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Incorporation solid waste generated in industry into concrete production is considered an environmentally sustainable approach as
it reduces pollution, lowers energy consumption, and mitigates the depletion of natural resources. Copper slag (CS) is a residual
material produced through the copper smelting process. The slag materials are kept in expansive landfills and consume substantial
land space. The typical approaches for managing CS involve recycling, metal recovery, and the creation of additional value through
the manufacturing of items, including but not limited to railroad ballast, abrasive tools, cutting tools, roofing granules, abrasive
tiles, glass, asphalt surfaces, and foundations for road construction. This study aimed to evaluate the mechanical strength and
microstructural properties of concrete, focusing on using CS as a substitute for fine aggregate. This review systematically analyzes
its use in concrete production over the last two decades. For the review, data were collected from various publishers, which are
peer-reviewed articles, and validated using databases like Scopus, Scimago journal and country rank (SJR), Web of Science, etc.
This review concluded that the potential of utilizing CS as a workable alternative for fine aggregate is highly attractive, given its
superior performance in mortar and concrete mixes when compared to mixes without CS.

1. Introduction

In many countries, the construction sector is experiencing
rapid growth where natural resources are used for infrastruc-
tural development [1]. In the construction industry, resource
scarcity and growing waste generation pose a significant chal-
lenge, while sustainable development requires unconventional
materials and waste recycling to avoid resource scarcity and
preserve the environment [2]. Sustainable energy sources such
as solar, wind, geothermal, biomass, and hydro are gaining
significant attention as regards the advancement of the world
toward becoming a carbon-neutral community. However, this
transition to renewable energy is expected to lead to an impor-
tant increase in the demand for metals, as lithium, nickel,
manganese, and cobalt are required in traditional electric vehi-
cle batteries, while iron, copper, and aluminum are needed in

wind turbines. Most countries have set their own goals of
becoming carbon neutral by 2050 or 2060 [3].

Concrete is generally considered as one of the major
building materials that is used in construction projects world-
wide due to its affordability and versatility [4, 5], with an
average use of 1m3 per person on a global scale every year
[6, 7]. The extensive use of concrete is due to its flexibility in
molding it into various sizes and shapes, the ability to with-
stand environmental conditions, readily available raw materi-
als, strong hardening properties, and cost-effective repair
throughout its life span [8]. Normal-strength concrete (NSC)
is manufactured through the mixing of primarily cement,
aggregates, and water. It is the predominant choice for con-
struction materials in a wide range of structures, including
buildings, dams, port facilities, bridges, bunkers, tunnels, and
the skeletal frameworks of factory buildings [9, 10], while high-
strength concrete (HSC) is characterized as concrete having a
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specified compressive strength equal to or exceeding 60N/mm2

according to ACI 363.2R and used for several practical appli-
cations, including nuclear waste containment structures, long-
span bridges, high-rise buildings, and walkways [11].

Cement is considered a major constituent material in
concrete production and consumes vast quantities of natural
resources such as clay, limestone, and chalk, as well as a great
amount of energy, resulting in a significant contribution to
greenhouse gas emissions and global warming [12–14]. For
each ton of cement production, the amount of CO2 emission
is equal [15].Moreover, substantial amounts of natural resources
including river sand and coarse aggregate are required to
manufacture such an extensive volume of concrete [6, 16].
Based on the assessment, the construction demands world-
wide are projected to necessitate 35 billion tons of sand and
coarse aggregates [6, 17]. Indeed, aggregates comprise a signifi-
cant portion, ranging from 70% to 80%, of the concretemixture,
serving as a fundamental component. In several countries, the
availability of suitable natural aggregates for construction is not
limited, whereas in other nations, their consumption is escalat-
ing due to a growing demand for construction [2, 18–20]. The
aggregate types include coarse aggregates (particle sizes exceed-
ing 4.75mm) and fine aggregates (particle sizes below 4.75mm)
[21]. Table 1 summarizes the top five (5) worldwide importers
of gravel, sand, and stone: Note the substantial influx of imports
for these goods in Asia, especially in China, Singapore, and
India. At present, nations experiencing heightened request
and increased imports of natural resources are at greater
risk of resource depletion; consequently, this is an issue that
demands attention and cannot be ignored [22].

The three most essential metals on a global scale include
steel, aluminum, and copper [23, 24]. Copper is currently a
material frequently used in human daily existence and is also
vital for global markets. It is typically used for a diversity of
purposes, including those relating to building, electricity,
transportation, and correlated industries [25]. CS is a substan-
tial byproduct originating from the conversion of copper ore
concentrates into metallic copper within smelting facilities, as
illustrated in Figure 1 [26, 27]. The slag materials are stored in
expansive landfills and consume substantial land space [28].

In 1900, the world produced less than 500,000 tons of
copper. However, annual production of copper mining had

increased by 3.2%, reaching a total of 20.6 million tons by
2018 [12, 29–31]. To be more specific, Oman generates
60,000 tons or more of CS annually. Additionally, the pro-
duction of CS indicated for Iran, Brazil, Japan, and the
United States is roughly 0.36, 0.244, 2.0, and 4.0 million
tons annually, respectively [2, 32–35]. The statistics have
been anticipated that a ton of copper yields roughly 2.2 tons
of CS [25, 36–39]. Table 2 provides information on the pri-
mary regions responsible for CS production along with their
respective quantities, while Figure 2(a)–2(c) shows the cool-
ing process, appearance images, and grading of CS.

The construction industry holds a bright outlook for CS;
it exhibits characteristics of glassy, dark, and granular parti-
cles falling within a size range similar to that of sand due to
its outstanding mechanical and physical characteristics. Its
water absorption capacity is notably low; concrete requires
less water when mixed with CS, compared to quartz sand.
Therefore, an increase in content of CS is anticipated to
reduce the quantity of water in the mixture [43, 44]. The
current implementation of copper smelting slag treatment
lacks a cost-effective and efficient approach. Consequently,
the majority of copper smelting slags are directly deposited
in open-air stacks, leading to both extensive land usage and
significant environmental consequences such as polluting the
surrounding water and soil [31, 45]. The primary constitu-
ents of CS consist of Fe3O4 (45–70 wt.%), SiO2 (10–30 wt.%),
Al2O3 (10 wt.%), and CaO (10 wt.%) [36, 41, 46]. These
exhibit pozzolanic properties as a result of their low CaO
content and the presence of various oxides substituting con-
crete components with slag in this manner can alleviate the
environmental issues and concerns associated with disposing
of slag in landfills. This leads to cost savings in managing slag
to comply with sustainable development goals (SDGs) and
environmental regulations, as well as decreased expenses in
cement and aggregate production, given the low cost or
potentially free nature of slag. This presents a favorable situ-
ation for both concrete manufacturers and metallurgical
industries in various respects [47]. Alternatively, CS has found
extensive application in the construction industry [7, 48],
including its use as a substitute-grained copper for coarse
aggregates [4] and fine aggregates [44] and utilizing fine CS
powder to partially substitute for cement [49].

In summary, despite advances in the management of CS
over the last couple of decades, the comprehensive recycling
and thorough purification of CS are currently not extensively
implemented. This review aims to investigate existing litera-
ture concerning the use of CS as a alternative material for
fine aggregate. Data were collected from reputable publishers
and validated with trustworthy websites. Considerable atten-
tion has been directed toward addressing the issues arising
from the generation and proper disposal of CS. The physical,
chemical, and microstructure properties of CS are examined
in detail. The review delves into the influence of incorporat-
ing CS on concrete’s mechanical and microstructure proper-
ties, accompanied by relevant explanations. In conclusion,
the results are succinctly recapitulated to provide valuable
and meaningful insights for the sustainable recycling of CS.

TABLE 1: Top five (5) worldwide importers of gravel, stone, and
sand [22].

Trade price (2010–2014) ($) Top importers

13,621,826,061 China
2,946,963,029 Netherlands
2,825,197,760 Singapore
2,755,605,436 Germany
2,695,719,208 India
35,127,603,231 Others
59,972,914,725 Total

Selected classification. SITC Rev. 1; selected commodities: 273 (stone, sand,
and gravel); selected reporters: all; selected years: 2010, 2011, 2012, 2013, and
2014.
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2. Methodology of the Review

In this section, a comprehensive methodology is employed to
review the use of CS as an alternative to fine aggregates in the
production of concrete. The review article is based on an
extensive analysis of peer-reviewed articles published within
the last two decades in the fields of engineering, building
materials, and material sciences. Information was gathered
from different publishers, such as Elsevier, Springer, MDPI,
Taylor & Francis, ASCE, Wiley, and Hindawi. In order to

validate the data collection, the references were restricted to
databases such as Scopus, Scimago Journal, country rank
(Sjr), and Web of Science websites to ensure the inclusion
of only peer-reviewed references. The review mainly focuses
on the production and characterization of CS. In addition, it
examines the influence of CS on various concrete properties,
including workability, mechanical strength, and microstruc-
tures. Finally, conclusions and future insights have been
drawn. The methodology of the review is shown in Figure 3.

3. Results and Discussions

3.1. Copper Slag Properties

3.1.1. Physical and Mechanical Properties. In this section, an
in-depth examination of the physical and mechanical prop-
erties of CS as investigated by various scholars along with
pertinent discussions is presented. Table 3 describes the dis-
tinct properties of CS. Data indicate that the usual color of
CS is predominantly black or dark brown, with a glassy
appearance. Its specific gravity falls within the range of
3.37–3.91, primarily contingent on the iron (Fe) content
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FIGURE 1: Production of copper cathodes through pyrometallurgical and electrometallurgical processes [28].

TABLE 2: Production of CS in various regions [37].

Production of CS/year in million ton Region

7.26 Asia
5.90 North America
5.56 Europe
4.18 South Africa
1.23 Africa
0.45 Oceania
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[25]. Moreover, CS exhibits irregular particle size, a fineness
modulus in the range of 2.8–3.47, and too-low water absorp-
tion in the range of 0.15%–0.46%. Thus, whether CS under-
goes metallurgical recycling processes or is employed in civil
material applications, its mechanical and physical qualities
should be fully analyzed. Figure 4 contrasts the gradation
curves of CS and sand.

3.1.2. Chemical Compositions. The chemical constituents of a
specific slag are formed by various factors, including the
approach used to classify copper metal, the furnace type in
use, the metallurgical procedures applied, and the constitu-
ents of the ore from which copper is derived [30, 32]. In
numerous conventional construction building materials
like silica fume, sand, fly ash, and clay, SiO2 constitutes a
significant component [30], but the CS contains high
amounts of iron oxide (Fe2O3), followed by silica dioxide
(SiO2), and small amounts of several other oxides, including
Al2O3, SiO2, CaO, MgO…, and so on [56]. Given its chemi-
cal and physical characteristics, this substance could be
employed as a cement substitute as well as an aggregate in
concrete production [57]. Table 4 summarizes the CS chem-
ical compositions from various research. The primary ele-
ment present is iron (Fe), which indicates that the increased
iron (Fe) content is responsible for the greater density and
hardness of CS when compared with other industrial waste
materials [43], followed by silica, alumina, and calcium
oxide. As a result, the existence of silica and alumina in CS
makes it a viable choice for use as a starting material in alkali-
activated substances. It can be observed that, in most cases,
the total of Fe2O3, SiO2, and Al2O3 exceeds 70%, which is

evident to indicate that CS possesses pozzolanic characteris-
tics, thus enhancing the potential for incorporating CS into
cement-based mixtures.

3.1.3. Microstructure Properties. Previous studies have
employed various characterization techniques to study the
microstructure, chemical composition, and elemental makeup
of CS. Some of these methods are X-ray diffraction (XRD),
scanning electron microscopy (SEM), thermogravimetric/dif-
ferential thermal analysis (TG/DTA), energy dispersive spec-
troscopy (EDS), EDX, and fourier transmission infrared
(FTIR) analysis. For example, Gu et al. [43] stated that the
surface texture of CS was laminar, densely structured, and
had high compression qualities based on the SEM images of
the material displayed in Figure 5(a). In a study by Sheikh et al.
[63] based on SEM images, it was observed that the smooth
surface and rough texture of CS, as shown in Figure 5(b), in
contrast, Najimi et al. [33] carried out XRD analysis on CS, and
the findings indicated that the primary components are recog-
nized as fayalite (SiO4Fe2), pyroxene (CaZnSi2O6), magnetite
(Fe3O4), anorthite (CaAl2Si2O8), and quartz (SiO2). Similarly,
Najimi and Pourkhorshidi [34] reported that mineralogical
components of CS are fayalite (SiO4Fe2), pyroxene (CaMg-
Si2O6), quartz (SiO2), anorthite (CaAl2Si2O8), and magnetite
(Fe3O4). While the other research showed the presence of only
fayalite and magnetite, as shown in Figure 6 [3, 23, 51, 64].

3.2. Workability of the Copper Slag Concrete. Concrete work-
ability refers to its capacity for easy placement, compaction,
and finishing without facing issues such as separation or
bleeding. Factors such as the water-to-cement ratio, the
quantity and nature of the aggregate, and the incorporation

ðaÞ ðbÞ

(c1) (c2)

ðcÞ
FIGURE 2: (a) Cooling of CS in the air [40]. (b) Pictorial view of CS [41]. (c) Images of CS: (c1) before grinding and (c2) after grinding [42].
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FIGURE 3: Research methodology process flowchart.

TABLE 3: Mechanical and physical characteristics of CS.

Property
References

[50] [51] [52] [44] [53] [6] [54] [5]

Particle shape Irregular
Angular,
multifaced

Irregular Irregular — — — —

Appearance Black and glassy — Black and glassy Black and glassy — — Black and glassy —

Type Air-cooled — Air-cooled — — — — —

Specific gravity 3.91 3.5 3.37 3.86 3.57 3.51 3.572 3.83
Percentage of the voids (%) 43 — 43.2 — — — 40 —

Bulk density 2.08 1.87 2.08 — 1.85 — 1.885 2.120
Fineness modulus 3.47 — 3.43 4.437 2.8 3.11 — 2.206
Water absorption (%) 0.15–0.2 — 0.3–0.4 0.13 0.46 0.36 0.35 0.5
Moisture content (%) <0.1 — 0.1 0.1 <0.5 — — —

Particle size — — — 0.3–0.4 — — — —

Hardness — — — 6–7 6–7 — — —

Advances in Civil Engineering 5



of chemical admixtures influence this attribute. The slump
test (also known as the “slump cone test”) is a commonly
employed method for evaluating the workability of freshly
mixed concrete. It can be conducted either on-site during
construction or in a laboratory environment [65]. As the
percentage of CS in place of sand rises, the workability of
the resulting concrete is enhanced. Notably, the concrete

retains its ease of handling even with a complete replacement
of sand with 100% CS, in contrast to the control concrete
[29]. In Figure 7, the statistical data related to concrete incor-
porating CS as a fine aggregate compile findings from various
studies that have evaluated workability. It is noticeable that
the increase in the proportion of CS leads to a substantial
improvement in workability. This enhancement can be
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FIGURE 4: Gradation curve comparison between CS and sand [55].

TABLE 4: The chemical compounds of CS carried out by different authors.

Reference
Oxide

SiO2 Al2O3 Fe2O3 CaO K2O MgO Na2O Mn2O3 SO3 CI CuO

[58] 33.93 4.68 37.89 12.65 1.06 0.83 — — 1.83 — —

[59] 29.5 9.85 45.5 2.6 0.19 1.05 3.66 0.65 0.85 — —

[3] 13.3 3.26 38.7 0.17 0.72 1.96 0.63 — 0.65 — —

[18] 31.92 2.5 59.11 1.25 0.81 1.65 1.40 — 1.34 — —

[33] 9.57 4.43 57.42 22.25 — 1.56 1.47 — — — —

[26] 27.89 2.91 41.45 2.10 — 0.88 — — — 0.12 —

[60] 34.5 4.1 51.1 3.4 1.2 — — — — — —

[61] 28.83 3.71 46.37 5.80 1.15 — — — 3.23 — 0.54
[23] 26.0 3.3 55.0 2.0 0.6 2.7 1.1 — — — 1.4
[3] 13.3 3.26 38.7 1.98 0.72 1.96 0.63 — 0.64 — 0.36
[62] 26.72 0.25 69.33 0.16 — 0.25 0.6 — — — —

ðaÞ ðbÞ
FIGURE 5: (a) SEM image depicting morphology of CS [43] and (b) SEM image depicting morphology of CS [63].
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attributed to the limited water absorption capacity of CS,
which facilitates the retention of free water within the concrete
matrix during the entire hydration process.

3.3. Mechanical Strength Properties of the Copper Slag Concrete.
In particular, the compressive strength of the concrete stands as
a vital engineering parameter that enables the indirect assess-
ment of many mechanical and durability characteristics. Evalu-
ating compressive strength offers valuable insights into other
important mechanical and durability properties of concrete,
enabling meaningful conclusions to be made [70, 71]. Numer-
ous authors have conducted investigations on the impact of slag
of copper on concrete’s mechanical strength. For instance,
Najimi and Pourkhorshidi [34] stated that the utilization of
CS waste at high dosages as a supplementary cementitious
material diminishes the structural performance of concrete. In
research by Rojas et al. [4], their investigation led to conclude

that CS is a feasible substitute for serving as the primary coarse
aggregate material in concrete production. Another research by
Mavroulidou [57] stated that CS, which underwent water cool-
ing, can be regarded as a viable option for use as a fine aggregate
in the production of concrete. A study by Wu et al. [18] pro-
posed that substituting a part of CS with the sand with up to
40%, when assessing high-strength concrete, yields mechanical
properties that are on part with or superior to those of the
reference concrete. Nevertheless, the performances of concrete
are considerably reduced when the substitute exceeds 40%.
Similarly, Al-Jabri et al. [2] explored the impact of replacing
sand with CS (up to 50%), resulting in strength levels compa-
rable to the control mixture. However, as larger quantities of CS
were incorporated, the strength diminished due to a rise in the
volume of unbound water in the mixture. Another research
carried out by Moura et al. [23] examined the application of
CS as an additional pozzolanic cementitious material in con-
crete, the authors observed that the inclusion of CS results in
improved splitting tensile and axial compressive strengths. Fur-
thermore, research conducted by Gupta and Siddique [72]
replaced natural sand with CS in different ratios ranging
from 0% to 60%, with intervals of 10%. Additionally, 20% of
the cement component was exchanged for fly ash to produce
self-compacting concrete (SCC).While the long-term durability
and compressive strength results were observed to be a remark-
able enhancement in SCC mixtures when up to 30% CS was
incorporated, beyond this ratio, the consequences closely
resembled those seen in the conventional concrete mix. In addi-
tion, a study by Rohini and Padmapriya [44] observed that the
substitution of 50%–75% of the sand with CS resulted in
enhanced mechanical characteristics and increased density of
concrete.

Table 5 displays several studies that have reported the
mechanical strength of concrete with CS as fine aggregate as
carried out by various researchers. In accordance with the
statistical data in Table 5, it can be seen that some of the
authors have reported that the control mixtures had better
performance; similarly, some researchers also noted that
the maximum improvement in mechanical strength was
observed at a 20% substitution of CS; exceeding this percent-
age led to a significant decrease in mechanical strength.
Many factors affect the increase or decrease of the strength,
which include, replacement proportion, water-binder (w/b)
ratio, type of the concrete, activators, age of the curing, etc.
The decrease in mechanical strength of the specimens can be
attributed to the relatively low absorption rate of CS, result-
ing in an increased presence of free water within the mixture.
Consequently, this promotes the creation of pores/voids
in the hardened concrete, ultimately leading to ultimately
reduction in its overall strength [2, 43, 54]. The inclusion
of heavy metals within CS, which has the potential to hinder
the hydration process in concrete mixtures, may provide
insights into the observed reduction, as reported by Sharma
and Khan [56].

3.4. Microstructure Analyses of the CS Concrete. To assess
the bonding characteristics of mixtures, an analysis of the
microstructure can be conducted on different samples using
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scanning electron microscopy (SEM) [74]. The thickness of
the interfacial transition zone (ITZ) is characterized as the
space between coarse aggregate and the cement paste [75].
Most structural flaws are located within the ITZ which is the
weakest point in concrete structures [76, 77], and usually, the
ITZ thickness is between 10 and 50 µm [78]. To understand
the microstructure of CS concrete, several researchers have
examined it through SEM analysis. For example, a research
by Panda et al. [67] examined the ITZ of concrete using CS
instead of sand and concluded that CS has greater pozzolanic
reactivity than natural sand and improves the ITZ properties
of hardened concrete as shown in Figure 8. Another research
by Zheng et al. [36] investigated how replacing 30% of

metakaolin with CS influences the microstructure of con-
crete. The results indicated that, in the CS0 sample (Figure 9(-
a)), an amorphous gel phase was evident. Equally, the CS30
sample displayed more sheet-like and crystalline materials,
accompanied by a decrease in the quantity of amorphous gel
compared to CS0, as depicted in Figure 9(b). This phenome-
non could be attributed to the fact that some of the CS sheets
did not actively participate in the reaction and instead served
as microaggregates. Moreover, the study by Rathanasalam et
al. [79] investigated an innovative method entailing utilizing
fly ash as a substitute for ultrafine ground granulated blast
furnace slag (UFGGBFS), alongside the use of CS as an alter-
native to fine aggregate, in the production of geopolymer

ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ ðiÞ
FIGURE 8: Microcrack analysis in the ITZ of specimens concrete: MCS0 at (a) 28 days, (b) 56 days, and (c) 91 days; MCS40 at (d) 28 days,
(e) 56 days, and (f ) 91 days; MCS80 at (g) 28 days, (h) 56 days, and (i) 91 days [67].
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concrete; subsequently, SEM was employed to examine this
blend. Results of SEM analysis demonstrated that the incor-
poration of CS markedly improves the microstructure of
geopolymer concrete. It promotes the formation of geopoly-
meric gel, diminishes voids and cracks, and efficiently fills the
spaces between aggregates, as depicted in Figure 10. In the

research carried out by Mahesh Babu and Ravitheja [55],
it has been noted that when fine aggregate is completely
replaced with CS, an excess of water tends to accumulate
within the concrete, leading to an increased presence of capil-
lary channels and voids. The formation of these capillary
channels and voids has adverse effects on the bond between

CS0 × 10,000

ðaÞ

CS30 × 10,000

ðbÞ
FIGURE 9: Microstructure of concrete without CS and with 30% CS (a and b) [36].

FIGURE 10: Microstructure of geopolymer concrete using CS [79].

ðaÞ ðbÞ
FIGURE 11: SEM image of 100% CS mix at 10 μm (a and b) [55].

10 Advances in Civil Engineering



aggregates and cement, resulting in a reduction in strength.
Thus, the concrete durability characteristics are directly affected
by this occurrence, as depicted in Figures 11(a) and 11(b).

4. Conclusions

This review examined numerous copper slag (CS) publica-
tions, predominantly focusing on CS, concerning its envi-
ronmental consequences. Although commonly viewed as
waste, CS exhibits potential viability in concrete production.
The primary objective of this review was to identify practical
approaches for reducing environmental risks, either through the
reuse or recycling of CS in the production of concrete. The
following conclusions can be drawn:

(i) The chemical composition of CS reduces its suitabil-
ity as a binding material due to its high content of
heavy metals and oxides, which may limit its use in
specific applications.

(ii) Compared with natural aggregates, most CS exhibits
a higher specific gravity and a smoother surface.
Typically, CS displays reduced water absorption
and a greater tendency to bleed, primarily attribut-
able to its glassy composition, irregular surface, and
shape. These characteristics lead to improved
workability.

(iii) Given the superior performance of CS in concrete
and mortar mixes compared to the control mixes, it
is reasonable to propose that this substance can
serve as a viable alternative for fine aggregate. How-
ever, replacing fine aggregate with CS has increased
waste volume and demonstrated more substantial
property improvements than substituting CS for
cement.
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