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In the construction of the civil engineering infrastructure, the noise and vibration are affected by the geological conditions,
adopting specific construction techniques based on the geological conditions is of great significance in suppressing the noise
and vibration caused by the construction. To classify and evaluate the rock mass quality, the rock quality designation (RQD) is
adopted widely in the geological and mining engineering. Traditionally, to obtain RQD, lengths of drilling core pieces are measured
and RQD is calculated manually, which is labor-expensive and time-consuming. With the development of the computational
power, the image treatment driven by the computer vision creates a potential approach to obtain RQD automatically. In the present
work, the image treatment process with the aid of the object detection and the image segmentation is adopted to obtain RQD
automatically, based on the similarity of features such as color and texture, the segment anything model is adopted to detect the
rock cores in the image, then, the YOLOVS algorithm is adopted to train the model, and the gap features of the rock chip segments
are extracted for segmentation of different rock core segments. To test the performance of the proposed approach, 10 boreholes
from Shapingba Railway Comprehensive Reconstruction Project are adopted to conduct the case study. Compared to the tradi-
tional manual approach, RQD obtained by the proposed approach is relatively accurate and obviously efficient, namely, the average

error is less than 5% and the time consumed is less than 70%.

1. Introduction

In the construction of the civil engineering infrastructure, the
noise and vibration are affected by the geological conditions,
adopting specific construction techniques based on the geolog-
ical conditions is of great significance in suppressing the noise
and vibration caused by the construction [1-4]. To classify and
evaluate the rock mass quality, Deere [5] introduced the rock
quality designation (RQD), including the measurement of the
lengths of the drilling core pieces and the calculation of RQD.
RQD is convenient to evaluate the rock mass quality quantita-
tively; consequently, RQD is adopted widely in the geological
and mining engineering [6—11]. Based on the properties of the
rock mass, Bieniawski [6] improved the engineering classifica-
tion of the rock mass. To overcome the limitations of the

previous empirical relations, Zhang and Einstein [9] built the
new relation between the rock mass deformation modulus and
RQD. When properly carried out, Lucian and Wangwe [10]
reported that RQD was a basic index to determine the rock
mass strength in the geological and mining engineering. To
determine the deformation modulus of the rock mass, Zhang
[11] evaluated the empirical methods and outlined the essential
aspects on the evaluation of RQD.

To obtain RQD, traditionally, the measurement of the
lengths of the drilling core pieces and the calculation of
RQD are conducted manually, which is labor-expensive
and time-consuming [12-15]. For example, Chen et al.
[13] presented a new method of obtaining RQD of the
rock mass, where the error was reduced and the rock mass
properties were reflected. However, the discontinuity data of
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FiGure 1: Drilling core images before (a) and after (b) the perspective correction.

the rock mass needs to be recorded manually, which is
laborious.

With the development of the computational power, the
image treatment driven by the artificial intelligence algorithm
is adopted frequently in the geological and mining engineering
[16-27]. For example, under different light source positions,
Saricam and Ozturk [16] located the positions of the fractures
in terms of the shadows, segmented the drilling core pieces, and
calculated the RQD value. By segmenting the image edges and
extracting the fracture locations, Li and Du [20] developed an
automatic RQD analysis method. To determine the boundaries
of the drilling core pieces, Jin et al. [23] segmented the drilling
core pieces with the deep learning algorithm and calculated the
lengths of the drilling core pieces.

Though the image treatment with the aid of the intelligent
algorithm is popular, there are some shortcomings. For exam-
ple, in the method proposed by Saricam and Ozturk [16], the
light source locations are required, and the equipment to cap-
ture the image is expensive; consequently, the method is diffi-
cult to adopt in the engineering site. In the approach developed
by Li and Du [20], the specialized and expensive systems and
equipment are required. In the framework provided by Liu
et al. [25], the engineering environment is complex, for exam-
ple, the shooting conditions are limited; consequently, the
image is distorted by the shooting condition, which would
affect the image analysis significantly.

To overcome the above shortcomings, the present work
expects to develop an automatic image treatment process of
RQD under the aid of the object detection and the image
segmentation, including the perspective correction of the
original drilling core images, segmentation of the drilling
core pieces, object detection algorithm, and calculation of
RQD. To demonstrate the feasibility of the proposed frame-
work, 10 boreholes from Shapingba Railway Comprehensive
Reconstruction Project are adopted to conduct the case
study. The proposed framework creates a potential approach
to obtain RQD automatically, which is helpful to improve the
level of intelligence in geological and mining engineering.

2. Methodology

2.1. Perspective Correction. Limited by the shooting condi-
tion, the perspective of the original image does not meet our

needs, to correct the perspective of the original image, the
perspective correction is conducted. In the present study, to
correct the shooting angles of the original images, the per-
spective correction is adopted. To conduct the perspective
correction, a 2D image is projected onto a 3D viewing space,
after the projection, it is converted to a 2D coordinate sys-
tem. The transformation equation of the perspective correc-
tion is as follows:

X X
yol=M|y |, (1)
* 1

where (x, y, 1) is the pixel coordinates in the 2D plane before
the perspective correction, M is the perspective correction
matrix, (x*, y*, z*) is the 3D pixel indexes after the perspec-
tive correction, and (¥ =x*/z*,y =y*/z*) is the 2D pixel
indexes after the perspective correction. In the present study,
the perspective correction process is conducted with the aid
of the image treatment program. Figure 1 compares the dril-
ling core images before and after the perspective correction.
Compared to the original image before the perspective cor-
rection, the image after the perspective correction is easier to
be treated by the computer program. At the same time, the
edge of the box is cut, and the extra disturbance is eliminated.

2.2. Object Detection. Next, we describe the object detection
algorithm, where the segment anything model (SAM) is
adopted. As illustrated in Figure 2, the object detection algo-
rithm is consisted of three parts, namely, an image encoder,
a prompt encoder, and a mask decoder [28-30]. First, the
original image is processed by the image encoder, where
the characteristics of the original image are extracted. After
the image encoder, the image embedding is conducted.
After the image embedding, the prompt encoder is carried
out, where the characteristics of the drilling core pieces are
coded. After the mask decoder, the drilling core pieces
are extracted from the original image, and the drilling core
pieces are output.

2.3. Image Segmentation. After the drilling core pieces are
extracted from the original image, it is necessary to segment
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FIGURE 2: SAM has three components, namely, an image encoder, a
flexible prompt encoder, and a fast mask decoder.

each drilling core piece. To segment each drilling core piece
from the drilling core pieces, the YOLOVS algorithm [31, 32]
is adopted in the present work. YOLOVS is the latest member
of the YOLO algorithm [33], as shown in Figure 3. The data
sets are consisted of numerous original images recording the
drilling core pieces. After the model training, the character-
istics of the fractures between the drilling core pieces are
extracted, which is learning by the deep learning model.
The drilling core pieces are separated from each other, and
each drilling core pieces is obtained.

2.4. Calculation of RQD. To classify and evaluate the rock
mass quality quantitatively, RQD is introduced, which is the
summation of lengths of drilling core pieces greater than
10 cm divided by the length of the core run, namely:

2. Lengths of drilling core pieces greater than 10 cm
RQD =~

Length of the core run

(2)

After the image segmentation, each drilling core piece is
separated, to calculate the RQD value, the key aspect is to
measure the length of each drilling core piece. To obtain the
length of the drilling core piece, we need to know the real
length of each pixel. Since the box size is known, by summing

the number of the pixel of the box length, we can know the
length of each pixel. After knowing the length of each pixel,
we sum the number of the pixel of each drilling core piece,
and the length of each drilling core piece is calculated, as
shown in Figure 4. Knowing the length data, the RQD value
is calculated, and the formula is as follows:

2 3)
RQD = ﬁT .

where [; is the length of the ith drilling core piece greater than
10cm, [ is the length of the core run, and f is the scale
coefficient, depending on the size of the image.

3. Application

It is necessary to verify the effectiveness of the developed
approach for automatic calculation of RQD, the boreholes
from the Shapingba Railway Comprehensive Reconstruction
Project was identified. The project is a large-scale compre-
hensive hub project renovated on the former Shapingba Rail-
way Station, which is a key construction project of the
Chongqing Municipal Government, which is essential to
upgrade the appearance of the city. The whole project site
area is flat, the terrain slope angle is small. Figure 5 shows
four original drilling core photographs.

To make the image treatment more accurate, the per-
spective correction of the original core images is conducted.
After the perspective correction, the core images are more
accurate and reliable. Next, with the object detection algo-
rithm, the segmentation of drilling core pieces is implemen-
ted, as shown in Figure 6.

The main difficulty in object detection is dealing with data
sets whose interclass variance is low, namely, the similarity of
a few classes is high. Figure 7 shows the figure of the normal-
ized confusion matrix. It seems that the model is most likely to
misclassify some labels, which represents that the similarity of
different classes is low. Furthermore, Figure 8 shows the
Fl—confidence, precision—confidence, precision—recall, and
recall-confidence curves of the model. It is observed that
the precision of the model increases with the confidence
increasing, which means that the model is reliable. Impor-
tantly, at high precision, the recall rate is small, namely, the
model is accurate.

The segmentation of drilling core pieces is the essence of
the model, which is the basis of the calculation of RQD. After
the segmentation of drilling core pieces, to obtain RQD, the
lengths of the drilling core pieces need to be calculated. Tra-
ditionally, the lengths of the drilling core pieces are measured
manually, which is labor-expensive and time-consuming. To
improve the level of intelligence in geological engineering,
the lengths of the drilling core pieces are calculated automat-
ically. Sometimes, the drilling core is not always composed of
rock, there is something else, for example, soil. Therefore, the
rock in the drilling core is labeled first, as shown in Figure 9.
After labeling the rock in the drilling core, the lengths of the
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FIGURE 3: YOLOVS architecture.

FiGure 5: Original drilling core photographs.
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FIGURE 6: Segmentation of drilling core pieces is implemented.
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FiGURE 7: Normalized confusion matrix.
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FiGURe 10: Lengths of the drilling core pieces are measured automatically.

TasLe 1: Comparison of RQD values between manual measurement and the present approach.

Drilling core number RQD (%) by manual measurement RQD (%) by the approach Error (%)
1 6.66 3.66 3.00
2 52.20 55.63 3.43
3 0.00 9.35 9.35
4 28.70 31.84 3.14
5 21.30 23.30 2.00
6 19.90 15.40 4.50
7 51.10 54.35 3.25
8 6.67 12.67 6.00
9 21.94 17.31 4.63
10 9.45 5.85 3.60

drilling core pieces are measured automatically, as shown in
Figure 10.

To test the performance of the proposed approach, 10
boreholes from Shapingba Railway Comprehensive Recon-
struction Project are adopted to conduct the case study.
Compared to the traditional manual approach, RQD
obtained by the proposed approach is relatively accurate,
namely, the maximum error is less than 10%, and the average
error is around 5%, as listed in Table 1. More importantly,
the present approach is much more efficient, compared to
the traditional manual measure, the time consumed by the
present approach is less than 70%.

4. Discussion

The present work provides an automatic approach to calcu-
late RQD, which is accurate and efficient. We should point
out that there are some points to be improved in the future,
including:

(1) Sometimes, the fractures are not natural, they may be
mechanical fractures caused by the drilling process,
which is difficult to be accurately recognized by the
segmentation model. Consequently, the mechanical
fractures are classified into the natural fractures,
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FIGURE 11: The mechanical fractures affect the calculation of the
RQD values.

leading to the incorrect segmentation of the drilling
core pieces, the lengths of the drilling core pieces
become smaller, as a result, the obtained RQD value
is smaller by the image treatment process. We should
point out that mechanical fractures do not always
affect the RQD calculation significantly. The RQD
value is the sum of the lengths of the drilling core
pieces greater than 10cm divided by the length of
the core run, the lengths of the drilling core pieces
less than 10cm are irrelevant to the calculation of
the RQD value. Only when the mechanical fractures
appear between the drilling core pieces greater than
10 cm, the calculation of the RQD value is affected,
namely, the RQD value becomes smaller, otherwise,
the RQD value is not affected. As shown in Figure 11,
the length of the drilling core piece is 30 cm, which is
greater than 10 cm, and a mechanical fracture appears
between the drilling core piece, with the segmentation
model, the drilling core piece is divided into two parts,
one part 9 cm, less than 10 cm, and the other part 21
cm, greater than 10cm, thus, the calculated RQD
value becomes smaller than the realistic one.

(2) Sometimes, the two drilling core pieces are very close,

and it is very difficult to segment them for the seg-
mentation algorithm, as a result, the two drilling core
pieces are recognized to be a single drilling core piece.
The two and more short drilling core pieces less than
10 cm are recognized to be a single drilling core piece,
and the length of the grouped drilling core piece may
be greater than 10 cm, thus, the calculated RQD value
may be greater than the realistic one. It should be
pointed out that it is not always leading to a greater
RQD value, when the lengths of the two drilling core
pieces are greater than 10 cm, the result is not affected.
Only when the lengths of the two adjacent drilling
core pieces are both less than 10 cm, or one of them
less than 10 cm, at the same time, the length of the
group is greater than 10 cm, the calculated RQD value
is greater than the true value. As shown in Figure 12,
the two adjacent drilling core pieces are too close, and
the segmentation model is unable to segment them. It
is clear that the lengths of the two drilling core pieces
are both less than 10cm; however, as they are

FiGure 12: The two drilling core pieces are too close, and the seg-
mentation model is unable to segment them.

FiGure 13: The drilling core piece is covered partly by the paper
piece, which affects the measurement of the length of the drilling
core piece.

recognized to be a single piece, the length of the
grouped piece is greater than 10cm, consequently,
the calculated RQD value becomes greater.

(3) To acquire the original image of the drilling cores,
sometimes, a marking paper piece masks the drilling
core, the length of the drilling core piece covered by
the marking paper is misunderstood; consequently,
there are errors in the RQD calculation. As shown in
Figure 13, a drilling core piece at the bottom right core
of the box is covered partly by a paper piece. Actually,
the length of the drilling core piece is represented by the
red line, which is greater than 10 cm. Since a part of the
drilling core piece is covered, the object detection model
is unable to recgonized it, as a result, the length repre-
sented by the green line is used to calculate the RQD
value, obviously, it is smaller than the actual RQD value.
The object detection model needs to be developed fur-
ther, which is able to remove the cover, though it is
difficult at the present. One feasible way is that the
image should be taken carefully, namely, the drilling
core pieces should not be covered by other things.

5. Conclusions

In the construction of the civil engineering infrastructure, the
noise and vibration are affected by the geological conditions,
adopting specific construction techniques based on the geological



conditions is of great significance in suppressing the noise and
vibration caused by the construction. A new image treatment
process to calculate RQD automatically with the aid of
the object detection and image segmentation is developed.
The proposed framework includes four parts, namely, per-
spective correction, object detection, segmentation of the dril-
ling core pieces, and calculation of RQD. By inputting the
original core images from the engineering sites, the image
treatment process can calculate the value of RQD automati-
cally, and the accuracy can meet the engineering needs, where
the average difference is less than 5%. More importantly, the
automatic image treatment process is much more efficient,
namely, the time consumed is less than 70%, where much labor
work is saved. The proposed framework provides an alternative
approach for geological engineers to obtain RQD accurately and
efficiently, which can improve the level of intelligence in the
geological and mining engineering.

However, to acquire accurate RQD values in the practice,
some cautions should be conducted:

(1) avoiding the mechanical fractures of the drilling
cores artificially, which may decrease the calculated
RQD values,

(2) keeping the two adjacent drilling core pieces apart,
namely, avoiding them too close to be segmented, the
calculated RQD values may be greater, and

(3) taking the original images of the drilling cores care-
fully, avoiding the drilling cores to be covered by
other things.

Due to the complexity of the engineering site, this algorithm
still has some limitations, such as difficulty in distinguishing
between artificial cracks and natural cracks, insufficient recogni-
tion of very close rock core fragments, and unsuitable RQD
calculation for drilling core cake. In future work, we will continue
to improve the algorithm and continuously enhance the level of
automated identification of drilling cores.
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