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As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of
the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort.
This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data
variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected
data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived
from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using
personal body temperature and surrounding environmental data in a space where mainly independent activities are performed.
This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead
LSTM method.

1. Introduction

Ensuring thermal comfort in indoor environments has become
increasingly important with the rise in indoor activity time [1].
This requires exceptional performance to ensure the protec-
tion and safety of people living and working within the build-
ing [2]. And the satisfaction of occupants with regard to
thermal comfort is an essential function of the building
environment [3]. The perception of thermal comfort is a key
factor in determining the indoor environmental quality of
spaces such as offices, hospitals, and homes [4–6]. The heating,
ventilation, and air conditioning (HVAC) systems that operate
with predefined set points derived from the predictedmean vote
((PMV) American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE)) approach, which is a
steady-state approach developed by Fanger [7], are a key fac-
tor in achieving thermal comfort. However, the conventional
approach cannot thoroughly satisfy an occupant’s perception
of thermal comfort because it can be controlled by adjusting
the indoor environment, such as temperature and humidity,
with set schedules [8]. Although the PMV, as an international

thermal environment indicator, is themost widely usedmath-
ematical method based on the current standards pertaining to
thermal comfort, it has limitations in providing occupants’
equivalent comfort because thermal comfort is subjective
[1, 9, 10].

Several studies have shown that the classic PMV model
has inconsistencies in predicting the thermal comfort sensa-
tion of the indoor environment [11–13]. Several studies have
highlighted inconsistencies in the classic PMV model’s abil-
ity to accurately predict thermal comfort in indoor environ-
ments. For example, Nicol [11] found that the international
standard for indoor climate did not adequately describe com-
fortable conditions, and Alotaibi et al. [6] identified a signifi-
cant difference between the thermal sensation vote (TSV) and
the PMV of patients in air-conditioned environments in hot
climates. The difference between thermal comfort sensation
and PMV is due to the varying approaches used to determine
thermal comfort for providing thermal environments. How-
ever, thermal comfort is subjective and closely related to the
occupants’ expectations and capacity to adapt. Therefore, the

Hindawi
Advances in Civil Engineering
Volume 2024, Article ID 2106137, 14 pages
https://doi.org/10.1155/2024/2106137

https://orcid.org/0000-0002-9906-2812
mailto:shinhk@mokwon.ac.kr
https://creativecommons.org/licenses/by/4.0/


current system utilizes a rational approach to predict thermal
comfort [5, 9, 14].

Another limitation of previous models is that they were
designed for shared spaces, aiming to satisfy many people
simultaneously. Therefore, existing systems are limited in
their ability to predict individual optimal comfort tempera-
tures [15]. To address these limitations, it is essential to
develop a personalized thermal comfort model that considers
specific metabolic characteristics to analyze individual pre-
ferences. Choi and Loftness [16] suggested using human
body skin temperature to represent an individual’s thermal
sensation in a thermally uniform environment, indicating
the potential for personalized models. Chaudhuri et al. [17]
predicted the thermal state (discomfort/comfort) of occu-
pants based on skin temperature and its gradient. Aryal
and Becerik-Gerber [18] proposed machine learning algo-
rithms to predict thermal comfort sensations and utilized
wearable devices that sense physiological information to
improve the prediction of individual thermal comfort levels.
The results showed that controlling the current system based
on personalized thermal comfort models that consider occu-
pant responses could be more efficient in predicting thermal
comfort levels than setting various standards as space char-
acteristics [3, 18]. Recently, thermal comfort interpretation
has shifted from space-centered to individual-centered, and
the individual-oriented thermal comfort prediction model
was developed under the premise that different occupants
may have different perceptions of thermal comfort, even
when exposed to the same environment [19]. The personal-
ized thermal comfort model is not a stationary model but an
adaptive and intelligent model based on the comfort level
defined based on individual reactions. The thermal history,
whether long-term or short-term, can influence the current
thermal comfort sensation of occupants [20]. With the
hypothesis that adaptive thermal comfort is affected by con-
textual and psychological factors, this study proposed a bior-
esponsive thermal comfort model with an environmental
constant (time series) dataset collected from laboratory experi-
ments. Thus, these facts imply deviations regarding the psy-
chological adaptation of individual occupants. Hence, the
moment environment data, long short-term changes in the
indoor environment, and the body’s response must all be con-
sidered to predict the sensitive thermal comfort level of indi-
viduals. Therefore, in this study, we propose a methodology
that considers previous environmental information and aims
to enhance existing approaches for predicting thermal comfort
indicators. In order to predict the thermal comfort of residents,
general sensors and flexible sensors were used to collect the
indoor environment and bioreaction information of each resi-
dent as key parameters. To validate the effectiveness of the
proposed model in determining individual thermal comfort
levels, several subjects were studied in the same space and
environments.

2. Literature Review

Previous studies have extensively investigated the thermal
comfort sensation of occupants in indoor environments

and proposed environmental prediction models based on
the PMV [4, 5]. These models typically use six key variables
to calculate PMV, including air temperature (ta), mean radi-
ant temperature (tr), air velocity (va), relative humidity (rh),
occupant metabolic rate (me), and clothing value (cl) [4].
Despite its widespread use in thermal comfort standards, pre-
dicting thermal comfort sensation in real-world situations
using the conventional model remains challenging due to
the discrepancy between PMV and thermal comfort sensation
[4, 5]. To address this issue, Lai et al. [20] introduced the
concept of adaptive PMV, and several experiments have since
been conducted based on this theory during field studies
[5, 9, 15, 21–26]. As shown in Table 1, many researchers
have made significant efforts to predict thermal comfort.
Thermal comfort is the subjective perception of the occupants
without sweating [32].

To address the limitations of the existing PMV model,
several studies [3, 15–18] have developed adaptive thermal
comfort models that consider physical, physiological, and
psychological factors in various environments. While these
improved models provide optimal results for each setting,
designing a thermal comfort model requires different stan-
dards depending on the environment and specific space set-
tings. Consequently, the complex variables involved in the
model make it challenging to collect various types of data.

The adaptive approach to thermal comfort refers to peo-
ple’s ability to restore comfort in response to changes in the
environment through adaptive actions that link them to the
building or other external factors such as outdoor climate,
time, and building design. Many studies have examined
the effects of adaptation on thermal sensation. For instance,
Fountain et al. [23] found that people’s thermal sensations
and preferences are influenced by their thermal expectations,
while Yao et al. [24] determined that self-regulatory actions,
including physiological, psychological, and behavioral adap-
tations, can alleviate discomfort. Additionally, Nikolopoulou
and Steemers [25] explored the impact of psychological adapta-
tions, including perceived control, expectations, environmental
stimulation, naturalness, time of exposure, and experience. Yao
et al. [24] presented a comprehensive adaptivemodel of thermal
comfort that considers cultural, climatic, social, psychological,
and behavioral factors. Moreover, Jowkar et al. [26] found that
different climatic backgrounds and long-term exposure to ther-
mal conditions influence occupants’ thermal expectations and
may result in differences in their thermal sensation.

Li et al. [5] proposed a PMV model with an adaptation
table to reduce the discrepancy in predicting thermal sensa-
tion and identified five effective variables (season, climate,
building type, age group, and gender) through a meta-analy-
sis. However, this model has limitations in providing a uniform
thermal experience and climatic background for an unspecified
number of occupants. Since the parameters affecting thermal
comfort, such as outdoor climate, thermal expectation, age, and
gender, are subjective and vary from person to person, calculat-
ing the PMV for general thermal comfort is challenging. To
overcome these limitations, Buratti et al. [33] proposed a sim-
plified approach that only considers temperature and relative
humidity and is useful when only air temperature and relative
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humidity data are available. However, this approach does not
account for individual characteristics of occupants. Li et al. [5]
emphasized that thermal comfort should consider occupants’
responses. Chaudhuri et al. [29] presented a predicted thermal
state (PTS) model that uses skin temperature as a physiological
parameter. They argued that since previous studies [34, 35] have
shown that skin temperature has a significant effect on an indi-
vidual’s thermoregulation principle, direct investigation of skin
temperature may be a simpler approach to predicting thermal
sensation [29].

In recent years, several studies have used both thermal
comfort and skin temperature data to predict human thermal
states. Chaudhuri et al. [17] developed a data-driven thermal
state prediction model using physiological information, and
they investigated gender differences in thermal perception. Sim-
ilarly, Choi and Yeom [28] developed a data-driven thermal
satisfaction prediction model using heart rate and seven local
body temperatures with 18 participants. Aryal and Becerik-
Gerber [18] demonstrated that combining data from environ-
mental and physiological sensors is more accurate than using
environmental sensors alone.

More recently, artificial intelligence approaches such as
machine learning and deep learning have been explored as a
novel way to predict thermal sensation. For example, Cosma
and Simha [30] introduced a machine learning method to
predict individual thermal preferences, while Katić et al. [36]
used a feedforward network with 12 hidden neurons to predict
personalized heating settings using air temperature, humidity,
and radiant temperature as input features. However, these
approaches did not consider personal physiological responses
such as skin temperature gradients.

Previous studies have established significant correlations
between overall thermal satisfaction and skin temperatures
using various methods. However, these models have limita-
tions in reflecting individual thermal expectations during
long-term and short-term variations in dynamic environ-
ments. Additionally, feedforward-based networks have chal-
lenges in considering time-series environmental information
and occupants’ biometric data.

Human beings can adapt to changes in the environment
[37], and past experiences can affect present comfort levels.

As such, individual thermal comfort can vary based on short-
term and long-term changes in the indoor environment.
However, previous intelligent approaches for predicting the
comfort index only used data measured at a single point in
time to predict the target value.

To accurately represent the comfort index of the occupants,
it is necessary to consider the environment to which they have
been previously exposed. Therefore, this study proposes an
advanced thermal prediction model capable of processing
time-series datasets that consider current and past environ-
mental information.We use a recurrent LSTMmodel, and the
next section provides a detailed description of the model.

3. Research Methodology

To investigate the hypothesis pertaining to influence of the
biometric data such as skin temperature on thermal comfort,
this study developed a bioreactive PMVmodel using an LSTM
network, and the proposed model was applied to experiments
in an office space exposed to diverse environments. The LSTM
network adopted in themodel is a special type of deep learning
model that can memorize the trend of data through a memory
line incorporated in a network [38]. However, for modeling
long-time exposed environments, such as variations in tem-
perature and humidity, LSTM needs to retain the useful fea-
tures for both long and short periods of time. Thus, this study
applied the multihead approach to the LSTM model, which
can extract valuable information with different timescales for
accurate prediction of thermal sensation.

4. LSTM Network Design with Multitimescales

Volatile data constantly perceived from the indoor environ-
ment can influence the occupant’s thermal sensation. Fur-
thermore, individual perceptions of indoor environments
vary significantly due to the subjective characteristics of
human physiology, and these differences can affect thermal
comfort [39]. Thus, considering of both the contexts of
indoor environmental factors and the various physiological
factors of individuals, a distinct model that is capable of
operating a recurrent training mechanism is required. Clas-
sic deep neural network methods, such as feedforward

TABLE 1: Previous studies.

Author Research scope Target
Highlighted factors

Research methodology
F1 F2 F3 F4 F5 F6

Yao et al. [24]
Self-regulatory

actions

Psychological factor — — ○ — — — Survey and monitoring

Jowkar et al. [26] Thermal exposure — — ○ — — ○
Field study, classification, and

data analysis
Xiong et al. [27]

Physiological
parameter

Investigated gender differences ○ — ○ ○ — — Experiment
Choi and Yeom
[28]

Local skin temperatures ○ — ○ ○ — ○ Monitoring

Chaudhuri et al.
[29]

Machine learning
Predicted thermal state (PTS) — ○ ○ — — ○ Machine learning

Cosma et al. [30] Individual thermal preference model ○ ○ ○ ○ — ○ Experiment
Katic et al. [31] Artificial neural network algorithm — ○ — — — ○ Data analysis

Note. F1= skin temperature; F2= artificial intelligence approaches; F3= gender; F4= sensor device; F5= individual characteristics; F6= prediction of thermal
comfort.
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architectures, are commonly used to determine the forecasting
sequence in the literature [40–43]. However, these approaches
operate using the current input data, and consequently,
the feedforward neural network (FFNN) cannot consider
the interrelationship between the temporal dependencies of
indoor environment and psychological changes. The lack of
consideration for interrelationship between the time sequences
makes it difficult to recognize the relationship between thermal
comfort and environmental variations, and it is likely to limit
an elaborate thermal comports prediction in space sensitive to
environmental changes.

In contrast, a recurrent neural network (RNN), unlike
standard FFNN, provides a solution using an internal state
that stores previous contextual information in sequential
time steps [44]. The RNN is specially designed to preserve
information adopted in the previous time steps. The potential
characteristics of the differences between the conventional
FFNN and the general concept of RNNs were investigated
and are presented in Figure 1.

As shown in the structure of the RNN, the hidden units
(ht) receive output from the previous hidden units (ht−1) and
calculate the current hidden unit (at) at time step, t, with
input variables (xt). In order to obtain the probabilities of
vector (byt), the output (ot) is used as an argument for the
activation function. The current hidden unit in the forward
pass can be defined using the following equations:

at ¼ whht−1 þ wxxt þ ba; ð1Þ

ht ¼ tanh atð Þ; ð2Þ

ot ¼ woht þ bo; ð3Þ

byt;i ¼ exp ot;i
À Á

∑
n

j¼1
exp Ot;j

À Á for i¼ 1; 2;…k; ð4Þ

byt ¼ softmax atð Þ: ð5Þ
Unlike conventional neural networks, hidden layers in the

form memory cells are involved in recursive activity using a

previously calculated output in each time step. Thus, RNNs
that compute sequence data can address long-term sequential
patterns using backpropagation through time, which provides
a context with respect to inputs which can be considered
according to the time stream. The recurrent approach has
the advantage of finding valid features in the hidden pattern
of a dataset. Nevertheless, its capability in training long-term
dependency reveals the limitations of vanishing gradients [45].

To solve the limitation of vanishing gradients of long-
term sequence features, LSTM was introduced by Hochreiter
and Schmidhuber [46]. The main idea of the LSTM mecha-
nism is to preserve long sequential information by using an
additional cell state that can constantly retain the previous
features. The LSTM unit overcomes the traditional RNN
gradient vanishing problem by controlling the four main
gates: forget, input, update, and output, as shown in Figure 2.
The equations for each gate are illustrated below along with
the LSTM block calculation diagram (Figure 2).

The first stage (i.e., the forget gate), determines the
amount of information that requires removal from the pre-
vious memory cell to the current cell gate. In other words, it
is a preservatory gate to decide how much information must
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FIGURE 1: (a and b) Comparison of information processing between RNN and FFNN.

ht–1

Ct–1

wf

ft it

wi wc wo

τ
σ

σ σ
otc̃t

Step 3

Step 1 Step 2 Step 4 Step 5

xt

Pointwise multiplication
Pointwise addition

Sigmoid activation
Tanh activation

ht

ht

Ct

τ

τ

FIGURE 2: LSTM block calculation diagram.

4 Advances in Civil Engineering



be retained to consider the past context using the following
equation:

ft ¼ σ wf ht−1 þ wf xt þ bf
À Á

: ð6Þ

The second stage involved reflecting on the information
of the step t and storing it in the current cell state with the
following two functions: the input gate (it) and candidate
memory (c̃t). Ct is the same that of the RNN.

it ¼ whht−1 þ wxxt þ ba; ð7Þ

ect ¼ tanh wcht−1 þ wcxt þ bcð Þ: ð8Þ

Then, the new cell state (ct) can be calculated using
Equation (9) by updating the previous cell state (Ct−1)
and considering both the input values and the candidate
memory.

ct ¼ tanh ftct−1 þ itectð Þ: ð9Þ

Then, the output was decided on the basis of the filtered
cell state as follows:

ot ¼ σ woht−1 þ woxt þ boð Þ: ð10Þ

In this step, the output gate (ot) determines the parts of
the cell state that will be produced as the output. This cell
state goes through the tanh layer, so the values lie between
(−1 and 1), and multiplies it by the output gate as follows:

ht ¼ ottanh ctð Þ: ð11Þ

This gate was calculated as an output of the LSTM unit.
As described above, the cell state of the LSTM architec-

ture can preserve past information and reflect the features by
combining the current input data. This helps to avoid the
problem of vanishing gradients in training long-term sequence
data. In indoor environments, environmental data, such as
temperature and humidity, change with time. Thus, this con-
textual information could be a crucial factor in predicting
thermal comfort sensation. Jowkar et al. [26] determined
that the thermal comfort of occupants staying in the same
space for a long time is influenced by both short-term and
long-term environmental changes.

Consequently, this study applied the theoretical funda-
mentals of the LSTM cell state, which considers both long-
term and short-term environmental changes combined with
the physiological changes of occupants in diverse-term
sequences. From a diverse time step perspective, this model
includes thermal sensations, including the context of envi-
ronmental changes. Although this study addressed diverse
daily time sequences, the proposed model can be applied to
long-term time-sequence data from second units to date
units. Furthermore, this study proposed a time-sequence adapt-
able neural network using a multihead timescale approach.

5. Model Development

Multiheaded neural network models have recently been pro-
posed in the literature [47, 48]. Multitimescale LSTM is used
to reflect various time periods while retaining the useful
features with different sequence data [47, 48]. This approach
can improve the performance of the recurrent model by
training several spectrums of indoor environmental data.
The multiheaded LSTM is used for different time sequences,
and the features of each head are combined in fully con-
nected layers to consider both short and long periods of
indoor environmental context. Figure 3 shows the schematic
design of the model proposed in this study.

Figure 3 shows a general overview of the multihead
LSTM architecture used for independent PMV in this study.
This architecture employs a multihead input data into the
recurrent layers of the LSTM. Each LSTM cell is operated
separately according to the length of the sequence; then, the
outputs of each cell are concatenated in the fully connected
layer. A specific part of the multihead process provides more
information for training the model, where multivariate vari-
ables are inserted stepwise into the model to predict the target
features. Hence, we can consider multiple time sequences that
the occupants are exposed to in an indoor environment. For
predicting the thermal comfort sensation using the multihead
LSTM model proposed in this study, the experiments were
designed to collect the physical and bioresponse-driven
sources of variation from diverse indoor environments.

The model is used to collect the datasets of both indoor
environment data and the metabolic data of occupants exposed
to dynamic indoor temperature. The data were divided into
four layers using a total of four sensors for both hands and
indoor temperature and humidity measurement. Thus, in this
study, the experimental design focused on collecting datasets
from subjects exposed to several environments. Because PMV
is different for each person, a model that is optimized using
individual data is more accurate, efficient, and more suitable
for predictions than optimizing a model by integrating multi-
ple data (Figure 4).

6. Instrumentation and Experiment Scenario

The experiment was carried out from December 14, 2019, to
January 12, 2020, which is typically wintertime in Korea. It is
an optimal environment for experimenting with changes in
room temperature. The experimental subjects included six
people, and the indoor environment parameters, that is,
indoor temperature and humidity, were recorded at intervals
of 2s. The bioresponsive data were simultaneously recorded
at 1s intervals using a flexible sensor [49] to determine the
skin temperature in the back of the hand, which is correlated
with heat sensations. The measurement instruments used in
the experiments are listed in Tables 2 and 3. The individual
thermal sensation was determined via subjective thermal com-
fort surveys every 5min based on the following ASHRAE 7
point scale:−3 (cold),−2 (cool),−1 (slightly cool), 0 (natural),
+1 (slightly warm), +2 (warm), and +3 (hot). To procure the
data pertaining to room temperature and humidity, a DHT22
device controlled by a Raspberry Pi was used for collection of
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indoor environmental data at 2s intervals. The environmental
parameters measured were air temperature (Ta) and relative
humidity (RH). For the biometric response data, a flexible
sensor was used. The flexible sensor could collect wireless
data in units of 1s intervals, and possess good elasticity owing
to its Kirigami–Servantine structure [49]. The sensor was
attached, and the data were collected keeping in mind the
results of a study conducted by Chaudhuri et al. [50], as this
location reacts sensitively to the thermal environment and
transfers heat to blood vessels faster. The purpose of this study
was to determine the correlation between temperature and
humidity and to compare thermal comfort objectively as
well as subjectively in response to changes in indoor tempera-
ture, humidity, living body temperature, and humidity by
adjusting the office set temperature within an area of 32m2

(3.8m× 7.8m). The study subjects included three healthy
male and three female college students in their 20s. One female
and one male were paired. The participant information is
shown in Table 4.

The experiment was conducted for 3 hr each for 2 days
for each of the pair, and the temperature of the office radiator
was adjusted to 30°C. The experimental scenario is shown in
Figure 5. The wireless flexible sensor for recording the

temperature and humidity of a living body was attached to
the back of the hand in the same manner to all the subjects.
The flexible sensor and DHT22 sensor look like Figure 6.

As shown in Figure 7, the air conditioner is located in the
center of the chamber, and a humidifier and raumventilator
are placed to change temperature and humidity. One sensor
was attached to the wall for indoor temperature and humid-
ity measurement was attached 30 cm above the seated sub-
ject’s head and the other was installed in front of the subject’s
keyboard. The value of clothing insulation (clo) was set to 0.7
by unifying it with a thin long-sleeved top and jeans.

The energy metabolism (met) was 1.2 which reflected a
light task in a sitting position using a computer. Objective
thermal comfort values weremeasured using a Testo 400 device,
and subjective thermal comfort values were surveyed by subjects
using pop-up programs on computer screens every 5min.

7. Correlation Analysis

The thermal prediction models proposed in this study were
developed on the basis of two types of data: (1) data pertain-
ing to the indoor environment and (2) biometric data of the
study subjects. Nine variables were recorded during the
experiment (Table 4). T1, H1 (temperature and humidity in
front of the keyboard), T2 and H2 (wall temperature and
humidity) which reflected environmental factors, and T_R
(right hand etmp), H_R (right hand humid), T_L (left hand
temp), and H_L (left hand humid) denoted biometric data.
The thermal comfort level recorder (subPMV—subjective
PMV) was adopted as the output data based on the individual
survey data.

The data recorded by the sensors fixed for monitoring
the indoor environment and wore by the subjects on their
exposed skin were used to train the prediction model as a
type of sequence data; thus, collected data were required to

TABLE 2: Information of measurement instruments.

No. Instrument Parameter Measuring range Accuracy Interval Variables

1 Thermal comfort level recorder — −3 to 3 — 5min Target value
2 Temperature recorder (DHT22) Ta −40 to 80 Æ0.5 2 s Indoor environment data
3 Humidity recorder (DHT22) RH (%) 0–100 Æ2 2 s Indoor environment data
4 Temperature recorder (DHT22) Ta −40 to 80 Æ0.5 2 s Indoor environment data
5 Humidity recorder (DHT22) RH (%) 0–100 Æ2 2 s Indoor environment data
6 Skin thermometer °C −40 to 80 Æ0.5 1 s Biometric data
7 Skin thermometer °C −40 to 80 Æ0.5 1 s Biometric data
8 Skin thermometer °C −40 to 80 Æ0.5 1 s Biometric data
9 Skin thermometer °C −40 to 80 Æ0.5 1 s Biometric data

TABLE 3: Equipment information.

No. Instrument Parameter Measuring range Accuracy Variables

1 Yanmar Air Conditioner °C 18–30 — Temperature
2 HAM-3000BT RH (%) −40 to 80 Æ0.5 Humidty
3 Vornado 633 — 23m — Raumventilator

TABLE 4: Participant profile.

Participant Height Weight Age

Male 1 172 61 25
Male 2 177 65 23
Male 3 180 79 27
Female 1 163 68 28
Female 2 150 45 22
Female 3 164 59 22
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be filled following a continuous data structure, which was
defined as an interval of seconds in this study. Interpolation
was used to eliminate the void of the sequence to address the
sequence data in units of 1s. Pearson’s correlation analysis
was used to determine the relationship between subjective
thermal comfort and other factors, such as metabolic reac-
tions and indoor environmental variation. The results are
listed in Table 5.

Table 5 shows the results of Pearson’s correlation analysis
between the indoor environment, body temperature, humid-
ity, and subjective PMV examined using IBM SPSS Statistics
24 software. As indicated in the correlation matrix, there
existed a significant positive correlation between the indoor
temperature and subjective PMV (P <0:001).

Furthermore, the skin temperature was positively corre-
lated to thermal comfort. On the contrary, in the case of
humidity, indoor space humidity and the thermal comfort
index were found to be negatively correlated; however, the
correlation between body humidity and the thermal comfort
index was found to be weak. As a result, all the eight vari-
ables, except for body humidity, showed a correlation with
subjective PMV; therefore, in this study, experiments were
conducted taking six variables into account.

8. Experimental Implementation

Several experiments were conducted using three different
strategies to evaluate the performance of the proposed archi-
tectures. The experimental process is shown in Figure 8. The
first strategy was to employ a collective learning method to
optimize a model by training an entire dataset simulta-
neously collected from multiple participants. The second
approach was to use a transfer learning method to optimize
the separated prediction model using an independent dataset
of each participant based on the pretrained weights that were
optimized in the first strategy. The final method employed
was an individual training method that only used the infor-
mation of a specific person.

For the conduction of the experiment, we prepared three
data groups for training, on the basis of the strategies. For
example, the while employing Strategy I the entire first group
(63,772 training data) was used. While employing Strategy II,
the independent data of participants in the second group
(∼10,800 training data per participant for the transfer learn-
ing approach) was used to optimize the individual models.
However, while employing Strategy III, the training model
simultaneously used both the first and second individual data
groups (approximately 21,600 training data per participant)
for optimization of the independent-oriented prediction model.
Each strategy adopted the third dataset group (∼10,800 test data
per participant) as a test dataset and measured the performance
of all for each model.

To compare the performance of the various architectures
in predicting thermal comfort sensation, four models (i.e.,
FFNN, RNN, LSTM, and multi-LSTM) were adopted in this
study. The architecture of the FFNN was a simple neural
network consisting of two hidden fully connected layers
and an output layer for one target value, which was used
to predict the thermal comfort sensation. Meanwhile, the
recursive approaches, namely the RNN, LSTM, and multi-
LSTM models, were used to address the time-sequential
dataset containing thermal comfort sensation. These models

Act 1

Act 2

Act 3

13:00

14:00

14:10

15:10

15:20

16:20

Start

Rest 1

Rest 2

Finish

Act 1 – Close the window, turn on the radiator, and measure for 1 hr

Rest 1 – Open the window and turn off the radiator for a 10-min break

Act 2 – Open the window, turn off the radiator, and measure for 1 hr

Rest 2 – Close the windows and turn on the radiator for a 10-min break

Act 3 – Close the window, turn on the radiator, and measure for 1 hr

FIGURE 5: Experimental scenario.
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FIGURE 6: Flexible sensor and DHT 22 sensor.
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provide the output sequence as one value to predict the ther-
mal comfort sensation at the end of the time steps.

During the model training stage, each input sequence had
a length of 300 variables. However, the multi-LSTM model
used two datasets having the following lengths: 300-sequence
and 60-sequence. To conduct the experiments as per the

defined architectures presented above, we considered the
six variables as input values by time steps, and the indepen-
dent PMV as a target value. The model predicted the depen-
dent variable at time step t. The network was trained to
minimize the cross-entropy loss function of the predicted
and true distributions. The other parameters were initialized

Air-con

4,
00

0

3,300

Window Chamber

Humidifier
Raumventilator

Participant

7,800

FIGURE 7: Experiment site.

TABLE 5: Pearson’s correlation analysis.

Variable subPMV T1 H1 T2 H2 T_R H_R T_L H_L

subPMV 1.00 — — — — — — — —

T1 0.817 1.00 — — — — — — —

H1 −0.801 −0.918 1.00 — — — — — —

T2 0.820 0.998 −0.911 1.00 — — — — —

H2 −0.811 −0.943 0.979 −0.942 1.00 — — — —

T_R 0.645 0.877 −0.811 0.883 −0.842 1.00 — — —

H_R 0.096 0.158 −0.089 0.176 −0.126 0.193 1.00 — —

T_L 0.692 0.889 −0.855 0.892 −0.873 0.925 0.136 1.00 —

H_L 0.259 0.234 −0.177 0.220 −0.130 −0.026 −0.026 0.115 1.00

Note. All the correlations have been significant at the 0.01 level (two-tailed). The significance of the bold value indicates that all correlations are significant at the
0.5 level (2-tailed).
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Individual DB 
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Collective
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Individual predictionStrategy I 
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Individual DB 

FIGURE 8: Experimental procedure.
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by random sampling from a uniform distribution on (−0.1,
0.1). The hyperparameters that achieved the best perfor-
mance on the development set were chosen for the final evalua-
tion. Data were normalized for stable optimization during the
training process. The experimental models were trained using
the Adam optimizer [51] with a learning rate of 0.0001 for
1,000 epochs. During the training models, we recorded the
lowest validation loss in each training epoch to extract the best
performance of the experimental models. The experiments
were conducted using a Pytorch platform on a workstation
with a graphics processing unit (GPU) (GeForce RTX 2090)
and a central processing unit (CPU) (Intel Core i9-10900X).

9. Results of the Experiment

9.1. Performance Evaluation Metrics. In this study, the per-
formance of the proposed model using the three metrics, i.e.,
the root mean squared error (RMSE), the mean absolute
error (MAE), and the mean relative error (MRE) were eval-
uated to ascertain the prediction accuracy; the respective
equations are depicted as Equations (12)–(14). The RMSE
model is an evaluation method that represents the square
root of the variance of the residuals, which indicates the
difference between the model’s predicted values and the
observed values. This model has the advantage of being sen-
sitive to large error values by imposing a large penalty for
large error value differences. The MAE model measures the
average of the absolute differences between the predicted and
the actual observations. The MAE model is intuitively easy to
understand. However, it is difficult to use either the RSME
model or the MAE model as an absolute index for evaluation
because these models vary depending on the size of the target
to predicted. Meanwhile, the MRE model determines the
magnitude of the MAE value as an absolute value by dividing
the difference between the predicted value (byi) and the actual
value (yi) by the actual value. Therefore, the MRE model is
more suitable for use as an evaluation criterion than the
other models.

RMSE by; yð Þ ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
byi − yið Þ2

s
; ð12Þ

MAE by; yð Þ ¼ 1
n
∑
n

i¼1
byi − Xij j; ð13Þ

MRE by; yð Þ ¼ 1
n
∑
n

i¼1

byi − yi
xi

���� ����: ð14Þ

9.2. Obtained Results. The experimental investigations aimed
to evaluate the reliability of the trained bioresponse LSTM
for predicting thermal sensation using the adaptive approach
while considering the metabolic reactions of the occupants
monitored by the flexible sensor. In this study, four different
models were used to estimate the thermal comfort based on
individual participants. Regarding the diversity of training
approaches. The model performance was evaluated using
another dataset to validate the trained models. The dataset
divided training and validation were divided into two parts.
And that the training dataset was evaluated using the valida-
tion dataset. Table 6 summarizes the experimental results
obtained using the model with the least errors in the training
stages, which indicate the average values of each experimenter.
Consequently, it was demonstrated that the performance is
differed with respect to the architecture and the learning strat-
egy. Furthermore, the proposed model trained using individ-
ual data performed the best in these experiments.

The purpose of this study was to demonstrate that a ther-
mal sensation predictionmodel should consider the character-
istics of independent occupants as having different thermal
expectations. To determine the contention, the experimental
procedure was established using the three approaches. Figure 9
shows the experimental results of themean relative error of the
four different models on the basis of the training approaches.

As shown by the results, the FFNN model had the lowest
error rate in Strategy I, and the recurrent-based models pro-
vide the lowest error rate in Strategy III. This means that the
metabolic fluctuation of the individual participants in response
to the environmental changes by time sequence helps to opti-
mize a thermal sensation prediction model by optimizing the
independent patterns regarding the thermal expectations.
Consequently, we can infer that the recurrent-based network
predicts individual thermal sensation more precisely. More-
over, the multihead LSTM model can accurately predict the
results specific to individual occupants through a comprehen-
sive and diverse analysis of the patterns.

Figure 10 depicts a bar graph comparing the perfor-
mance of each strategy in each of the models with respect
to each of the respondents. Strategy III, which used only
individual data, showed a higher prediction accuracy for
all the respondents. This supports the argument that

TABLE 6: Overview of performance of the experimental model.

Model name
RMSE MAE MRE

S1 S2 S3 S1 S2 S3 S1 S2 S3
FFNN 1.1677 0.9440 0.2604 1.0228 0.8246 0.2631 0.9510 0.7901 0.2317
RNN 0.9032 0.7678 0.2256 0.7347 0.5606 0.1774 0.6518 0.5277 0.1499
Single-head LSTM 0.9648 0.8028 0.2379 0.7670 0.6035 0.1917 0.6883 0.5209 0.1473
Multi-head LSTM 1.0940 0.8642 0.2225 0.7305 0.5552 0.1620 0.6673 0.5452 0.1458

Strategy 1 (S1): Training with collective dataset, Strategy 2 (S2): Training with collective dataset and transfer learning with individual dataset, Strategy 3 (S3):
Training with individual dataset. Values indicated in bold highlight the best performance metrics achieved across the different training strategies for the multi-
head LSTM model. The significance of these bolded metrics (RMSE: 0.2225, MAE: 0.1620, MRE: 0.1458) under Strategy 3 indicates the highest efficiency and
accuracy in prediction when the model is trained with individual datasets. This underscores the effectiveness of using a more tailored approach in dataset
training for improving model performance in these specific metrics.
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the individual responses premised in this study should be
considered.

A detailed analysis helped in identification of the differ-
ences between the models. All the recurrent-based models
except FFNN showed low error rates with respect to appli-
cation of Strategy III, and the thermal sensation predicted
using the recurrent-based model is better correlated better
than that calculated with the FFNN model approach. The
results showed that the model proposed in this study can
better predict the performance. Although the difference in
the average performance of the recurrent-based models was
somewhat insignificant, the performance of the proposed
models was sensitive to various fluctuations in indoor envir-
onments through multihead sequential variables (Figure 11).

To sum up, this study determined the accuracy with which
the proposed model predicted thermal comfort. The perfor-
mance was evaluated by training three strategies and four
models, and the proposed model trained with individual
data displayed the best performance. Consequently, we can
infer that circulation-based networks predict individual heat
sensations more accurately. We found that the proposed
model could improve the individual thermosensory predic-
tion performance.

10. Conclusion

In this study, we investigated the performance of various
neural-network-based thermal prediction models in predict-
ing individual thermal comfort. The proposed model was
found to outperform other models, using a multihead train-
ing approach with data from the indoor environment and
physiological responses of individuals. Specifically, the LSTM
model was found to be the most effective for predicting
individual thermal comfort using sequential data. We com-
pared the FFNN and RNN models in terms of their precision
in predicting the thermal comfort of participants exposed to
dynamic environments. While the FFNN model has a poten-
tial limitation in integrating previous experiences, the RNN
model allows the incorporation of contextual information to
optimize the prediction model. However, the TSVs of occu-
pants exposed to indoor environments for a long time may
be affected by their thermal expectations based on past ther-
mal conditions, limiting the RNN model’s ability to learn
long-term sequence data. To improve the accuracy of the
recurrent network, we adopted the LSTM model, which
can address the long-term context of indoor environment
data and biometric data. Furthermore, we proposed a multi-
head LSTM model to address various time sequence infor-
mation, reflecting participants’ responses to changes in the
indoor environment. As a result, the LSTM model showed
the most effective performance in predicting the thermal
comfort of several individuals under diverse environmental
conditions, providing results close to the real thermal sensa-
tions recorded by the participants.

The experiment conducted in this study was based on a
hypothesis that the comfort levels of occupants differed. To
validate the optimized models, the test dataset was stabilized
as a variable for each experiment, since the data-driven

prediction model can have varying prediction performances
depending on the training data used. The training model’s
combined data were classified into three groups of data. In
particular, the individual direct training approach proved to
be more accurate than the collective training and transfer
learning approaches based on the collective training model.

We predicted the thermal comfort of individual occu-
pants using the collective training approach in Strategy I.
However, when we tried to predict the thermal comfort sen-
sation of each participant, the performance varied signifi-
cantly. This was because the diversity of the learning data
made it difficult to reflect the characteristics of individual
occupants. On the other hand, in Strategy II, the models
were trained by optimizing individual data to a pretrained
model based on Strategy I, and they showed better perfor-
mance than Strategy I, although not as good as Strategy III.
As a result, we concluded that directly using individual data
to optimize the initial algorithm (Strategy III) can lead to
more accurate predictions of individual comfort levels. Indi-
vidual direct training operations were found to be more
effective for optimizing the model of individual thermal
comfort, as they consider the subjective comfort indicators
collected from individuals and their biological response to
environmental changes. The potential challenges of this
study are twofold. First, the experiments were conducted
using intentionally generated indoor environment data in
various controlled environments. Second, although approxi-
mately 200,000 datasets were collected, they cannot reflect all
situations due to being subdivided into several groups. As a
result, the model proposed in this study must make use of
participant data collected over time. Additionally, the target
of this study, which was the sensation to comfort sensation
vote, is not a calculated value derived from objective envi-
ronmental variables, but rather a comfort index recorded by
a participant exposed to the experimental environment in 5-
min units based on subjective judgment. Therefore, to apply
the proposed model in a practical environment in the future,
a data-delivering medium that can continuously collect par-
ticipants’ responses is required. Ultimately, individual com-
fort levels can be determined using a smart device and the
indoor temperature and humidity can be adjusted according
to the occupants’ responses. In the future, the company plans
to combine digital twin models with sensors that collect
and transmit data in real time to study changes and simula-
tions of temperature and humidity according to residents’
reactions.

Acronyms

PMV: Predicted mean vote
Ta: Air temperature
Va: Air velocity
Me: Occupant metabolic rate
LSTM: Long short-term memory
FFNN: Feed forward neural network
MAE: Mean absolute error
HVAC: The heating, ventilation, and air conditioning
SPSS: Statistical package for the social sciences
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ASHRAE: American society of heating, refrigerating and
air-conditioning engineers

TSV: Thermal sensation vote
Tr: Radiant temperature
Rh: Relative humidity
Cl: Clothing value
RNN: Recurrent neural network
RMSE: Root mean squared error
MRE: Mean relative error.
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