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Limit equilibrium (LE) method is the most widely used method for slope stability analysis. Different methods based on the LE
technique for the analysis of the stability of the slope have been developed. Some are based on satisfying the force equilibrium
condition of the failing mass (Janbu’s method), while some focus on satisfying the moment equilibrium condition (Bishop’s
method). Among these methods, the most accurate result is provided by the Morgenstern–Price method as it not only satisfies both
moments as well as a force equilibrium condition but also considers the interslice shear forces (Vi) and interslice normal forces (Ei),
which are neglected by most of the LE methods to avoid the condition of indeterminacy. To accommodate these forces,
Morgenstern–Price (MP) gave a relation between the Vi and Ei which depends upon a scaling multiplier (λ). Thus, it becomes
necessary to evaluate λ value along with the factor of safety (FS). There is barely any work discussing the detailed methodology of
evaluation of λ along with FS. Method for obtaining λ along with FS have been developed and elaborated in details here. While
calculating FS (MP method), evaluation of Ei is a must which is dependent upon the values of normal force at the base of each slice
(Ni) and FS, which itself is dependent upon the value of Ei, making it a loop of interdependent variables. To avoid this interde-
pendency of above stated variables, a separate formulation of Ei is given which reduces the calculations (run-time) involved. A VBA
code-based platform has also been developed incorporating the generalized LE method, including Bishop’s, Janbu’s, and
Morgenstern–Price methods which are represented in the form of flowcharts in this work.

1. Introduction

The slope stability analysis primarily focuses on determining
a safety index called the factor of safety (FS) to identify the
critical failure surface (CFS). The FS value of any slope against
failure can be determined using either the limit equilibrium
(LE) method [1, 2, 3, 4], finite element method (FEM)-based
strength reduction technique [5, 6, 7, 8], limit analysis method
[9, 10, 11, 12, 13], and random limit equilibrium methods
(RLEM) [14, 15]. The LE method defines FS of any slope as

the ratio of the resisting forces/moment trying to stabilize the
slope to the driving forces/moment responsible for destabiliz-
ing it. One of the major assumptions inherent in LE method-
based slope analysis is that the shape of the failure surface is
predefined, i.e., circular, logarithmic spiral, piecewise linear,
etc. Many probable failure surfaces are investigated, and the
failure surface with minimum FS value is reported as the CFS.

On the other hand, a strength reduction technique (SRT)-
based FEM solution attempts to induce stress failure of the
slope, and thus CFS is found when a stress failure has occurred
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within a slope domain. SRT does not require any prior
assumption regarding the shape of the failure surface, and
the failure happens naturally. Limit analysis-based slope anal-
ysis investigates a slope based on the upper bound and lower
bound theorem while assuming soil as a perfectly plastic
material [16, 17, 18, 19]. Here the limiting condition for any
slope is obtained by determining the best upper bound value
(least) and the best lower bound value (highest) by examining
different permissible states of stress [20, 21]. A few of litera-
tures [22, 23, 24, 25] discussed the stability of unsupported
rock slopes mostly based on Hoek–Brown model. In some
cases, [26, 27, 28] machine learning techniques are involved
in slope stability analysis. Though all these methods can be
reliably applied for slope stability analysis, the LE method is
still used worldwide because of its simplicity and robustness.

In the LE method, the expression of FS is formulated by
satisfying either moment equilibrium [3], force equilibrium
[2], or both [4, 29, 30] for a slice taken from the failure mass
and subjected to all internal and external forces. Janbu [2]
derived the expression of FS by satisfying only the force
equilibrium of the failing mass and ignoring interslice shear
and normal forces. Bishop’s simplifiedmethod [3] also ignores
interslice shear and normal forces for estimating the FS. Bishop
and Morgenstern [31] developed a concept of obtaining FS
for any slope by determining its stability coefficients. Morgen-
stern and Price [4], on the other hand, proposed a method of
calculating FS by satisfying both moment and force equilib-
rium of the failing mass. It is to be noted that the consider-
ation of both normal and forces makes the resulting equation
of FS indeterminate. Morgenstern and Price [4] considered
that the interslice normal and shear forces are related to each
other via an interslice force function f ðxÞi and a scaling
multiplier called lambda (λ), thus resolving the problem of
indeterminacy. Spencer [29] assumed a unit value of the force
function for any general shape of the failure surface.

Morgenstern and Price [32] gave a numerical approach
based on theNewton–Raphsonmethod for solving the equations
satisfying the stability of any failure surface. Fredlund and
Krahn [33] presented a generalized LE method that combines
Janbu [2] method, Bishop [3] method, and Morgenstern and
Price [4] method in a single framework. Chen and Morgen-
stern [34] derived two integral equations satisfying force and
moment equilibrium, respectively, and subsequently obtained
the result using the Newton–Raphsonmethod. Arai and Tagyo
[35] used the conjugate-gradient method to minimize FS to
search for CFS. Zhu [36] developed equations satisfying inter-
slice force equilibrium and interslice moment equilibrium.
The FS and λ values are then obtained using an iterative
mechanism involving the Newton–Raphson method. Later
[37] also proposed a concise and simplified algorithm for
computing both scaling parameters λ and FS based on the
Morgenstern–Price method. Zolfaghari et al. [38] obtained a
relation for the resultant interslice forces acting on each slice.
Then, with the help of this resulting formulation, moment
and horizontal force equilibrium conditions for the whole
failing mass are satisfied in order to develop an objective
function. The objective function is then minimized using

the genetic algorithm (GA) optimization technique to obtain
FS and λ values. Slope/W (2021), a very popular software for
slope stability analysis, has implemented the generalized LE
method for carrying out slope analysis and determining CFS.
Shiau et al. [39] developed a multivariate regression analysis
for 3D slope stability for homogeneous and layered clay.

In the present paper, a detailed discussion of LE tech-
nique for solving slope stability problems has been presented.
The iterative techniques to analyze slope stability namely
Bishop’s, Janbu’s, and Morgenstern–Price [2, 3, 4] methods
have been used in the developed VBA codes. The purpose of
using iterative loops in the analysis is to obtain the converged
FS result thereby avoiding the FS obtained directly form the
initially assumed values enhancing the accuracy of the anal-
ysis. While in this work only circular failure surface is con-
sidered for analysis, the primary focus is upon the effects of
various (external) parameters upon the stability analysis
of homogeneous as well as heterogeneous (layered) [40]
soil slope. These parameters include pore water pressure
(μ), surcharge loading (q, kN/m2), horizontal seismic coeffi-
cient (kh), and vertical seismic coefficient (kv). A comparison
of FS values when the slope is subjected under such conditions
is also drawn here. The methodology for obtaining scaling
multiplier (λ) along with FS (Morgenstern–Price method
[4]) based on Newton-Raphson approach is represented in
this literature. Along with this, the time taken to run the VBA
code and number of iterations required to obtain the FS and λ
values when the slope is subjected under such conditions is
also highlighted in this work.

2. Methodology

In the present work, three different methods for obtaining FS
and λ are developed based on the Morgenstern–Price method
[4]. The Morgenstern–Price method considers both moment
and force equilibrium of the sliding mass while determining
FS of a slope. Any LEmethod begins with the assumption that
the nature of the failure surface is known a priori. Bishop’s [3]
method is more suitable for the circular nature of the failure
surface. However, Janbu’s [2] method and Morgenstern and
Price‘s [4] method can simulate noncircular failure surfaces,
i.e., parabolic, logarithmic spiral, piecewise linear, etc. In this
case, the VBA code-based MS-Excel spreadsheet platform has
been developed considering the circular failure pattern of
slope even for Morgenstern and Price‘s [4] method.

2.1. Determining Critical Failure Surface (CFS). While deter-
mining CFS and the associated minimum FS of any slope, the
effects of surcharge load (q, kN/m2) and pore-water pressure
(μ) over the sliding mass have been considered in this work.
The impact of earthquake loading is simulated through equiv-
alent static loading of the amount khW in the horizontal direc-
tion and kvW in the vertical direction [41]. The coefficients kh
and kv are called seismic coefficients acting toward horizontal
and vertical directions, respectively. The FS of slope against
failure is determined using Morgenstern–Price [4] method.

To obtainCFS, a grid-based searchmethodhas been adopted,
as illustrated in the flowchart shown in Figure 1. In thismethod, a
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range for the center (both X and Y coordinates) and radius R
of the slip circle is defined. This range is at first divided equally
into a predefined number of grid points. Then corresponding
to each grid point, a combination of different radius (R) values
is used to develop some slip circles. Among all these slip
circles, a few slip circles, including those that either do not
enter the slope profile or go beyond the base of the slope’s
foundation, are categorized as invalid circles. The factor of
safety FS is determined for all remaining valid slip circles.
Finally, the slip circle corresponding to theminimum obtained
FS value is called the CFS.

The circular failure mass, which is being considered for
the evaluation of FS, is divided into a specified number of
slices (n), as represented in Figure 2.

Start 

Create a range of radius and a grid space for searching radius and center of slip circle 

Generate a slip circle considering center coordinates (xi, yi) for each grid point within the
grid space and corresponding radius (Ri) considering each 

radius length within the range of radius   

Generated failure circle passes 
through the slope geometry  

Calculate FS based on Morgenstern and Price’s [4] method selected  

Store center coordinates, radius, and FS values of slip circle corresponding to 
minimum FS (xc, yc, Rc, and FSc)  

FS checked for trial slip surfaces 
corresponding to all combinations of

centers and radii    

CFS (xc, yc, Rc) is obtained corresponding to minimum FS (FSc) 

Stop 

Yes 

No 

Yes 

No 

FIGURE 1: Algorithm for grid-based search method to find out circular CFS.

Surcharge
loading  

Phreatic
line 

Circular failure
surface 

‘n’ slices

Center of
rotation 

C 

FIGURE 2: Circular failure surface.
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For each slice, all the forces acting on it, along with their
respective perpendicular distances from the center of rota-
tion are shown in Figure 3.

All forces on each slice (Figure 3) have been considered
for developing an equilibrium equation. In the generalized
LE method, horizontal force equilibrium, vertical force equi-
librium, and moment equilibrium conditions of each slice
and the whole failing mass are considered based on the
method being followed.

But when the equilibrium equation is developed while
considering all the forces on each slice, its final form becomes
indeterminate due to the presence of Interslice normal forces
(EL and ER) and interslice shear forces (VL and VR). So, to
avoid this indeterminacy interslice normal forces and inter-
slice shear forces on each slice are neglected in the case of
Bishop’s simplified method [3] and Janbu’s simplified method
[2] to calculate FS. But in the case of the Morgenstern and
Price’s [4] method, both interslice normal and interslice shear
forces are considered. To overcome the condition of inde-
terminacy in the equilibrium equation for calculating FS,
Morgenstern and Price considered interslice shear force as a
function of interslice normal force for each slice.

Effective normal force ðN 0
i Þ : acting at the base of any ith

slice having a length of the base βi is the difference between
the normal force ðN 0

i Þ : and the pore water pressure ðμiÞ : at its
base. It can be expressed as given in Equation (1):

N 0
i ¼ Ni − μiβi: ð1Þ

Mobilized shear force at the base of each slice ðSmiÞ : can
be represented as shown in Equation (2):

Smi ¼
c0iβi þ N 0

i tanϕ
0
i

FS
; ð2Þ

where

c0iÀ! effective cohesion of the soil layer at the base of ith
slice.

ϕ0
iÀ! effective angle of internal friction of the soil layer

at the base of ith slice.
FSÀ! Factor of safety.
To evaluate the normal force acting on each slice, all the

vertical forces on each slice ∑FV i ¼ 0 are balanced, satisfying
vertical equilibrium for each slice ith, as shown inEquation (3):

VLi − VRi þ Smi sin αi þ Nicos αi −Wi þ kvWi − qidx ¼ 0:

ð3Þ

The normal force acting on each slice is thus obtained, as
given in Equation (4):

Ni ¼
VRi − VLi þWi − kvWi þ qidx −

c0i−μi tanϕ
0
ið Þβi sin αi

FS

cos αi þ tanϕ0
isin αi
FS

:

ð4Þ

If the pore water pressure in the slope is expressed in
terms of pore pressure ratio (ru), the normal force acting on
each slice can thus be obtained, as shown in Equation (4a):

Ni ¼
VRi − VLi þWi − kvWi þ qidx −

c0i−
Wi ru
dx tanϕ0

ið Þβi sin αi
FS

cos αi þ tanϕ0
isin αi
FS

:

ð4aÞ

2.2. Bishop’s [3] Method. As mentioned earlier, Bishop [3]
satisfied the moment equilibrium condition for sliding mass
∑nslices

i¼1 MCi ¼ 0 about its center of rotation ðCÞ : for calculating
FS, which is given in Equation (5a):

∑
nslices

i¼1
Wixi − ∑

nslices

i¼1
kvWixi þ ∑

nslices

i¼1
khWiei þ ∑

nslices

i¼1
qixi

− ∑
nslices

i¼1
VLi xi −

dx
2

� �
− VRi xi þ

dx
2

� �� �

− ∑
nslices

i¼1
ELizLi − ERizRið Þ − ∑

nslices

i¼1
Smiri − ∑

nslices

i¼1
Ni fi ¼ 0:

ð5aÞ

The summation of moments developed due to interslice
normal forces ðELizLi; ERizRiÞ : and interslice shear forces
½VLiðxi − dx

2 Þ;VRiðxi þ dx
2 Þ�: on each slice (refer to Figure 3)

throughout the failure mass will be zero (Equations (5b) and
(5c)) due to the absence of any such external force or
moment on the mass:

∑
nslices

i¼1
VLi xi −

dx
2

� �
− VRi xi þ

dx
2

� �� �
¼ 0; ð5bÞ

∑
nslices

i¼1
ELizLi − ERizRið Þ ¼ 0: ð5cÞ

Ní

βi

Smi

qi

Wi

kvWi

khWi

dx

ei

C

ri

xi

ZLi

E

ZRi

Li

ERi

VRi

VLi

FIGURE 3: Free body diagram of ith slice.
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Thus, the moment equilibrium equation as obtained in
Equation (5a) can be reduced to a simpler form as given in
Equation (5d) considering the fact shown in Equations (5b)
and (5c):

∑
nslices

i¼1
Wixi − ∑

nslices

i¼1
kvWixi þ ∑

nslices

i¼1
khWiei þ ∑

nslices

i¼1
qixi

− ∑
nslices

i¼1
Smiri − ∑

nslices

i¼1
Ni fi ¼ 0:

ð5dÞ

While establishing the moment equilibrium condition, in
this case, all clockwise moments about the center of rotation
are considered positive moments. In contrast, all anticlock-
wise moments about the center of rotation are considered
negative moments. This equilibrium equation (Equation (5d))
can be rewritten in the form of Equation (6) to obtain moment
equilibrium FS:

FSm ¼
∑

nslices

i¼1
c0iβi þ Ni − μiβið Þtanϕ0

ið Þri½ �

∑
nslices

i¼1
Wixi − kvWixi þ khWiei þ qidx − Ni fi½ �

: ð6Þ

If the pore water pressure in the slope is given in terms of
pore pressure ratio (ru), the above expression can be repre-
sented as shown in Equation (6a):

FSm ¼
∑

nslices

i¼1
c0iβi þ Ni −

Wiru
dx

βi

� �
tanϕ0

i

� �
ri

� �

∑
nslices

i¼1
Wixi − kvWixi þ khWiei þ qidx − Ni fi½ �

:

ð6aÞ

The computer program developed to determine the FS of
a given slip circle has been represented as a flowchart shown
in Figure 4.

2.3. Janbu’s [2] Method. Since Janbu’s [2] method for calcu-
lating FS fulfills the force equilibrium condition for failure
mass and satisfaction of vertical force equilibrium has already
been factored while calculating normal force at the base of
each slice, only fulfillment of horizontal force equilibrium
condition ∑nslices

i¼1 FHi ¼ 0 needs to be considered as repre-
sented in Equation (7a):

Start 

Divide the trial slip circle (x, y, R) into given number of slices  

Identify soil properties along with pore water pressure at 
the base of each slice 

Evaluate or assume initial FS 

Calculate normal force (Ni) at the base of each slice 

Initial FS = FS 

Calculate FS based on method adopted (FSm or FSf) 

No 

Yes 

|FS – initial FS|
≤ tolerance FS  

Stop 

FS (FSm or FSf) value obtained finally is the solution 

FIGURE 4: Algorithm to calculate factor of safety (FS) based on Bishop and Janbu’s method.
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∑
nslices

i¼1
ELi − ERið Þ þ ∑

nslices

i¼1
Smicos αið Þ − ∑

nslices

i¼1
Nisin αið Þ

− ∑
nslices

i¼1
khWið Þ ¼ 0:

ð7aÞ
It can be noted that the summation of interslice normal

forces ðELi; ERiÞ : for each slice (refer to Figure 3) throughout
the sliding mass will be zero (Equation (7b)) since there is no
such external force acting on the mass:

∑
nslices

i¼1
ELi − ERið Þ ¼ 0: ð7bÞ

Thus, the horizontal force equilibrium considering the
whole failure mass ∑nslices

i¼1 FHi ¼ 0 obtained in Equation (7a)
can be reduced to a more straightforward form, as shown in
Equation (7c):

∑
nslices

i¼1
Smicos αið Þ − ∑

nslices

i¼1
Nisin αið Þ − ∑

nslices

i¼1
khWið Þ ¼ 0: ð7cÞ

To establish a force equilibrium condition, all the forces
acting upward and rightward are considered to be acting in a
positive direction, while forces acting downward and left-
ward are considered to be acting in a negative direction.
The horizontal force equilibrium equation (Equation (7c))
can be rearranged in the form of Equation (8) to obtain force
equilibrium FS:

FSf ¼
∑

nslices

i¼1
c0iβi þ Ni − μiβið Þtanϕ0

ið Þcos αi½ �

∑
nslices

i¼1
khWi þ Ni sin αi½ �

: ð8Þ

The above expression can be rewritten in the form shown
in Equation (8a), if the pore water pressure in the slope is
given in terms of pore pressure ratio (ru):

FSf ¼
∑

nslices

i¼1
c0iβi þ Ni −

Wiru
dx

βi

� �
tanϕ0

i

� �
cos αi

� �

∑
nslices

i¼1
khWi þ Ni sin αi½ �

: ð8aÞ

The flow of the computer program developed to determine
the FS of a given slip circle has been illustrated in Figure 4.

2.4. Morgenstern and Price’s [4] Method. To calculate FS by
the Morgenstern and Price’s [4] method, both force and
moment equilibrium conditions must be satisfied for the
failure mass taken into consideration. As discussed earlier

in thismethod, interslice normal forces ðELi; ERiÞ : and interslice
shear forces ðVLi;VRiÞ : on each slice (refer to Figure 3) are also
considered, and the interslice shear force is expressed in terms
of interslice normal forces as represented in Equation (9):

Vi ¼ Ei × λ × f xð Þi ð9Þ

where
λÀ! Scaling multiplier.
f ðxÞiÀ! Interslice force function for ith slice.
The interslice force function mentioned above can either

be considered unity, a constant function, a half sign function,
a trapezoidal function, or any other function.

Evaluation of the scaling multiplier (λ) value is a key aspect
of theMorgenstern–Price method process, which has not been
stated in detail in any work till now. To obtain the value of FS
along with the scaling multiplier (λ), the Newton–Raphson
approach has been used in the present work, all of which
have been discussed in detail.

In this case, value of interslice shear forces ðVLi;VRiÞ : act-
ing on the corresponding slice needs to be calculated before-
hand to calculate the normal force (Equation (4)) acting at the
base of each slice (refer to Figure 3). These interslice shear
forces ðVLi;VRiÞ : as per Equation (9) is based on the respective
values of interslice normal forces ðELi; ERiÞ :. The horizontal
force equilibrium condition for a single slice ∑FHi ¼ 0 can
be satisfied, as shown in Equation (10):

ELi − ERi þ Smicos αi − Ni sin αi − khWi ¼ 0: ð10Þ

Equation (10), after substitutingEquation (2) andEquation(4)
in it, can be rewritten in the form of Equation (11) to obtain
values of the interslice normal force acting from the right side
ðERiÞ : on each slice.

It is to be noted that calculation procedure of FS requires
determination of Ni and Smi at the base of each slice. For this
purpose, the values of Ni and Smi should be available before-
hand, thus creating a loop of interdependent variables. Earlier,
this situation was resolved by assuming an arbitrary value of
Ni at first and then calculating the subsequent Ei value. These
looped calculations were needed to be repeated multiple times
to obtain the desired values of Ei [33].

The expression of interslice normal force acting from right
side ðERiÞ : on each slice is derived in a form which is indepen-
dent of Ni and Smi values, as shown in Equation (11). The
presented form is helpful in avoiding repetitive calculation of
the abovementioned parameters. After substituting Smi from
Equation (2) and normal force Ni from Equation (4) into
Equation (10), the expression of interslice normal force acting
from right side ðERiÞ : on each slice can be obtained as follows:

ERi ¼ ELi þ
c0i − μi tanϕ0

ið Þβi sin αi
FS

þ VRi − VLi þWi − kvWi þ qidx −
c0i−μi tanϕ

0
ið Þβisin αi

FS

FS
tanϕ0

i − FS tan αi

1þ tanϕ0
itan αi
FS

� �
2

0
@

1
A − khWi:

ð11Þ
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For the first slice, an interslice normal force acting from
the left side is taken as zero ðEL1 ¼ 0Þ : since no external force
of such kind is acting on the sliding mass. Substituting this
value ðEL1 ¼ 0Þ : in Equation (11) to obtain the interslice nor-
mal force on the first slice acting from the right side ðER1Þ :.
For all other slices ahead, an interslice normal force acting
from the left direction ðELi ¼ 0Þ : is taken to be equal to the
interslice normal force acting from the right direction on the
previous slice but in its opposite direction ðELi ¼ − ERði−1ÞÞ :.
These values of the interslice normal force acting from the
left direction ðELi ¼ 0Þ : can be substituted in Equation (11) to
obtain corresponding values of the interslice normal force
acting from the right direction ðERiÞ : for all subsequent slices.

In this case, after the ELi and ERi are obtained, the values
of VLi and VRi acting on the corresponding slice are calcu-
lated as represented by Equation (9). These values of VLi and
VRi are substituted in Equation (4) to calculate the value ofNi

and Smi thus resubstituting these values in Equation (11)
repetitively to obtain exact values.

2.5. FS and Scaling Multiplier (λ) Evaluation Using Morgenstern–
Price Method. In Morgenstern and Price’s [4] method, both
moment equilibrium condition (i.e., Equation (5a)), as well as
force equilibrium condition (i.e., Equations (3) and (7a)), need to
be satisfied and all these expressions directly or indirectly require
the calculation of ELi and ERi. To calculate the ELi and ERi as
given in Equation (11), the value of λmust be known beforehand.
In the present work, the Newton–Raphson method has been
used to calculate λ along with the FS. The detailed procedures
of each of these methods are described ahead.

Newton–Raphson method is by far the most widely used
methodology of all other root locating methods. In this method,
an initial value of the root is to be guessed (xi say) at first. Then
a tangent is extended through the point [xi, f (xi)], and the
x-intercept of this tangent is noted, corresponding to the
improved root estimate. This procedure is repeated to deter-
mine a further refined estimate of the root. Thus, we apply the
Newton–Raphson technique to evaluate a better-estimated
root which is scalingmultiplier (λ) in this case for the function
given in Equation (12):

fNR λð Þ ¼ FSm λð Þ − FSf λð Þ ¼
∑

nslices

i¼1
c0iβi þ Ni λð Þ − μiβið Þ tanϕ0

ið Þri½ �

∑
nslices

i¼1
Wixi − kvWixi þ khWiei þ qidx − Ni λð Þfi½ �

−

∑
nslices

i¼1
c0iβi þ Ni λð Þ − μiβið Þtanϕ0

ið Þcos αi½ �

∑
nslices

i¼1
khWi þ Ni λð Þsin αi½ �

:

ð12Þ

The root of the above equation can be solved by using the
Newton–Raphson method. If the Newton–Raphson method
is adopted, the estimate of the root, i.e., scaling multiplier (λ)
at ðkþ 1Þ:th iteration can be expressed as follows:

λkþ1 ¼ λk −
fNR λkð Þ
f 0NR λkð Þ : ð13Þ

For each repetition, along with the value of the governing
function fNRðλÞ :, the value of its derivative f 0NRðλÞ : for the cor-
responding scaling multiplier (λ) value is needed. This can be
calculated from Equation (14a):

f 0NR λð Þ ¼ FS0m λð Þ − FS0f λð Þ ¼ VFSm
∂UFSm
∂λ − UFSm

∂VFSm
∂λ

VFSm

À Á
2 −

VFSf

∂UFSf

∂λ − UFSf

∂VFSf

∂λ

VFSf

� �
2 : ð14aÞ

Each term in Equation (14a) can be evaluated based on
the expressions given as follows:

UFSm ¼ ∑
nslices

i¼1
c0iβi þ Ni − μiβið Þtanϕ0

ið Þri½ �; ð14bÞ

VFSm ¼ ∑
nslices

i¼1
Wixi − kvWixi þ khWiei þ qidx − Ni fi½ �;

ð14cÞ

∂UFSm

∂λ
¼ ERi − ELið Þtanϕ0

if xð Þiri
cos αi þ tanϕ0

i sin αi
FS

; ð14dÞ

∂VFSm

∂λ
¼ ERi − ELið Þf xð Þi fi

cos αi þ tanϕ0
i sin αi
FS

; ð14eÞ

UFSf ¼ ∑
nslices

i¼1
c0iβi þ Ni − μiβið Þð Þcos αi½ �; ð14fÞ
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VFSf ¼ ∑
nslices

i¼1
khWi þ Nisin αi½ �; ð14gÞ

∂UFSf

∂λ
¼ ERi − ELið Þtanϕ0

icos αi f xð Þi
cos αi þ tanϕ0

isin αi
FS

; ð14hÞ

∂VFSf

∂λ
¼ ERi − ELið Þsin αi f xð Þi

cos αi þ tanϕ0
i sin αi
FS

: ð14iÞ

The flowchart of a computer program developed to eval-
uate the factor of safety (FS) and scaling multiplier (λ) for

the Morgenstern–Price method using the Newton–Raphson
approach has been shown in Figure 5.

3. Results and Discussion

This section presents slope stability analysis results of a few
problems. AnMS-Excel spreadsheet platform has been devel-
oped incorporating the generalized LE method [2, 3, 4]. Since
Morgenstern and Price’s [4] method takes into account both
interslice normal and shear forces, and as a result, the govern-
ing FS determination expression becomes indeterminate. A
scaling factor λ is introduced to relate the interslice normal

Start

Divide the trial slip surface into given number of slices and identify soil properties
along with pore pressure at the base of each slice 

Initialize initial FS (by evaluating or assuming), iterations (k) = 0, and λκ = 0    

Obtain interslice normal forces (ELi, ERi), interslice shear forces
(VLi, VRi), and normal force (Ni) acting on each slice  

Iterations = Iterations + 1

Solve Equation (13):

–
No 

Solve Equations (14b), (14c), (14d),
(14e), (14f), (14g), (14h), and (14i)

to obtain respective derivatives 
values with respect to λ

Stop

Yes 

λ value obtained lastly and the corresponding FS (FSm and FSf) value is the solution   

Evaluate FS satisfying moment equilibrium
condition (FSm(λ)) and force equilibrium

condition (FSf (λ)) separately   
Solve Equations (12) and (14a)
to obtain values of fNR(λ) and

fŃR(λ), respectively  
 

λκ+1 = λκ
fNR(λκ)
fŃR(λκ)

|FSm – FSf | ≤
tolerance FS 

FIGURE 5: Algorithm to calculate FS (Morgenstern–Price method) and λ by Newton–Raphson method.
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and shear forces.While applying theMorgenstern–Pricemethod,
it is of utmost importance that the scaling multiplier λ should
be accurately determined. For this purpose, the present work
discusses the Newton–Raphsonmethod. A comparative study
has been conducted to assess the efficacy of these methods in
their approach to determine FS. Either circular or composite
type of failure surfaces are considered in the work which
stands more accurate for the case of homogeneous soil layer.

Three different problems from existing literature have
been chosen here, one of which is a homogeneous soil slope
and the other two is a heterogeneous layered soil slope, to test
the validation of the developed VBA code-based MS-Excel pro-
gram and also to check their comparative. Results obtained for
both these cases are compared with the results obtained by
Zolfaghari et al. [38] for the same problem and illustrated below.
The results for specified problems are also being compared with
those obtained for the same slope with effects of certain addi-
tional conditions such as pore water pressure (μ, kN/m2), hori-
zontal earthquake coefficient (kh), vertical earthquake coefficient
(kv), and surcharge loading (q, kN/m2) applied.

3.1. Problem 1. The first problem, taken from the work of
[38] is used to find CFS and minimum FS of a homogeneous
soil slope having soil properties as follows: effective cohesion
c′= 15 kN/m2, the effective angle of internal friction ϕ′= 20°,
and unit weight λ= 19 kN/m3. The slope’s geometric profile
and material properties are depicted in Figure 6. The phreatic
surface represented in this figure is considered as reported by
Zolfaghari et al. [38]. The slope has been analyzed using a
VBA code developed for slope stability analysis using [2, 3, 4].

Grid search limits need to be defined (as represented in
Table 1), in which xi, yi, xf, and yf specify the range to be
searched for the center of the critical slip circle while Ri

specifying the range of radius to be checked for minimum
FS at each center point. For this problem, the failure surface
is analyzed by dividing it into 50 slices of identical width, and
the tolerance limit for obtaining FS is kept as low as 0.0001.

As mentioned in grid search input data (Table 1), a grid
of coordinates for the center of slip circles is developed, and
the minimum FS evaluated corresponding to each grid is
stored in the corresponding grid location. Finally, the least
FS among these factors of safeties is printed as the final
minimum FS along with its corresponding center grid point
(i.e., critical center) and radius (i.e., critical radius).

A schematic representation of circular CFS obtained by
each of the three methods mentioned, along with each critical

center and center rays, has been depicted in Figure 7. It is
observed that all methods yield an almost similar estimation of
the center of circular CFS and radius. This shows that the devel-
oped program is stable and delivers sufficiently accurate results.

The results obtained are compared with those published
by Zolfaghari et al. [38] along with those obtained when pore
water pressure (μ, kN/m2), horizontal earthquake coefficient
(kh), vertical earthquake coefficient (kv), and surcharge load-
ing (q, kN/m2) are also applied in Table 2.

For calculation of minimum FS and λ by the developed
VBA code implementing Newton–Raphson method, the con-
vergence of FSm and FSf is studied. FSm and FSf are obtained
corresponding to all λ values starting from an initial value (i.e.,
zero) up to a final value λ at which both the factor of safeties
become equal (i.e., FSm= FSf). The convergence of FSm and
FSf with respect to λ for Newton–Raphson method has been
shown in Figure 8. It is observed that the value of FS= 1.732 is
converged at λ= 0.605 is obtained using this method.

The FS and λ results obtained for the cases when the slope
is subjected to pore water pressure loading (μ, kN/m2) due to
considered phreatic surface, as represented in Figure 6, and
horizontal earthquake loading of amount khW are compared
with the result published by Zolfaghari et al. [38]. It is to be
noted that [38] only reported the value of the minimum FS
for this problem but did not mention the value of λ. However,
in the present problem, both FS and λ have been reported in
Table 3. The value of FS is seen to match very closely with that
reported by Zolfaghari et al. [38]. Here kh is the horizontal
seismic coefficient, whose value is considered 0.1.

Table 4 shows the total run time (T) in seconds and the
number of iterations (g) required to run the different VBA
program developed for mentioned cases to analyze a given
slope. It is seen that when the pore water pressure loadings
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y

FIGURE 6: Slope profile for Problem 1.

TABLE 1: Input data for grid search limits (Problem 1).

Grid geometry

xi (m) yi (m) xf (m) yf (m) Ri (m) Rf (m) nslices
7 17 17 27 5 25 50
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CFS—Janbu

CFS—MP (NR)

FIGURE 7: Failure circles obtained for Problem 1 by differentmethods.
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are considered, it is observed that the run time and the num-
ber of iterations increases very minutely.

3.2. Problem 2. The second problem taken from [38] is to find
the critical slip circle and minimum FS of a heterogeneous

(layered) soil slope having different soil properties for differ-
ent layers of soil (Figure 9). The geometric profile of the slope
along with different material layers are depicted in Figure 9.

TABLE 2: The values of minimum FS obtained for different cases (Problem 1).

Conditions applied for Problem 1
Minimum FS

Bishop Janbu Morgenstern–Price

Zolfaghari et al. [38] Problem 1 1.74 NA 1.76

VBA program on excel platform

Problem 1 1.742 1.604 1.732
Problem 1 with μ applied 1.378 1.236 1.370

Problem 1 with μ and kh= 0.1 applied 1.098 0.970 1.088
Problem 1 with μ, kh= 0.1, and kv= 0.05 applied 1.093 0.964 1.085

Problem 1 with μ, kh=0.1, kv=0.05, and q=5kN/m2 applied 1.069 0.941 1.063

μ, pore water pressure. NA, not available.

0.605; 1.732
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m
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λ

FSm
FSf 

Convergence

FIGURE 8: FS convergence by Newton–Raphson method (Problem 1).

TABLE 3: The values of FS and λ for different cases (Problem 1).

Conditions applied for Problem 1 Zolfaghari et al. [38]
Morgenstern–Price
(Newton–Raphson)

Min. FS λ

Problem 1 1.76 1.732 0.605
Problem 1 with μ applied NA 1.370 0.490
Problem 1 with μ and kh= 0.1 applied NA 1.088 0.639

NA, not available.

TABLE 4: Time taken and number of iterations required to run the
VBA code for different cases (Problem 1).

Conditions applied for Problem 1
Morgenstern–Price
(Newton–Raphson)

T (s) Iterations

Problem 1 10.422 6
Problem 1 with μ applied 10.543 7
Problem 1 with μ and kh= 0.1 applied 10.406 5 0, 0

0, 

35, 00, 0 35, 0 

0, 

25, 15 35, 15 

0, 

21, 13 35, 13.5 

35, 11.2 

0, 6.5 
8, 6.5 

23, 11.7 35, 11.7 

0.0

5.0

10.0

15.0

20.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

y

x

FIGURE 9: Slope profile for Problem 2.
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The slope has been analyzed using a VBA code developed for
slope stability analysis using [2, 3, 4].

The soil material properties in each slope layer presented
in Figure 9 are shown in Table 5. The slope is also analyzed
under the action of pore pressure and earthquake loadings. A
phreatic surface, as considered by Zolfaghari et al. [38], is
represented in Figure 10. The slope has been analyzed against
horizontal earthquake loading khW as well as vertical earth-
quake loading kvW, where kh and kv are horizontal and ver-
tical seismic coefficients, respectively.

The same search grid dimensions, as shown in Table 6, are
used for this problem. The failure surface is analyzed by dividing
it into 50 slices of equal width, and the tolerance limit for obtain-
ing FS is kept equal to 0.0001. The circular CFS is obtained
corresponding to the lowest value of FS found in the entire grid.

A schematic representation of circular CFS obtained by each
of the methods mentioned, along with each critical center and
center rays, has been depicted in Figure 10(a). It is observed that
all methods yield an almost similar estimation of the center of
circular CFS and radius. The representation of CFS considering
composite pattern of the slip surface has been shown in
Figure 10(b), where the failure surface traverses the base of

the weak layer. If the failure surface traces the weak layer
alignment, the FS value (as per Bishop’s simplified method)
reduces considerably as the resisting shear strength is pre-
dominantly computed considering the weak layer strength
parameters. The results are shown in Table 7. The results
obtained for this case are verified with the work of [15].
This shows that the developed program is stable and produces
sufficiently accurate results.

The results obtained are compared with the result pub-
lished by Zolfaghari et al. [38] along with the results
obtained when pore water pressure (μ, kN/m2), horizontal
earthquake coefficient (kh), vertical earthquake coefficient
(kv), and surcharge loading (q, kN/m2) are also applied in
Table 7.

When Morgenstern–Price approach is used, the conver-
gence of FSm and FSf with respect to λ for Newton–Raphson
method has been represented in Figure 11 in the absence of
pore pressure and seismic loadings. It is noted that the FSm
and FSf values finally converge at λ= 0.201. At this converg-
ing point, both FSm and FSf values equate to 1.419.

The FS and λ results obtained are further compared with
those established by Zolfaghari et al. [38] in Table 8. This table
also compares the result evaluated by this method with the addi-
tional consideration of pore water pressure loading (μ, kN/m2)
due to phreatic surface, as represented in Figure 11, and horizon-
tal earthquake loading of amount khW. Here kh is the horizontal
seismic coefficient, whose value is considered 0.1.

Table 9 shows the total run time (T) in seconds and the
number of iterations (g) required to analyze the given slope

TABLE 5: Soil properties of slope considered in Problem 2.

Soil properties Layer 1 Layer 2 Layer 3 Layer 4

c′ (kPa) 15 17 5 35
ϕ′ 20° 21° 10° 28°
γ (kN/m3) 19 19 19 19
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FIGURE 10: (a) Failure surface obtained for Problem 2 by different methods considering circular slip surface. (b) Failure surface obtained
considering composite slip surface.

TABLE 6: Input data for grid search limits (Problem 2).

Grid geometry

xi (m) yi (m) xf (m) yf (m) Ri (m) Rf (m) nslices
7 17 17 27 5 25 50
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with the help of different VBA program developed for other
conditions. It is again observed that the consideration of pore
pressure loadings results in a slight increase in the program’s
run time.

3.3. Problem 3. The third problem taken from [35] is to find
the CFS and minimum FS of a heterogeneous (layered) soil
slope having different soil properties for different layers of
soil (Figure 12). The slope has been analyzed using a VBA
code developed for slope stability analysis using [2, 3, 4].

TABLE 7: The values of minimum FS obtained for different cases (Problem 2).

Conditions applied for Problem 2

Minimum FS

Type of failure surface

Circular Composite

Bishop Janbu Morgenstern–Price Bishop

Zolfaghari et al. [38]
Problem 2

1.475 NA 1.500 NA
Mafi et al. [15] NA NA NA 1.1

VBA program on excel platform

Problem 2 1.427 1.401 1.419 1.177
Problem 2 with μ applied 1.289 1.276 1.284 1.024

Problem 2 with μ and kh= 0.1 applied 1.018 0.998 1.009 0.803
Problem 2 with μ, kh= 0.1, and kv= 0.05 applied 1.030 1.011 1.021 0.809

Problem 2 with μ, kh= 0.1, kv= 0.05, and
q= 5 kN/m2 applied

1.000 0.975 0.989 0.796

NA, not available.
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FIGURE 11: FS convergence by Newton–Raphson method (Problem 2).

TABLE 8: The values of FS and λ for different cases (Problem 2).

Conditions applied for Problem 2 Zolfaghari et al. [38]
Morgenstern–Price
(Newton–Raphson)

Min. FS λ

Problem 2 1.5 1.419 0.201
Problem 2 with μ applied NA 1.284 0.103
Problem 2 with μ and kh= 0.1 applied NA 1.009 0.260

NA, not available.

TABLE 9: Time taken and number of iterations required to run the
VBA code for different cases (Problem 2).

Conditions applied for Problem 2
Morgenstern–Price
(Newton–Raphson)

T (s) Iterations

Problem 2 11.825 4
Problem 2 with μ applied 12.344 4
Problem 2 with μ and kh= 0.1 applied 12.015 3
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The soil material properties in each slope layer presented
in Figure 12 are shown in Table 10. The slope is also analyzed
under the action of pore pressure and earthquake loadings.
The slope has been analyzed against horizontal earthquake
loading khW as well as vertical earthquake loading kvW.

The search grid dimensions, as shown in Table 11, are used
for this problem. The failure surface is analyzed by dividing it
into 50 slices of equal width, and the tolerance limit for obtain-
ing FS is kept equal to 0.0001. The circular CFS is obtained
corresponding to the lowest value of FS found in the entire grid.

A schematic representation of circular CFS obtained by
Bishop’s method, along with critical center and center rays,
has been depicted in Figure 13.

The results obtained are compared with the result pub-
lished by Arai and Tagyo [35] along with the results obtained
when pore water pressure (μ, kN/m2), horizontal earthquake
coefficient (kh), vertical earthquake coefficient (kv), and sur-
charge loading (q, kN/m2) are also applied in Table 12.

The convergence of FSm and FSf with respect to λ for
Newton–Raphson method has been represented in Figure 14.
It is noted that the FSm and FSf values finally converge at
λ= 0.199 to a value of 0.414.

Table 13 compares the FS and λ result evaluated by this
method with the additional consideration of pore water pres-
sure loading (μkN/m2) due to phreatic surface, as repre-
sented in Figure 12, and horizontal earthquake loading of
amount khW (kh value is considered 0.1).
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FIGURE 12: Slope profile for Problem 3.

TABLE 10: Soil properties of slope considered in Problem 3.

Soil properties Layer 1 Layer 2 Layer 3

c′ (kPa) 29.4 9.8 29.4
ϕ′ 12° 5° 40°
γ (kN/m3) 18.82 18.82 18.82

TABLE 11: Input data for grid search limits (Problem 3).

Grid geometry

xi (m) yi (m) xf (m) yf (m) Ri (m) Rf nslices
20 37 35 52 15 45 50
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FIGURE 13: Failure circle obtained for Problem 3 by Bishop’s method.
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Table 14 compares the total run time (T) in seconds and
the number of iterations (g) required to analyze the given
slope with the help of different VBA program developed
for different conditions. It is again observed that the

consideration of pore pressure loadings results in a slight
increase in the program’s run time.

4. Conclusions

In the current study, for analysis of a given slope, FS is being
determined based on three different methods following the
LE technique, namely Bishop’s [3] method, Janbu’s [2] method,
and Morgenstern and Price’s [4] method and a unique for-
mulation for evaluating interslice normal forces (Ei) is given
which overcomes the interdependency of normal force (Ni)
and the factor of safety (FS) and thus reduces the calculations
(run-time) involved. The FS obtained using these three meth-
ods are not only being compared among themselves and the
published results of Zolfaghari et al. [38] but also with the
results obtained when pore water pressure (μ, kN/m2), hori-
zontal earthquake coefficient (kh), vertical earthquake coeffi-
cient (kv), and surcharge loading (q , kN/m2) are applied.
While obtaining CFS in this work, circular trial surfaces are
considered based on the grid search technique. Circular fail-
ure surfaces are appropriate for analyzing homogeneous soil
slope, but for the case of layered (heterogeneous) soil slope
composite or generalized failure surfaces are considered. In
the current study, circular failure surfaces have been used for
most problems. However, for a weak layered soil slope (prob-
lem 2), the circular as well as a composite failure surface
tracing the alignment of the weak layer have been used. The
results obtained are seen to match considerably with the
already published results for both cases.

Among the results of FS determined using [2, 3, 4], it can
be clearly stated that Morgenstern and Price’s [4] method
gives more accurate results as compared to that evaluated by
Janbu [2] and Bishop [3]. This is due to the fact that while
Janbu [2] satisfies the force equilibrium condition and Bishop
[3] satisfies the moment equilibrium condition [4], method
satisfies both conditions for evaluating FS. Further, the value
of the minimum FS obtained by Bishop’s method is closer to
the minimum FS obtained by the Morgenstern–Price method
as compared to that obtained by Janbu’s method. This is
because while evaluating FS by Janbu’s method, horizontal
and vertical force equilibrium conditions are satisfied. Still,
to evaluate FS by Bishop’s method, the moment equilibrium
condition is satisfied. For the calculation of normal forces at
the base of each slice, the vertical force equilibrium condition
for each slice is satisfied. It is also observed that the results of the

TABLE 12: The values of minimum FS obtained for different cases (Problem 3).

Conditions applied for Problem 3
Minimum FS

Bishop Janbu Morgenstern–Price

Arai and Tagyo [35] Problem 3 0.417 NA NA

VBA program on excel platform

Problem 3 0.416 0.413 0.414
Problem 3 considering phreatic surface (μ) 0.380 0.378 0.379
Problem 3 with μ and kh= 0.10 applied 0.311 0.297 0.309

Problem 3 with μ, kh= 0.1, and kv= 0.05 applied 0.315 0.302 0.312
Problem 3 with μ, kh= 0.1, kv= 0.05, and

q= 5 kN/m2 applied
0.310 0.296 0.306

NA, not available.
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FIGURE 14: FS convergence byNewton–Raphsonmethod (Problem 3).

TABLE 13: The values of FS and λ for different cases (Problem 3).

Conditions applied for Problem 3
Morgenstern–Price
(Newton–Raphson)

Min. FS λ

Problem 3 0.414 0.199
Problem 3 considering phreatic surface (μ) 0.379 0.117
Problem 3 with μ and kh= 0.1 applied 0.309 0.216

TABLE 14: Time taken and number of iterations required to run the
VBA code for different cases (Problem 3).

Conditions applied for Problem 3
Morgenstern–Price
(Newton–Raphson)

T (s) Iterations

Problem 3 17.156 3
Problem 3 considering phreatic surface (μ) 20.108 4
Problem 3 with μ and kh= 0.1 applied 18.918 3
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minimum FS obtained by Bishop’s method are quite higher
than the value of the minimum FS obtained by Janbu’s method.

In the present work, the Newton–Raphson technique has
been used to determine FS and the scaling multiplier λ while
analyzing slope stability problems based onMorgenstern and
Price’s [4] method. Among most methods used in similar
problem scenarios, the Newton–Raphson method converges
to the result relatively more quickly. It is further observed
that the number of steps (iterations) and the run time of the
program increases as the effect of pore water pressure and
seismic coefficient is taken into consideration.

Abbreviations

Wi: Weight of ith slice
Ni: Normal force at the base of ith slice
Smi: Mobilized shear force at the base of ith slice
ELi: Interslice normal force acting on ith slice from left

direction
ERi: Interslice normal force acting on ith slice from right

direction
VLi: Interslice shear force acting on ith slice from left direction
VRi: Interslice shear force acting on ith slice from right

direction
qi: Surcharge load on ith slice in kN/m2

kh: Horizontal earthquake coefficient
kv: Vertical earthquake coefficient
dx: Width of each slice
βi: Length of base of ith slice
ZLi: Perpendicular distance of ELi from center of rotation
ZRi: Perpendicular distance of ERi from center of rotation
xi: Horizontal distance of center of ith slice from center of

rotation
ei: Vertical distance of center of ith slice from center of

rotation
ri: Perpendicular distance of Smi from center of rotation
f: Perpendicular distance of Ni from center of rotation.
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