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Determining the ultimate bearing capacity of pile is important for reasonable design of the pile. In this paper, a cusp catastrophe
theory-based method was proposed for assessing the ultimate bearing capacity of static loading pile. Firstly, a three-parameter
quartic polynomial in accordance with the standard form of cusp catastrophe model is proposed and used to fit the experimentally
obtained Q–S curve. The parameters which allow the polynomial to produce best fitting to the Q–S curve are taken to identify the
stability of the pile following a simple procedure. Then, the proposed method was verified against 10 Q–S curves obtained from
field tests at Jinqiao-Meiya and Jinqiao-Chunyu areas of Shanghai. Results show that the ultimate bearing capacities of the piles
identified by the proposed method were comparable to those identified by the JGJ 106-2014 standard method. Finally, it is found
that the stability of the pile identified by the proposed method and the mechanical state of the pile identified by the Golden Section
approach were correlated closely.

1. Introduction

Pile is commonly used where the ground is too weak to sup-
port the overlying structures or buildings. The loads of struc-
tures or buildings are transferred to the soils underlying the
pile end and to the soils surrounding the pile shaft [1]. Both
the pile end bearing and pile shaft friction contribute to the
bearing capacity of the pile [2]. With increasing overlying
loads, the pile tends to move downwards until reaching a
balance between overlying loads and pile resistance. In this
regard, determining the ultimate bearing capacity of pile is of
great significance for reasonable design of the pile.

Static loading test is widely considered as the most reliable
method for determining the ultimate bearing capacity of pile.
In this test, static loads are applied to the head of a pile
incrementally by means of hydraulic jack and the settlements
of the pile head are monitored synchronously [3]. The test
results can be presented as a load–settlement (Q–S) curve,
which provides direct information for assessment of ultimate
bearing capacity of the pile. According to their shapes, the
Q–S curves can be divided into two types including plunging
curves and progressive curves. The plunging Q–S curve

contains a distinct inflection point, where the slope of the
curve changes dramatically, indicating plunging failure of
the pile. For such Q–S curve, the load corresponding to this
inflection point is considered as the ultimate bearing capacity
[4]. The progressive Q–S curve presents rather smoothly and
contains no distinct inflection point. It is difficult to perceive
the ultimate bearing capacity intuitively from such curves. For
this scenario, many interpretation methods based on graphi-
cal construction, mathematical model and settlement limit
have been proposed [5–7].

The graphical methods identify the ultimate bearing
capacity by drawing tangent lines and auxiliary lines on the
Q–S curve or its derivative form, e.g., lgQ–lgS and S/Q–S
curves [8, 9].

The settlement limit-based methods simply taken a load
on the Q–S curve or lgQ–lgS corresponding to a specific
settlement as the ultimate bearing capacity. In the Chinese
standard JCJ 106-2014, for example, the load corresponding
to a settlement of 40mm is suggested as the ultimate bearing
capacity for piles slenderer than 800mm, while for thicker
piles the load corresponding to a settlement identical to
0.05 times of the pile diameter is selected. Other settlement
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limits such as 25.4mm also selected to determine the ultimate
bearing capacity [10].

The mathematical model-based methods convert the
original Q–S curve into a special line (usually a straight
line) described by a simple function (usually a linear func-
tion) and relate the function parameter to the ultimate bear-
ing capacity [11]. For instance, in the van der Veen [12]
method the lg(1-Q/Qult) is plotted versus settlements and
the Qult which gives the curve a straight line is considered
as the ultimate bearing capacity. Chin [13] plotted the Q–S
curve as S/Q–S curve and taken its inverse slope as the ulti-
mate bearing capacity.

Many researchers have attempted to make a comparison
between different determining methods. Marcos et al. [5]
evaluated eight different methods based on data of 152 load
tests from 72 different sites and concluded that some meth-
ods underestimate while others overestimated the ultimate
bearing capacity. Kodsy et al. [14] employed a comparative
statistical analysis on 14 methods using data of 68 load tests
conducted on large-diameter open-ended piles. It was con-
cluded that none of these methods was superior to the
others, and their performance was somewhat correlated.
Mahmood et al. [15] compared eight commonly used meth-
ods and recognized the Debeer intersection load and Mazur-
kiewicz methods as themost suitable and reliable pile capacity
interpretation methods for bored piles. Although different
methods with unique assumptions have been proposed previ-
ously, many of the graphical methods involve qualitative anal-
ysis such as using manual manipulation to confirm the point
of maximum curvature or draw tangent lines on a Q–S curve.
In this case, different results can be obtained by different
researchers. The settlement limit-basedmethods simply relate
the ultimate bearing capacity to an experiential settlement
without scientific demonstration.

The object of this paper is to develop a new assessment
method for ultimate bearing capacity of static loading pile
based on cusp catastrophe theory. Firstly, the cusp catastro-
phe theory was introduced briefly and related to the settle-
ment behavior of static loading pile. Then, the performances
of the new method were comparatively verified with the
standard method by various Q–S curves from field tests at
Shanghai. Finally, the applicability and limitations of the new
method was discussed with consideration to its unique
features.

2. Cusp Catastrophe Theory

In fact, as mentioned earlier, the shape of the Q–S curve can
imply the state of the pile. A plunging curve with a distinct
inflection point indicates plunging failure of the pile, just as a
“catastrophic” phenomenon, which can be appropriately
describe using cusp catastrophe theory. Whereas it is difficult
to “read” the pile state directly from a progressive curve, to
judge the pile state based on the cusp catastrophe theory
should be an interesting attempt.

The catastrophe theory was proposed by Thom [16] in
the 1970s to deal with problems of discontinuity and sudden
change without insight into internal mechanisms. According

to the catastrophe theory, the potential of a system is cogov-
erned by state variables and control variables. When no more
than two state variables and no more than four control vari-
ables are involved in a system, usually seven elementary
catastrophes may be observed in the system, including fold,
cusp, swallowtail, butterfly, hyperbolic umbilic, elliptic umbi-
lic, and parabolic umbilic catastrophes. The cusp catastrophe
model, which contains only one state variables and two con-
trol variables, is the most simple and elementary catastrophe
model and commonly used to explain various natural and
engineering problems [17]. Other catastrophe models con-
tain more variables and are more complicated for application
purpose. For the static loading pile, bearing performance is
the only state variable. The factors affecting the bearing
performance of the pile can be sorted into two categories:
properties (density, gradation, texture, etc.) of the soil and
features (diameter, roughness, etc.) of the pile. Therefore,
the stability of static loading pile can be described by the
cusp catastrophe model.

In the cusp catastrophe model [16, 17], the standard
potential function of the system is expressed as:

V xð Þ ¼ x4 þ ux2 þ vx; ð1Þ

where V is the potential of the system; x is the state variable
of the system; and u and v are the major and minor control
variables of the system, respectively.

According to the cusp catastrophe theory, the system
reaches an equilibrium state in case of zero potential gradi-
ent, i.e.,

dV xð Þ
dx

¼ 4x3 þ 2ux þ v ¼ 0: ð2Þ

The geometry of the Equation (2) is called the equilib-
rium surface of the system. As shown in Figure 1, the equi-
librium surface is a catastrophe manifold illustrating the
relationship of state variable and control variables. It can
be divided into upper stable region and lower stable region.
In the region of u> 0, the upper and lower stable regions
are connected continuously without fold. Otherwise in the
region of u< 0, with the variation of the control variables, the
phase trajectory of the state variable may suddenly jump
from one stable region to another, resulting in the so-called
catastrophe. For the static loading pile, the catastrophe cor-
responds to the failure of the pile under a load higher than its
ultimate bearing capacity.

At the points where the catastrophe occurs, the tangent
vector of the equilibrium surface is parallel to the vector of
state variable (Figure 1), i.e.,

d2V xð Þ
dx2

¼ 12x2 þ 2u¼ 0: ð3Þ

Equation (3) is the singularity equation of the system,
indicating the condition of catastrophe for the equilibrium
surface. Therefore, for a given system, the catastrophe
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points should satisfy both the equilibrium surface equation
and singularity equation. By connecting Equation (2) and
Equation (3), an equation governed solely by control vari-
ables can be obtained:

D¼ 8u3 þ 27v2 ¼ 0: ð4Þ

The geometry of Equation (4) is two curves on the u–v
plane (Figure 1). It looks that the u-axis bifurcate at the
origin of the coordinate (u= 0, v= 0) into two branches,
which grow into the third (u< 0, v< 0) and fourth (u< 0,
v> 0) quadrants of the u–v plane, respectively. Therefore, the
two curves are also called the bifurcation set and Equation (4)
is termed as bifurcation set equation of the system. The
bifurcation set has a cusp at the origin of the coordinate
(u= 0, v= 0), giving rise to the appellation of cusp catastro-
phe. Once the phase trajectory of control variables crosses
the bifurcation set (Figure 1), the state variable changes
abruptly, indicating a cusp catastrophe. In the region enclosed
by the bifurcation set, since u< 0 and v2 is smaller than that
on the bifurcation set, it is not difficult to conclude thatD< 0,
corresponding to an unstable state of the system. In contrast,
there is D> 0 in the region outside the bifurcation set, corre-
sponding to a stable state of the system.

3. Development of the New Method

According the cusp catastrophe theory, in order to identify
the stability of a system, it is critical to establish an appropri-
ate potential function and judge the value of the discriminant
index,D. For the static loading pile, theQ–S curve reflects the
stability of the pile. Straightforwardly, the curve can be

described using a three-parameter quartic polynomial simi-
lar to the standard form of cusp catastrophe model:

S¼ aQ4 þ bQ2 þ cQ; ð5Þ

where S and Q are the settlement and load of the pile head,
respectively. a, b, and c are nonzero parameters governing
the shape of the curve.

If there is a>0, by letting aQ4 ¼ x4, Equation (5) can be
converted into a new polynomial in accordance with the
standard form of cusp catastrophe model:

S¼ x4 þ ba−0:5x2 þ ca−0:25x: ð6Þ

According to the cusp catastrophe theory, the settlement
S corresponds to the potential function of the pile, which is
governed by a state variable x and two control variables:

u¼ ba−0:5 and v ¼ ca−0:25 ð7Þ

According to Equation (4), the stability of the pile can be
judged through the value of the discriminant index:

D¼ 8b3a−1:5 þ 27c2a−0:5: ð8Þ

When there is D> 0, the pile is in stable state and the
current load is lower than the ultimate bearing capacity. Oppo-
sitely, when there is D< 0, the pile is in unstable state and the
current load is higher than the ultimate bearing capacity.

If there is a<0, however, the above substitution aQ4 ¼ x4 is
inapplicable. Alternatively, multiply both sides of Equation (5)
by −1 and let − aQ4 ¼ x4, Equation (5) can be converted into
a new polynomial in accordance with the standard form of
cusp catastrophe model:

−S¼ x4 − b −að Þ−0:5x2 − c −að Þ−0:25x: ð9Þ

Following a similar procedure described in Section 2,
the discriminant index of the negative system (−S) can be
deduced:

D¼ −8b3 −að Þ−1:5 þ 27c2 −að Þ−0:5: ð10Þ

When there is D< 0, the pile is in stable state and the
current load is lower than the ultimate bearing capacity.
Oppositely, when there is D> 0, the pile is in unstable state
and the current load is higher than the ultimate bearing
capacity.

In field tests, static loads are applied to the head of a pile
step by step until plunging failure of the pile or a target
settlement of the pile. After each step of loading, the stability
of the pile can be evaluated according to the Q–S curve
obtained at the current load level. A flow chart illustrating
the assessment process of the ultimate bearing capacity using
the newly proposed method is shown in Figure 2. For a given
Q–S curve obtained at ith step of load (Qi), the values of
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FIGURE 1: The equilibrium surface and bifurcation set of the cusp
catastrophe model.

Advances in Civil Engineering 3



parameters a, b, and c are determined by best-fitting the
curve with the Equation (5). As shown in Figure 2, if there
is a> 0 and b> 0, the pile should be in stable state since there
must be D> 0 according to the Equation (8). Obviously, in
this case the current load (Qi) is smaller than the ultimate
bearing capacity (Qu) of the pile. If there is a< 0 and b< 0,
the pile should be in unstable state since there must be D> 0
according to the Equation (10). In other words, in this case
the current load is higher than the ultimate bearing capacity
of the pile. Else if there is a> 0 and b< 0, or a< 0 and b> 0,
the state of the pile depends on the value ofD calculated from
the Equation (8) or Equation (10). For a> 0 and b< 0, the
pile is stable if the D is positive. For a< 0 and b> 0, the pile is

stable if the D is negative. Otherwise, the pile is unstable with
load higher than its ultimate bearing capacity.

4. Verification of the New Method

In order to verify the reliability of the method proposed in
this work, 10 Q–S curves obtained from field tests at Jinqiao-
Meiya and Jinqiao-Chunyu areas of Shanghai were taken
into account.

4.1. Field Tests. Jinqiao-Meiya and Jinqiao-Chunyu are two
adjacent sites selected for constructing high-rise buildings in
PudongNewArea, Shanghai, China (Figure 3). The geological
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FIGURE 2: Assessment process of the ultimate bearing capacity using the new method.
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conditions of the two sites are simple and comparable, with-
out significant fluctuations. As an example, the stratum lithol-
ogy revealed by drilling hole SZ1 at Jinqiao-Chunyu site are
listed in Table 1. It shows that the underground soils within
86.6m depth can be divided into nine layers with some sub-
layers. Soils within 33m depth are clays or silty clays with
weak strength while those deeper are silts or sands with higher
strength.

A cluster of cast-in-place piles with different diameters,
lengths, and postgrouting methods were constructed and
subjected to postgrouting and static loading tests at the two
sites. The postgrouting was carried out at least 2 days after
the complete of the cast-in-place piles to strengthen the piles,
and the static loading tests followed at least 20 days later than
the postgrouting to detect the bearing behavior of the piles
(Figure 4). Here, 10 of these pilot piles are selected for anal-
ysis (Table 2). At the Jinqiao-Meiya site, four piles (87#,
147#, 274#, and 399#) were constructed to a designed diam-
eter of 700mm and a length of 65m and then enhanced by
joint end-side (E-S) postgrouting method, which means slur-
ries were grouted from both the pile end and side to sur-
rounding gaps and soil pores. At the Jinqiao-Chunyu site,
one pile (SZ1#) with a designed diameter of 1,000mm and a
length of 86.6m was cast-in-place and then enhanced using
the E-S method. The other five cast-in-place piles had a
diameter of 850mm and a length of 67.7m, while two of
them (SZ5# and SZ6#) were strengthen using the end (E)
postgrouting method, which injects slurries only through the
end of the pile. After construction, the diameters at different
cross-sections of each pile were measured and the maximum,
minimum, and average diameters were calculated (Table 2).
As expected, all the 10 cast-in-place piles were nonisodia-
metric with certain discrepancies between designed and
measured diameters, the latter even vary considerably from
depth to depth. This could be resulted from the uncontrolled
flow of the postgrouting slurries and the different properties
of soils at different depths. This diameter variation could
influence the quality and thus the bearing capacity of the pile.

Loads (Q) were applied step by step to the head of the pile
using four hydraulic jacks. For each load at 5, 15, 30, 45, 60,
and further every 30min, the settlements (S) of the pile head

were monitored using four displacement sensors installed on
the pile side in four orthogonal directions.When the settlement
rate was equal to or smaller than 0.1mm/hr, the load was
increased to the next level. The above process was repeated
until one of the following situations occurs [4]: (i) The settle-
ment under current load level was larger than five times the
settlement under the previous load level, indicating plunging
failure of the pile; (ii) the settlement under current load level
was larger than two times the settlement under the previous
load level and still continued to increase even after 24 hr; (iii)
the pile was damaged obviously; (iv) for progressive Q–S
curves, the total settlement was approaching to 100mm;
and (v) the load reached the designed maximum level.

4.2. Assessment of the Ultimate Bearing Capacity. With the
obtained Q–S curves, the ultimate bearing capacity of each
pile are analyzed using both the JGJ 106-2014 standard
method [4] and the newly proposed method (Figure 5).
Briefly, in the JGJ 106-2014 standard the ultimate bearing
capacity is recognized as the load when the settlement turns
to increase abruptly (for plunging Q–S curves) or the load
corresponding to a 40mm settlement (for progressive Q–S
curves) [4]. For piles with diameters (d) larger than 800mm,
the ultimate bearing capacity can be recognized as the load
corresponding to the 0.05 d. If the settlement was larger than
40mm, the compression of the pile should be taken into
account. However, in this study this compression is ignored
for simplification purpose.

The final stability and ultimate bearing capacity (Qu) of
each pile identified by both the JGJ 106-2014 standard
method [4] and the proposed method are listed in Table 3.
The rebound rate (R) indicates the ratio between the rebound
displacement after complete unloading and the settlement at
maximum loading. Overall, the ultimate bearing capacity
identified by the proposed method are identical or slightly
higher than that identified by the JGJ 106-2014 standard
method [4]. The reason is that the proposed method takes
the load previous to the load causing unstable state as the
ultimate bearing capacity, regardless of the type (plunging or
progressive) of the Q–S curve. For example, pile 87# was
unstable at load level Q8 and so its previous load level Q7

TABLE 1: Stratum lithology revealed by drilling hole SZ1 at Jinqiao-Chunyu site.

Layer order Soil name Thickness (m) Depth (m) Angle of internal friction (°) Diameter of the cast-in-place pile (mm)

①1 Miscellaneous fill soil 2.3 2.3 10 1,010
② Silty clay 0.7 3.0 19.5 1,010
③1 Muddy silty clay 6.0 9.0 11.4 1,010
④1 Muddy clay 9.0 18.0 11.5 1,010
⑤11 Clay 4.0 22.0 14.3 1,010
⑤12 Silty clay 3.5 25.5 17.4 1,030
⑥ Silty clay 7.5 33.0 16.2 1,030
⑦11 Sandy silt 2.0 35.0 30.6 1,000
⑦12 Silt 7.5 42.5 32.7 1,080
⑦2 Silt 25.5 68.0 33.7 1,030
⑨11 Sandy silt 10.0 78.0 32.7 1,010
⑨2 Medium-coarse sand 8.6 86.6 36.3 1,000
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was taken as the ultimate bearing capacity. In the case that
the pile kept stable state till the maximum load (e.g., pile
147#), it was reasonable to infer that the ultimate bearing
capacity should be identical or higher than the maximum
load. The JGJ 106-2014 standard method, however, depends
on the type of theQ–S curve. For plunging curves (87#, SZ1#,
and SZ1#), the JGJ 106-2014 standard method takes the load
previous to the load causing unstable state as the ultimate
bearing capacity, just as the proposed method does. In this

case, the results judged from the two methods are identical.
For progressive curves, the load corresponding to a settle-
ment of 40mm is suggested as the ultimate bearing capacity
for piles slenderer than 800mm, while for thicker piles the
load corresponding to a settlement identical to 0.05 times of
the pile diameter is selected. Usually, this selected load is
small than the maximum load, which is identical or smaller
than the ultimate bearing capacity inferred by the proposed
method. In the JGJ 106-2014 standard method, the type of

ðaÞ ðbÞ

ðcÞ ðdÞ
FIGURE 4: Photos of the field trials at the Jinqiao-Chunyu site: (a) construction of a cast-in-place pile; (b) head of a cast-in-place pile;
(c) postgrouting; and (d) static loading test.

TABLE 2: Characterizations of 10 cast-in-place piles at Jinqiao-Meiya and Jinqiao-Chunyu sites.

Site Pile number Designed diameter (mm) Max./Min./Aver. diameter (mm) Length (m) Postgrouting method∗

Jinqiao-Meiya

87# 700 920/660/784 65.5 E-S
147# 700 840/680/748 65 E-S
274# 700 780/700/748 68.3 E-S
399# 700 920/700/777 68.1 E-S

Jinqiao-Chunyu

SZ1# 1,000 1080/1000/1019 86.6 E-S
SZ5# 850 1000/850/876 67.0 E
SZ6# 850 880/850/866 67.0 E
SZ7# 850 920/860/879 67.0 E-S
SZ8# 850 910/850/871 67.0 E-S
SZ9# 850 880/850/866 67.0 E-S

∗E denotes “end grouting” and E-S denotes “joint end-side grouting”.
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the Q–S curve has to be identified visually before determining
the ultimate bearing capacity. While the proposed method is
straightforward without considering the type of theQ–S curve.
Therefore, the proposed method can be a reliable method for
practical usage.

At maximum loading, piles 87# and SZ1# are unstable
with a> 0 and D< 0, while other piles are stable with a> 0
and D> 0 or a< 0 and D< 0 (Figure 5). In general, piles with
largerdiameters present largerultimatebearing capacity (Table 3),
thanks to larger side surface contributing more resistance to
overcome pile loading. Comparing piles SZ5# and SZ6# to
piles SZ7#, SZ8#, and SZ9#, it seems there is no obvious
relationship between the ultimate bearing capacity and the
postgrouting method. Both end-grouted and joint end-side
grouted piles can be subjected to plunging failure (Figure 5).
This may mean that the failure mode of the statically loading
pile is mainly governed by the end-strength of the end-grouted
cement paste rather than that of the joint end-side grouted one.

5. Discussion

The proposed method is capable of identifying the stability
of the pile under different loads. In fact, this method is highly
dependent on the shape of the Q–S curve and the distribu-
tion of test data along the curve. Taken the pile 87# as an
example, as the load increases from 3,840 to 7,680 kN, the
settlement of pile head increases steadily from 8.37 to 31.13
mm, without significant difference between adjacent settle-
ment increment (Figure 5). When the load increases further
to 8,640 kN, the settlement of pile head increases sharply to
101.84mm. Meanwhile, the pile turns to unstable. Similar
phenomena can be observed on piles SZ1# and SZ6#
(Figure 5). The other piles keep stable till the maximum
load, without significant difference between adjacent settle-
ment increment (Figure 5). Therefore, a sharp increase of
settlement indicates that the pile turns from stable to unsta-
ble state.
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FIGURE 5: Analysis of Q–S curves of 10 cast-in-place piles tested at Jinqiao-Meiya and Jinqiao-Chunyu sites: (a) pile 87#, (b) pile 147#, (c) pile
274#, (d) pile 399#, (e) pile SZ1#, (f ) pile SZ5#, (g) pile SZ6#, (h) pile SZ7#, (i) pile SZ8#, and (j) pile SZ9#.

TABLE 3: State and ultimate bearing capacity of 10 cast-in-place piles at Jinqiao-Meiya and Jinqiao-Chunyu sites.

Pile number Qu (JGJ 106-2014) (kN) Qu (Proposed) (kN) Rebound rate Final stability Mechanical state

87# 7,680 7,680 27.0% Unstable Plastic
147# 9,320 ≥9,600 55.5% Stable Elastic–plastic
274# 9,270 ≥9,600 61.8% Stable Elastic
399# ≥9,600 ≥9,600 83.7% Stable Elastic
SZ1# 17,500 17,500 21.1% Unstable Failed
SZ5# 15,280 ≥16,000 59.2% Stable Elastic–plastic
SZ6# 9,600 9,600 11.0% Stable∗ Failed
SZ7# 14,710 ≥16,000 55.8% Stable Elastic–plastic
SZ8# 14,930 ≥16,000 43.2% Stable Elastic–plastic
SZ9# ≥16,000 ≥16,000 45.2% Stable Elastic–plastic
∗Pile SZ6# was unstable under the load previous to the final load.
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It is noted that for the unstable piles (87#, SZ1#, and
SZ6#), the fitted Q–S curves (red dash lines in Figure 5)
are twisted with negative slopes, while the fitted curves of
other stable piles are monotonic with increasing slope. The
negative slope indicates that the settlement decreases with
the increase of load. This is obviously unreasonable. In fact,
such twisted curve reflects the sudden change of the balance
state of the pile. This is why the state of the pile can be
evaluated by the cusp catastrophe theory.

In order to evaluate the settlement increasement with
increasing load, the slope of the Q–S curve at a given loading
is calculated as the ratio of settlement increasement to the
load increasement, i.e.,

Ki ¼
Si − Si−1
Qi − Qi−1

; ð11Þ

where Ki, Si, and Qi are the slope, settlement, and load at the
ith loading, respectively. Si−1 and Qi−1 are the slope, settle-
ment, and load at the (i-1)th loading, respectively. Obviously,
for a given load increasement, the larger the settlement
increasement, the higher the slope.

As the loading increases from (i−1)th to ith, the slope
changes from Ki−1 to Ki. For each pile, the ratio of Ki to
Ki−1 is calculated using Equation (12) and plotted in Figure 6.
The larger the λ, the steeper the Q–S curve.

λ¼ Ki

Ki−1
; ð12Þ

where λ is the ratio of adjacent slope.
According to Figure 6, it seems that generally the ratio of

adjacent slope (λ) is slightly larger than 1.0 and the pile is
stable. For piles 87#, SZ1#, and SZ6#, the λ increases sharply

to a level several times higher than 2.0 at their maximum load
or submaximal load, where they are unstable as identified
using the proposed method (Figure 5). The sudden increase
of λ indicates the Q–S curve under present load becomes
steeper comparing to that under the previous load. Such
change indicates a plunging failure of the pile. In this case,
there usually is a> 0 and D< 0 (Figure 5), suggesting an
unstable state of the pile. Therefore, the proposed method is
sensitive to plunging failure of the pile.

It is noteworthy that the pile SZ6# is unstable under 11,200
kNwhile turns to stable again under 12,800kN (Figures 5 and 6).
After completely unloaded, the settlement decreases from
134.10 to 119.35mm with a rebound rate of only 11.0%.
The reason could be that the end-grouted cement paste sup-
porting the pile SZ6# was damaged under 11,200 kN loading
and then compacted by the subsequent 12,800 kN loading,
resulting in a sudden settlement followed by a gentle settlement
of the pile. While unloading, the pile settlement rebounded
insignificantly due to the end-grouted cement paste was failed
without large elasticity. Therefore, for the sake of determining a
reliable ultimate bearing capacity, it is also important to evaluate
the mechanical state of the pile.

Depending on load level, the mechanical state of an object
may be elastic, elastic–plastic, plastic, and failed. In elastic state,
the strain changes linearly with the stress. In elastic–plastic and
plastic state, the relationship between strain and stress is non-
linear. In failed state, the object almost loses its strength
completely. The elasticity of the object, i.e., the rebound rate
of the object upon unloading, decreases with object turns from
elastic state to elastic–plastic, plastic, and failed state. There-
fore, the mechanical state of a pile can be roughly divided into
elastic, elastic–plastic, plastic, and failed state according to the
rebound rate of the pile. In some previous studies, the pile state
was roughly divided into linear, plastic, and failure stages
according to the change trend of the Q–S curves [18]. Here,
the Golden Section approach is used to identify themechanical
state of the pile.

Golden Section has been widely used as an optimization
approach in solving scientific, technical, and engineering
problems. By Golden Section approach, a line segment is
divided into two parts in such a way that the length ratio
of the longer part to the original line segment is equal to that
of the shorter part to the longer part. Interestingly, this ratio
should be 0.618 and known as the Golden Ratio. The line
segment can be divided continuously with the Golden Sec-
tion sequence (0.618n, n is the number of dividing). Accord-
ingly, the division of elastic, elastic–plastic, plastic, and failed
state of a pile can be obtained after three times of Golden
Section. As shown in Figure 7, rebound rates between 100%
and 61.8%, 61.8% and 38.2% (= (61.8%)2), 38.2% and 23.6%
(= (61.8%)3) as well as smaller than 23.6% are corresponding
to elastic, elastic–plastic, plastic, and failed state, respectively.

According to Figure 7, the mechanical state of each pile is
identified and listed in Table 3. Piles in stable state as identi-
fied using the proposedmethod are in elastic or elastic–plastic
state, while those unstable piles are in plastic or failed state.
However, the pile SZ6# is an exception. Although the pile
SZ6# is stable at the maximum load, it failed under the former
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112,000 kN. Therefore, it is not contradictory to conclude that
at its maximum loading the pile SZ6# is stable but in failed
state.

The Q–S curves presented in this study were obtained
from postgrouting strengthened cast-in-place piles estab-
lished at two adjacent sites with similar stratigraphic proper-
ties. Although the Q–S curves could vary with stratigraphic
property (e.g., sandy, silty, clayey, complex strata) and pile
type (e.g., precast pile, friction pile, end-bearing pile), they
can always be identified as either plunging or progressive
types according to their shapes. As verified above, both types
of Q–S curves can be satisfactorily assessed by the proposed
method. Therefore, it is believed that the proposed method
can be applied to other types of pile constructed at various
sites. Of course, further studies on this point are expected.

6. Conclusions

In this paper, a cusp catastrophe theory-based method was
proposed for assessing the ultimate bearing capacity of static
loading pile. The performance of the new method was veri-
fied by various Q–S curves from field tests at Shanghai. Based
on the results, the following conclusions can be obtained.

The Q–S curve of static loading pile can be satisfactorily
described using a three-parameter quartic polynomial simi-
lar to the standard form of cusp catastrophe model. Accord-
ingly, the discriminant index of the system can be calculated
using the fitted parameters. The stability of the pile can be
evaluated by considering both the fitted parameters and dis-
criminant index following a simple process. The proposed
method was verified against 10 Q–S curves obtained from
field tests at Jinqiao-Meiya and Jinqiao-Chunyu areas of
Shanghai. The ultimate bearing capacities of the piles identi-
fied by the proposed method were comparable to those iden-
tified by the JGJ 106-2014 standard method. When the pile
turns to unstable state as identified by the proposed method,
the ratio of adjacent slope of the Q–S curve increases sharply.
To determine the ultimate bearing capacity of static loading
pile, both the stability of the pile identified by the proposed
method and the mechanical state of the pile identified by the

Golden Section approach should be taken into account. It is
found that an unstable pile corresponds to plastic or failed
mechanical state.
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