kN. The relationship between parame-
ters was analyzed using Pearson’s correlation coefficient
revealing the influence of a parameter on each other, as
shown in Figure 10. It is evident from the heatmap in
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Estimate fitness and update loudness 
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Stop
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FIGURE 7: BA flowchart.
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FIGURE 6: PSO flowchart.
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Figure 10 that significantly influenced by three geometric
parameters including the parameter of the column, depth
of slab, dimension of column, and two material properties
including the yield strength of longitudinal reinforcement and
compressive strength of the concrete. However, the geometric
properties dominate the material properties. The correlation
influence is represented by the intensity of color in the heat-
map accompanied by correlation coefficient values. The dark
color represents a strong correlation and a correlation value
closer to+1, while a light color represents a weaker correlation
with a correlation coefficient closer to 0 [42, 51].

3.5. Normalization of Data.Normalizing the database increases
the efficiency of the ANN and the data can be denormalized at
the end. Normalization helps in the conversion of data to
unitless values that aid in making a visual correlation between
data samples easier. Additionally, ANN shows low learning
rates for unnormalized values [52–54]; therefore, normalizing
the values between suitable upper and lower boundary values
is a better practice. The normalization can be done by either
using the built-in functions of the programming package or
manually. Doing it manually provides better control over the
normalization process, like using different upper and lower
limits. The data were initially normalized between two sets of
different extreme values including 0, 1, and 0.1, 0.9. But from
the performance of the prediction models, it has been observed

that values normalized between 0 and 1 resulted in better results.
The data are normalized between 0 and 1 using Equation (8):

X ¼ Xo − Xmin

Xmax − Xmin
; ð8Þ

where Xmax and Xmin are the respective maximum and mini-
mum values of the variable and Xo is the current value that is
normalized to X.

3.6. PredictionModels. Several error metrics like mean squared
error (MSE), MAE, and Pearson correlation coefficient (R2)
are used for selecting the ANN model [36]. The ANN model
with the least values for MSE, MAE, and highest value for the
R is used to train and test the dataset. ANN used for the
database training and testing is MFNN, coded in MATLAB
[35]. The hybrid models of PSOFNN and BATFNN use an
objective function for optimizing the research problem. The
objective function is optimized to maximize or minimize the
fitness value of the hybrid model. For this study, MSE is used
as an objective function in hybrid models. The analytical
expression for the MSE is given by Equation (9):

MSE¼ ∑
n

i¼1

Y − Ŷ
À Á

2

n
; ð9Þ

av

P

c

P/2 P/2

Asb

Asb
h d

FIGURE 8: SCS experimental setup.

TABLE 1: Parametric details of SCS database.

Parameter Unit Minimum Maximum Difference Avg. St. dev COVID-19

cs mm 50 901 851 204.986 104.747 0.511
ds mm 29.97 668.5 638.53 113.748 58.479 0.514
av/d — 1.23 34 32.77 7.515 4.974 0.662
ρl % 0.25 7.31 7.06 1.266 0.705 0.556
fy MPa 234.7 749 514.3 456.600 115.74 0.253
fc MPa 9.401 130.1 120.699 35.398 18.551 0.524
Vu kN 24 4,915 4,891 403.258 406.229 1.007
Mf kNmm 1 4,286 4,285 96.378 224.706 2.331
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where Y denotes the original target values, Ŷ represents the
predicted values of the target variable, and n is the total
number of available samples.

The hybrid models and the ANN model resulting in the
lowest value for the MSE, MAE, and the highest value for R is

utilized for training and testing of data. The parameters for
the hybrid models are selected based on the output values of
error metrics. The models are run iteratively using different
values for each parameter, for determining the optimum
values of the parameters in the PSOFNN and BATFNN.
Important parameters for the PSO algorithm are swarm pop-
ulation, inertia weight, personal and global learning coeffi-
cient, number of iterations, and upper and lower bounds. For
the bat algorithm, the critical parameters are number of bats,
iterations, and constant for loudness and rate of pulse emis-
sion. The number of layers in FNN, number of particles, and
the number of iterations in PSOFNN and BATFNN used for
each dataset are given in Table 2. The variation of the param-
eters in the hybrid model can help in the training and testing
of the data. One might assume that increasing the swarm
population or the number of iterations for the optimization
algorithm will increase the efficiency of the hybrid models,
but this does not always work. The increase in the parameters
does not always prove to be beneficial for the optimization of
the objective function. Therefore, the real challenge is to vary
the parametric values until you get the best combination.
Sometimes, the optimization efficiency will be the highest
at the beginning which will optimize the results by more
than 90% in the first few epochs, but it will not show much
change as the iterations proceed.
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4. Performance of ML Models

The flat slab dataset collected from published literature is
converted to seven different subsets of data with different
parameters taken from the original data. The seven subsets
have different parameters, as shown in Table 2, that allow the
determination of performance difference of the ML models
with different parameters. All three ML models of ANN,
PSOFNN, and BATFNN are trained on 465 samples and
tested on 145 samples of each one of the seven subsets.
The performance of these ML models is evaluated through
three key parameters, including the R2, MSE, and MAE, as
discussed earlier. The predicted punching shear values of
each ML model are visualized using scatter plots to under-
stand the deviation of predicted and actual values for each
sample. The scatter plots for test data of each subset are
shown in Figures 11–16. The scatter plots with green-colored
samples represent the best prediction accuracy of the respec-
tive ML model out of the seven subsets of data. ANN pro-
vided the best prediction of punching shear for the first

subset of data with an accuracy of 98.5%. Additionally, the
MSE andMAE values for the first subset of data were also the
lowest from the error metrics of the other six subsets of data,
as shown in Figure 12. This can be interpreted in a way that
ANN understood the relationship between the parameters of
the first subset and punching shear much better than in other
subsets. Furthermore, the predicted punching shear values
are closer to the experimental values for the first subset in
ANN predictions, as shown in Figure 11.

The PSOFNN predictions for Vu represent that the pre-
dicted results of punching shear for the first and second
subsets are better than the other five subsets of data. The
MSE and MAE values for these two subsets are the lowest
standing at 0.0275%, 1.214% for SCS= 1, and 0.0316%,
1.481% for SCS= 2, as shown in Figure 14. Based on the
predicted values of the Vu, error metrics, and the R-value,
PSOFNN for SCS= 1 is the best model having an R-value of
99.23%. The PSOFNN predicted values of punching shear for
the first subset can be chosen as the best-predicted values of
punching shear out of all three ML models. The scatter plot

TABLE 2: Parametric combination for SCS dataset for ML models.

Number
Dataset
name

ANN
layers

PSOFNN
members

PSOFNN
iterations

BATFNN
members

BATFNN
iterations

Parametric
combination

1. SCS= 1 14 50 300 30 300 ρl, fy, fc, cs, ds, av/ds
2. SCS= 2 12 50 300 30 300 Mf, fc, cs, ds, av/ds
3. SCS= 3 8 50 300 30 300 Mf/fcbds

2, cs/ds, av/ds
4. SCS= 4 10 30 300 30 300 ρl, fc/fy, cs/ds, av/ds
5. SCS= 5 10 50 300 25 300 Mf/bds

2, fc, ds, av/ds
6. SCS= 6 10 50 300 25 300 Mf/fcbds

2, ds, cs/ds, av/ds
7. SCS= 7 12 30 300 25 300 Mf/fcbds

2, fc, ds, cs/ds, av/ds

0 820 1,640 2,460
Experimental Vu (kN)

0 820 1,640 2,460
Experimental Vu (kN)

0 820 1,640 2,460
Experimental Vu (kN)

0 820 1,640 2,460
Experimental Vu (kN)

0 820 1,640 2,460
Experimental Vu (kN)

0 820 1,640 2,460
Experimental Vu (kN)

0 820 1,640 2,460
Experimental Vu (kN)

0

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

0

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

0

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

0

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

820

1,640

2,460

Pr
ed

ic
te

d 
V u

 (k
N

)

FIGURE 11: ANN-based predictions for shear strength.
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of PSOFNN and the visualizations of error metrics are shown
in Figures 13 and 14. PSOFNN and ANN models also per-
formed well with limited parameters as in the case of the third
subset of data that has only four parameters. PSOFNN and
ANN predicted the punching shear strength with an accuracy
of 86.6% and 85.8%, respectively, using only four parameters.
The PSOFNN model provided the lowest accuracy of 86.4%
with the fifth subset of data while ANN dipped to an even

lesser accuracy of 73.4% for this subset of data. The error
metrics for the PSOFNN are lower than the error metrics of
two other ML models for all seven subsets of the dataset.

ANN is the second-best model among the three ML
models, while the BATFNN results show that the BAT algo-
rithm does not properly optimize the objective function of
MSE, as shown in the scatter plots and error metrics of
Figures 15 and 16, respectively. BATFNN provided less
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FIGURE 12: Error metrics for ANN.
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FIGURE 13: PSOFNN predictions of shear strength.
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accurate prediction results as compared to both ANN and
PSOFNN. The predicted results of punching shear are also
more dispersed than the other two models. The prediction
results of ANN and PSOFNN are better for punching shear
values less than 820 kN and the dispersion of predicted
values increases on the subsequent values. However, the pre-
diction of BATFNN shows greater dispersion under 820 kN
even for the best performing BATFNN model on the second

subset. Overall, based on all these observations, error metrics,
and performance of models, the best prediction performance
of PSOFNN among all ML models can be verified. From these
results, one misconception that exists among novice researchers
can be overruled that hybrid ANN models of metaheuristics
outperform traditional ML models. The performance of two
metaheuristic models of PSOFNN and BATFNN varied signifi-
cantly from each other and ANN. The use of anymetaheuristic
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FIGURE 14: Error metrics for PSOFNN.
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FIGURE 16: Error metrics for BATFNN.
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model is not a universal solution to all optimization problems;
therefore, this study recommends exploring the use of multi-
ple metaheuristic models in a research study and evaluating
their performance with the traditional ML models.

5. Comparative Studies of ML Models,
CFP, and CDCs

In this section, a comprehensive analysis of the results
obtained from six different approaches used for the shear
strength prediction at slab–column connection is provided.
These six approaches include the use of CDCs of ACI 318-19
and EC2, CFP, and three neural network-based models
including FNN, PSOFNN, and BATFNN. The performance
of each model is assessed using three key metrics including
MSE, MAE, and R2. These evaluation metrics provide infor-
mation about the accuracy, precision, and fitness of models
compared to the experimental values in the dataset. A thor-
ough analysis shows that PSOFNN is the most reliable model
for shear strength prediction of flat slabs, and it outperforms
all other models in every evaluation metric and variation of
the dataset. The PSOFNN provided the lowest values for the
error metrics and the highest value for R2. It should be noted
that the design codes of ACI 318-19 underestimate the
punching shear of a flat slab while EC2 overestimates [55].
In a comparison of design codes, it is observed that EC2
demonstrated a higher accuracy in representing the experi-
mental results than the ACI 318-19 and the error metrics of
the EC2 were also lesser than for the ACI 318-19. The best
prediction results of each model are shown in Figure 17 and
the error metrics including MSE, MAE, and R2 for each
model are shown in Figure 18. From these results, it becomes

evident that PSOFNN is the best model for the prediction
of punching shear strength of flat slabs with an R2 value of
99.37%, MSE of 0.0275%, and MAE of 1.214%. The value of
error metrics of MSE and MAE of punching shear results of
EC2 is less than the error metrics of ACI 318-19 punching
shear values. Abdallah et al. [56] analyzed the performance of
three design codes including ACI 318-19, EC2, and British
Standard (BS 8110-97). The study reported that EC2 per-
formed better than ACI 318-19 and BS 8110-97 in predicting
the punching shear of a flat slab. The CFP approach provided
the least accurate punching shear values, with R2 of only 77%
and the highest MSE andMAE of 4% and 15.8%, respectively.

The normal distribution of the shear strength ratios for
all models is shown in Figure 19. The shear strength ratio
plot for the machine learning models of FNN, PSOFNN, and
BATFNN are distributed uniformly around 1, and the width
of their distribution curve is narrow suggesting that the shear
strength ratios for these models are less dispersed and are
closely clustered around the mean indicating good prediction
results. In contrast, a wider curve or higher standard devia-
tion of the shear strength ratio results for the other models
including CFP, ACI 318-19, and EC2 indicate greater disper-
sion of values from the mean. The range of the ratio of exper-
imental and predicted shear strength values for all models is
given in Figure 20. This analysis suggests that PSOFNN
stands out as the best model overall while EC2 demonstrates
a superior performance in the domain of design codes.

6. Analysis of Results for Different Parameters

The effect of flat slab parameters on the prediction results of
the CFP method, CDCs, ANN, PSOFNN, and BATFNN is
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discussed here. The parameters used for the parametric stud-
ies are slab depth (ds), column dimension (cs), shear span
ratio of the flat slab (av/d), longitudinal reinforcement yield
strength ( fy), longitudinal reinforcement ratio (ρl), ultimate
load-carrying capacity (Vu), and concrete compressive strength
( fc). The parametric study was done to determine the influence
of these parameters on the ratio of VEXP/VPRED.

6.1. Effective Depth of Slab (ds). The plots for the prediction
of SCS punching failure response, as illustrated in Figure 21,
show that the effective slab depth (ds) is one of the most
influential geometric features for flat slab punching failure.
According to a research study by Liang et al. [57], the punch-
ing shear strength of a flat slab increased with an increase in
the effective depth of the slab in agreement with the findings
of this study. Lapi et al. [58] applied a concrete overlay as a
retrofitting technique against the punching failure of a flat
slab. The researchers reported a significant enhancement in

the punching resistance of flat slabs. The results of our study
show that the parametric comparative analysis for PSOFNN
is better than the ANN, BATFNN, CDCs, and CFP. The
results of PSOFNN and ANN are closer to the experimental
value of ratios and the unity line is used as a reference for
determining the fit of the ratios. The plots of the CDCs ratio in
Figure 21 against ds show that most of the values are above the
unity line, indicating that CDCs result in values lesser than
actual experimental values. The scatter of points for the
PSOFNN is closer to the unity line, as shown in Figure 21,
indicating that PSOFNN predicted values are closer to the
experimental values. The results can be used to further analyze
the reason that results in lesser values for shear strength than
actual. The values of ds in the range of 75 –135mm showed
the highest deviation from the unity line. This requires
revising the CDCs as they are not accurately predicting the
values of the punching shear, this means that the actual
punching shear at the column–slab connection is larger than
the values calculated using CDCs, which can lead to punching
shear failure.

6.2. Shear Span Ratio (av/d). The effect of shear punching
failure in flat slabs is studied for the experimental and pre-
dicted values ratio against the shear span ratio of flat slabs.
The scatter of ratios on the unity line in Figure 22 shows that
the values are closer to the unity line for the PSOFNN and
ANN, and the scatter is also uniform on the top and below of
unity line for ANN, PSOFNN, BATFNN, and CFP. Although
the values of the ratio are scattered more widely for the CFP
that there is no clear bias toward underestimation or
overestimation of values. ACI and EC2 codes show the
highest biases of values of ratios toward lesser values than
the original, as shown in Figure 22.

6.3. Compressive Strength ( fc). For the flat slabs, punching
failure can be predicted more precisely by using compressive
strength ( fc) [57], as illustrated in Figure 23. It has been
reported by numerous research studies [6, 59, 60] that the
compressive strength of concrete has a profound influence
on the punching shear of flat slab. The results of the
PSOFNN and ANN are close to the experimental results;
therefore, the scatter of the points is close to the unity line,
while the scatter of VEXP/VACI and VEXP/VEC2 against
the unity line show that ACI underestimate and EC2
overestimate the values that are in agreement with the
previous findings [55]. The ideal case requires these values
to lie on the unity line but the presence of most points above
the unity line is proof that values calculated by the CDCs are
less than the actual experimental values. The highest
deviation resulted from the values in the range of 2040
MPa for fc. The scatter of points in the CFP and BATFNN
plots in Figure 23 show that the values for these two are
roughly uniformly distributed around the unity line. This
indicates the nonbiasedness of these two approaches
toward overestimation or underestimation of the values.

6.4. Longitudinal Reinforcement Ratio (ρl). The flat slab sam-
ples having the reinforcement ratio value between 1.5% and
2.5% show the most deviation from the unity line, as shown
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in Figure 24. The reinforcement ratio is one of the two most
important material properties for the prediction of the
punching shear failure response of a flat slab and it has a
positive influence on the punching shear strength of a flat
slab [61]. Marzouk and Hussein [62] reported an increase in
the punching shear strength of flat slabs with an increase
in the quantity of reinforcement. Shen et al. [63] reported

longitudinal reinforcement as the most influential factor in
predicting the punching shear of a flat slab. The scatter of the
points is closer to the unity line for the PSOFNNandANNwhich
shows that the PSOFNN and ANN have performed better
predictions than the rest of the four models. The BATFNN has
performed less accurate predictions than PSOFNN and ANN,
but the results are less scattered than the CFP and ACI
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codes. In addition, the ANN, PSOFNN, and BATFNN have
shown no bias in predicting the punching shear strength
either toward underestimation or overestimation.

7. Using NLFEA for RC Flat Slab Assessment

The behavior of concrete is nonlinear, and in Abaqus, this
behavior is studied using the concrete-damaged plasticity

and smeared crack model. The compression and tension
region in concrete or the biaxial tension region results in
the cracking of concrete at the failure in case of smeared
crack concrete modeling [33, 51, 64, 65]. The smeared crack
modeling is used for representing concrete crushing due to
compression or cracking because of tension, respectively.
Under uniaxial tensile loading, concrete behaves elastically
for as long as the tensile loading is in the range of 7.5%–11%
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of final compressive stress, after this, the concrete cracking
begins. It is assumed that cracking will occur when the stress
in concrete approaches the failure surface is known as the
“crack detection surface.” The cracking damages the struc-
ture, and the smeared cracking model also considers the
cracking as damage. The cracks under compressive stress
are considered to be completely closed because these types
of cracks do not show any strain.

7.1. Concrete Damaged Plasticity Model. In ABAQUS, the
behavior of concrete material in the inelastic range is
defined using the concrete-damaged plasticity model. This
model can be used for plain concrete, but its main purpose is
to analyze RC. Concrete subjected to low confining pressures
or monotonic and cycling loading can be analyzed using this
model. The model considers two main failure mechanisms of
concrete, one by crushing concrete and another by tensile
cracking. Under the action of uniaxial tensile stresses, the
stress and strain follow a linear elastic relationship till
failure occurs. As the tensile stresses increase beyond the
failure stress, strain localization occurs in the concrete.
When the uniaxial compression is applied, the response is
linear till the initial yield point leading to a stress-hardening
state in the plastic region that causes strain softening as the
stresses increase beyond ultimate stress. The behavior of
concrete is brittle under low confining pressures and the
CDP model represents this failure using stress and plastic
strain.

The nonlinear behavior of concrete slabs is studied using
ABAQUS. A quarter portion of the slab is modeled and
analyzed in ABAQUS to reduce the analysis time required
for the analysis of the full slab. The continuity condition is
fulfilled using the boundary condition for the quarter portion
of the slab. Several important material and geometric param-
eters are used to calibrate the slab model including the size of
the mesh, dilation angle, eccentricity, viscosity, uniaxial to
biaxial stress ratio, and various element types of concrete and
steel. Load deflection curves are plotted with MATLAB using
the results obtained from the load–displacement analysis of
the slab.

The elastic stiffness of the sample undergoes degradation
when it is unloaded in the strain-softening region of stress
and strain curves. The stress–strain relationship under the
action of uniaxial compression and tension is calculated by
using Equations (10) and (11):

σc ¼ 1 − dcð ÞEo ε∼inc − ε∼ρlcð Þ; ð10Þ

σt ¼ 1 − dtð ÞEo ε∼int − ε∼ρltð Þ: ð11Þ

The damage in the elastic stiffness is represented by two
variables dt and dc, whose value depends on the temperature,
plastic strain, and field parameters involved. The value of
these damage variables varies from 0 to 1, representing no
damage and complete strength loss, respectively. The other
parameters involved in the equations are the initial elastic
stiffness of the material (Eo), compressive strain (εc), tensile
strain (εt), and the superscripts ∼in and ∼ρl represent inelas-
tic strain and plastic strain, respectively. The concrete dam-
aged plasticity model is used to model the plastic behavior of
concrete using various parameters involving dilation angle,
viscosity, load eccentricity, ratio of uniaxial to biaxial stress,
and shape factor of yielding surface, based on the author’s
previous experience, as mentioned in Table 3.

These data have been used to perform FEA of some
selected cases of flat slab that are mentioned in Table 4.
The tension stiffening simulation is defined in the slab model
to represent the strain-softening behavior of cracked con-
crete. This tension stiffening is specified in one of two
ways either by using a fracture energy cracking criterion or
the stress–strain relationship of concrete after failure.

In ABAQUS, the steel bars and concrete are considered
to be perfectly bonded. ABAQUS uses truss elements to rep-
resent the steel bars having two nodes with three translations
at each. The material properties used for steel bars are yield
strength, modulus of elasticity, and Poisson’s ratio with
respective values of 420MPa, 200GPa, and 0.3. The results
of the ML models are verified using the analysis results from
ABAQUS. The load-deflection curves from ABAQUS are in

TABLE 3: ABAQUS CDP model parameters.

Description Used value

Dilation angle (ψ) 35° (calibrated)
Eccentricity (ɛ) 0.1 (default)
Shape factor (Kc) 0.667 (default)
Stress ratio (σb0/σc0) 1.16 (default)
Viscosity parameter 0.0003 (calibrated)

TABLE 4: Selected samples for SCS.

Source Name ds (mm) cs (mm) avs/ds fcs (MPa) fys (MPa) ρls (%)

Kotsovos [66] S1 205 255 6.2 24.25 655 0.085
Kotsovos [66] S3 205 255 6.2 24.25 665 0.345
Caldentey et al. [67] C1 255 455 5.6 33.95 555 1.075
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good relationship with the curves from experimental data, as
shown in Figure 25(a).

Figure 26 compares the values of all prediction models
with experimental values and design code. It has been
observed that PSOFNN provided highly accurate prediction
results for the flat slab punching shear values, between the
three hybrid models. Furthermore, the PSOFNN also out-
performed design codes, and the validation of FEA of flat slab
provided good agreement with the findings of the PSOFNN
model. Also, the comparison of design codes, EC2 is the best
design code for the calculation of punching shear of a flat slab.
Through the parametric analysis, it is found that ACI 318-19
has a slight tendency to underestimate the punching shear
while EC2 overestimates the punching shear.

8. Conclusions

This research study investigates the influence of multiple
subsets of data with different parameters on the performance
of machine learning models to predict the punching shear of
flat slabs. The motivation for the application of different ML
models was to address the limitations in the existing design
codes and provide a comparison of different ML models.
Additionally, the study discusses the performance of two
design codes including ACI 318-19, EC2, and an analytical
approach of the CFP method. A database of square flat slabs
consisting of 610 samples has been built from literature with
parameters related to the slab depth, column dimension,
shear span ratio of slab, yield strength of longitudinal steel,
longitudinal reinforcement ratio, ultimate load carrying
capacity, and compressive strength of concrete. Three ML
models including ANN, PSOFNN, and BATFNN are employed
in this database and their performance is assessed using three
performance measures R2, MSE, and MAE. After that a com-
prehensive comparison of the performance of ML models is
provided, followed by the comparison of all empirical and
prediction approaches in the next section. In the next section,

the influence of some key parameters such as ds, ρl, av/d, and fc
on the shear strength of flat slab is discussed and cross-
referenced from previous literature to validate the findings
of this study. Finally, the predicted shear strength values
were also validated with the FEA of the flat slab in Abaqus.
Based on these sections, the following main conclusions are
summarized:

(1) From the comparison of prediction models, it has
been observed that PSOFNN provided highly accu-
rate prediction results for the flat slab punching shear
values. It achieved impressive metrics, with R2, MSE,
and MAE values of 99.37%, 0.0275%, and 1.214%,
respectively. The PSOFNN also outperformed design
codes and the validation of FEA of flat slab provided
good agreement with the findings of the PSOFNN
model.

(2) In the comparison of design codes, EC2 is the best
design code for the calculation of punching shear of a
flat slab. Through the parametric analysis, it is found
that ACI 318-19 has a slight tendency to underesti-
mate the punching shear while EC2 overestimates
the punching shear. However, the PSOFNN models
do not show any bias toward either overestimation or
underestimation of punching shear values.

(3) From the correlation, parametric analysis, and com-
parison of the performance of individual models on
seven different subsets of data, several key parame-
ters have been found that significantly influence the
punching shear of a flat slab. It has been observed
that the effective depth of the slab, column dimen-
sions, yield strength of reinforcement, and compres-
sive strength of concrete have the highest impact on
the punching shear values. An increase in the depth
of the slab either before construction or after con-
struction through retrofitting results in enhanced
punching shear resistance of the flat slab. Therefore,
proper selection of geometrical properties of slab–
column elements and material properties is crucial
for improved performance of flat slabs against punch-
ing shear failure.

(4) Another important finding of this study is the use of
multiple metaheuristic models on a single research
problem. PSOFNN and BATFNN have shown signif-
icantly different results that show that not all hybrid
models of metaheuristic algorithms-based neural net-
works can optimize on any research problem equally
and not all of them can outperform ANN as usually
perceived.

The study reveals that the empirical models are less accu-
rate in predicting the punching shear strength of flat slabs
which is a major concern since failure in flat slabs normally
occurs due to punching failure at slab–column connection.
This study shows that ML models tend to better accommo-
date the complex behavior of flat slabs; therefore, it is recom-
mended that new research focuses on the use of ML models
to develop empirical equations for punching shear strength
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of flat slabs using a dataset representative of large experimen-
tal research.
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