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The pumping station is one of the critical parts of the hydraulic structure in China. Traditional forecasting methods are limited in
accuracy, time-consuming, and high cost, resulting in limited data availability. Therefore, simulation model analysis based on soft
computation is a realistic and valuable alternative. This article intends to use the BP neural network to predict the safe operation
status of pump stations and optimize the initial threshold and weight information of the BP network using the sparrow search
algorithm (SSA) to improve the accuracy and generalization ability of the model. In addition, to more accurately reflect the
correlation between various influencing factors and the safe operation status of the pumping station, the entropy weight method
and the analytic hierarchy process were used to obtain the comprehensive weights of each main influencing factor. The experi-
mental results show that the SSA-BP model can accurately predict the safe operation status of pumping stations, and compared
with other traditional models, the SSA-BP model has better convergence and higher accuracy. This model provides a new approach
for predicting the safe operation of pumping stations and has particular reference significance for predicting the safe operation of
other pumping stations.

1. Introduction

With the rapid development of urbanization in modern soci-
ety and the high demand for industrial production, pump
stations are an essential component of modern urban infra-
structure construction. Currently, our country has built
108,000 pumping stations. It also plays an irreplaceable
role in urban water supply, industrial wastewater treatment,
water environment ecological protection, and other aspects
[1]. However, during long-term use, the pumping station
may experience aging equipment, complete safety facilities,
and untimely maintenance [2]; leakage of pumps, aging of
electrical equipment, etc. may cause fires and explosions,
leading to safety accidents and irreversible losses. According
to traditional safety assessment methods, there are three
types: the first type [3] uses National Safety Assessment
Standards, such as the Pump Station Design Specification”
to conduct safety assessments; the second type [4] involves

experts using practical experience to assess safety; the third
type [5] requires computer simulation technology to simu-
late the operation of a pump station, and through data anal-
ysis and evaluation, determine its safety. The first type of
safety evaluation standard is often lacking or too simple to
evaluate the safety of the pump station comprehensively [6];
the second type may have limited data obtained from on-site
detection and may not reflect the comprehensive operation
status and risks of the pump station; the third type, which
uses simulation analysis models, may have inaccuracies that
could lead to evaluation results that are inconsistent with the
actual conditions [7]. Therefore, the problem of accurately
judging the safety of pump station operation solely by tradi-
tional security evaluation methods and single defense and
management methods is complex. Considering these situa-
tions, this article proposes a prediction model based on the
sparrow search algorithm to optimize the BP neural network
(SSA-BP) [8]; improving the accuracy and comprehensiveness
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of pump station operation can enhance safety and transform
the current passive safety management mode into an active
one, providing targeted preventive measures for the next step
of pump station operation. This is an effective way to ensure
the safe operation of pump stations [9].

The prediction of pump station operation safety is
mainly divided into three stages. The first stage extracts the
main influencing factors of pump station operation safety.
The second stage is to evaluate the safety status of the pump
station operation and determine the safety level. The third
stage is the prediction of the safety status of the pump station
operation. As the core part of the entire structure, the pump
station operation safety prediction needs to analyze and pro-
cess the safety of past and current pump station operations
and then make predictions for the future. Chen et al. [10]
proposed a pump station safety management model based on
error theory. The model can classify primary accident types
that are prone to occur at pump stations and determine the
likelihood and impact range of events of different safety levels
through error theory analysis. Through, the study and pro-
motion of the wear prediction method for pump station pipe-
lines and valves, Ou et al. [11] have effectively solved the
uncertainty problem of mechanical relativity in the safety
evaluation of pump station pressure systems, provided tech-
nical support for the operation and management of pump
stations; Dawidowicz [12] conducted in-depth research on
typical problems of pump stations and proposed a safety
evaluation method that targets the main risks. Through the
application of artificial neural network (ANN) algorithms,
the analysis and determination of the protection level of the
pump station is achieved, providing a basis for improving the
safety of pump station operation. To address a series of tech-
nical issues in prediction further, many scholars have begun
to explore neuroscience and artificial intelligence deeply. Has-
sabis et al. [13] studied the historical interaction between
artificial intelligence and neuroscience, emphasizing the cur-
rent progress of artificial intelligence. Imran et al. [14] artifi-
cial intelligence for disaster response (AIDR), which enables
humans and machines to work together and apply human
intelligence quickly to large-scale integration and cross between
big data and other fields, has been proposed. The BP neural
network model [15] is one of the most widely used models
with good nonlinear prediction capabilities [16]. Kisi et al.
[17] use three artificial intelligence methods, namely ANN,
adaptive neuro-fuzzy inference system (ANFIS), and gene
expression programing (GEP), to predict the daily changes
in the lake water level. Lee et al. [18] developed an enhanced
fresh food mixed sales forecasting model for CVS by combin-
ing self-organizing map neural networks with radial basis
functions (RBF), called enhanced clustering and prediction
model (ECPM). The model evaluated daily fresh food sales
data for 6 months in Taiwan’s chain CVS. Huo et al. [19]
adopted a stock price prediction model based on a three-layer
BP neural network, which has a faster convergence speed and
overcomes the redundancy and noise of samples. The model
was simulated on the Matlab platform. The results showed
that the LM-BP model achieved high accuracy in short-term
stock price prediction. Zhang et al. [20] established a BP

neural network based on an improved genetic algorithm (GA)
to simulate the relationship between the appearance of welds
and the characteristics of the weld pool shadow. The model’s
effectiveness was analyzed through two welding speed experi-
ments, and its predictive performance was verified. To improve
the predictive accuracy of the BP neural network model, Song
et al. [21] proposed a prediction model combining the Ada-
Boost algorithm and the BP neural network. The effectiveness
of the prediction model was verified through the prediction of
railway freight volume statistical data from 1999 to 2005.
Chen et al. [22] during COVID–19 pandemic, used the BP
neural network model to predict users’ suitability for online
teaching, with a prediction accuracy of 77.5%. Kalinic et al.
[23] used a BP neural network to predict the attitudes of
mobile commerce consumers and found that neural networks
have higher predictive ability than the linear models. During
the application process, the BP algorithm also has its flaws,
such as its dependence on the initial values and thresholds of
the network, the disadvantage of slow convergence speed and
easy falling into local minima during training. Park proposed
PSO for the connection weight matrix of the BP neural net-
work [24, 25]. However, PSO has problems such as long peak
times. Dehuri and Cho [26] proposed GA to optimize neural
networks, but GA has problems such as slow convergence
speed; Xue and Shen [27] proposed a new type of swarm intel-
ligence optimization algorithm (SSA). Zhao and Guo [28] opti-
mized the extreme learning machine (ELM) using the SSA
to predict short-term wind power output. Simulation results
showed that the proposed SSA-ELMmodel had high-prediction
accuracy and strong generalizability, providing decision support
for wind power forecasting and secure grid operations.

Based on scholars’ research in the prediction field, the BP
neural network can achieve good predictions, and the SSA
intelligent optimization algorithm can be used to optimize
machine learning models and improve the accuracy of the
predictions. The SSA-BP prediction model has specific poten-
tial and application prospects in predicting pump station
operation safety. However, there is little related research, so
this article further explores its theoretical basis and corre-
sponding simulation effects. A pump station operation safety
prediction model based on SSA-BP is obtained using the
SSA algorithm to optimize the BP neural network prediction
model.

2. Pump Station Safety Assessment System

This study aims to establish a predictive model for the safe
operation of pumping stations. First, it is necessary to estab-
lish a safety evaluation system for pumping station opera-
tion, analyze the factors affecting the operation of pumping
stations, and describe and calculate them qualitatively and
quantitatively to obtain the safety level of the pumping sta-
tion (Figure 1).

On-site investigation and risk identification are used to
obtain safety factors of pump station operation. Then, the
analytic hierarchy process (AHP) is used to determine the
evaluation index system for pump station operation safety.
Combine the objective weights obtained by the entropy
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weight method (EWM) with the subjective weights obtained
by AHP to obtain the comprehensive weights [29]. Deter-
mine the scoring criteria using the Delphi expert scoring
method [30]. To score the second-level indicators for the
safe operation of actual pumping stations and perform uni-
form data transfer processing on the results. Calculate the
comprehensive weight with the underlying indicators to
obtain the safety index of the first-level indicator and ulti-
mately evaluate the pump station’s safety level and safety
assessment.

2.1. Safety Evaluation Index System. Analyze the main factors
affecting the operation status of pump stations and classify
the unsafe elements of pump station operation status, mainly
including the five categories of pump station operation man-
agement system, operation management behavior, civil

structure safety status, safety status of electromechanical
equipment, and safety status of metal equipment. They are
used as primary evaluation indicators, divided into five pri-
mary indicators (A1, A2, A3, A4, and A5). Then, they are
further decomposed and refined into 26 secondary indica-
tors, including safety production management system, orga-
nization setup, and personnel management, comprehensive
management system, operation management system, opera-
tion management and scheduling, contingency management,
flood control, engineering facilities and management, main-
tenance and comprehensive safety management, concrete
structure, masonry structure, main and auxiliary warehouse,
water inlet and outlet structures, other building structures,
main water pump, main motor, transformer, auxiliary equip-
ment, computer monitoring system, other electrical equip-
ment, gate and flap, trash rack, crane, hoist, and other metal
structures, denoted as (B1,…B26) and shown in Figure 2.

According to the relevant national regulations and exist-
ing literature materials [31–33], the rating grading standard
for evaluating the safety operation status of pumping stations
is divided into four levels: safe, basically safe, relatively unsafe,
and unsafe. The specific numerical standards corresponding
to each evaluation level are shown in Table 1 to facilitate
calculation.

2.2. Determination of Index Weight

2.2.1. Analytic Hierarchy Process. The AHP was proposed by
the American operations research expert Saty in 1970 [34].
The basic steps of the AHP include constructing the decision
matrix by comparing the evaluation indicators at each level,
calculating the weight vector, and determining the relative
weights of the indicators.

Step 1: Construct the judgment matrix according to the
opinions of experts on each evaluation, as follows:

D¼

d11 d12 ⋯ d1m

d21 d22 ⋯ d2m

⋮ ⋮ ⋯ ⋮
dm1 dm2 ⋯ dmm

2
66664

3
77775 0 ≤ dij ≤ 1
À Á

: ð1Þ

In the formula, m represents the number of criteria, and
dij represents the ratio of importance between the i-th and
j-th criteria.

Step 2: Normalize each value in the judgment matrix d
column by column:

gij ¼
dij

∑m
i¼1dij

: ð2Þ

Step 3: Add the normalized rows together to obtain ai:

ai ¼ ∑
m

j¼1
gij; j¼ 1; 2⋯ n: ð3Þ

Step 4: Normalize the resulting ai to obtain the relative
weight ai:

Start

Determine the evaluation
index system

Obtain objective
weights

Obtain
subjective

weights

Calculate the comprehensive
weight obtained

Calculate the score of the first
level indicator

Calculate the safety score of the
pumping station

Pump station safety level

FIGURE 1: Flowchart of safety level for pump station operation.
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αi ¼
αi

∑
m

i¼1
αi

: ð4Þ

Step 5: According to the requirements of the AHP, to
ensure the consistency of evaluators’ thinking and the com-
patibility of judgment matrices during the evaluation process,

a consistency check should be conducted after determining
the judgment matrices and weights of various elements. CI
represents the consistency index of the judgment matrix:

CI¼ λmax −m
m − 1

 ; ð5Þ

Safety status of
pump station
operation

A2 Operation
management
behavior

B6 Contingency management

A3 Civil structure
safety status

A4 Safety status
of electromechanical
equipment

A5 Safety status
of metal
equipment

B7 Flood control

B8 Engineering facilities and management

B9 Maintenance

B10 Comprehensive safety management

B11 Concrete structure

B18 Transformer

B12 Masonry structure

B13 Main and auxiliary warehouses

B14 Water inlet and outlet structures

B15 Other building structures

B16 Main water pump

B17 Main motor

B5 Operation management and scheduling

B19 Auxiliary equipment

B20 Computer monitoring system

B21 Other electrical equipment

B4 Operation management system

B22 Gate and flap

B23 Trash rack

B24 Crane

B25 Hoist

B26 Other metal structures

B3 Comprehensive management system

B1 Safety production management system

B2 Organization setup and personnel
management

A1 Operation
management
system

FIGURE 2: Safety evaluation index system for pumping station operation.

TABLE 1: Classification of safety level for pumping station operation.

Level Safe state Description Score

Ⅰ Safe Defects that do not impact the safe operation and meet safety requirements for use 100–80
Ⅱ Basically safe The building may be damaged but it does not affect safe use 80–60

Ⅲ Relatively unsafe
Although the building has undergone significant damage, it can be safely used after major repairs
or reinforcement maintenance

60–30

Ⅳ Unsafe The building is seriously damaged, and reinforcement cannot guarantee safe use 30–0
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CR ¼ CI
RI

 : ð6Þ

λmax is the maximum eigenvalue of the judgment matrix.
m is the dimension of the matrix. If CR<0:1, the judgment
matrix meets the consistency requirements. When CR≥ 0:1,
the judgment matrix must be modified until consistent. RI is
the random consistency index, as shown in Table 2.

2.2.2. Entropy Weight Method. The weights in the EWM [35]
are determined by the magnitude of the information of each
evaluation indicator. When the information of an indicator
changes significantly, the smaller the entropy value, the larger
the weight, indicating that the indicator is more important in
the evaluation system. The calculation steps of the entropy
value method are as follows:

Step 1: Construct the evaluation matrix as follows:

T ¼

t11 t12 ⋯ t1n

t21 t22 ⋯ t2n

⋮ ⋮ ⋯ ⋮
tm1 tm2 ⋯ tmn

0
BBBB@

1
CCCCA 0 ≤ tij ≤ 1
À Á

: ð7Þ

The formula represents m pumping stations and n eval-
uation indicators. tij represents the corresponding value of
the i the pumping station under the j-th evaluation indicator.

Step 2: Nondimensional processing of data to eliminate
the influence of physical quantities. The calculation formula
is as follows:

t0i j ¼
tij − tij min

tij max − tij min
: ð8Þ

Step 3: Calculate the ratio or contribution of the j-th level
and i-th evaluation index. The calculation formula is as fol-
lows:

pij ¼
t0i j

∑n
j¼1t

0
i j
: ð9Þ

Step 4: Calculate the entropy value of the i-th evaluation
index:

ei ¼ −
1

lnm
∑
m

j¼1
pij ln pij

� �
; 0 ≤ ei ≤ 1ð Þ: ð10Þ

Step 5: Calculate the differential coefficient. The calcula-
tion formula is as follows:

gi ¼ 1 − ei: ð11Þ

Step 6: Determine the weight of the evaluation index βi as
follows:

βi ¼
gi

∑m
i¼1gi

; i¼ 1; 2; 3;⋯m: ð12Þ

2.2.3. Comprehensive Weighting Method. The AHP primarily
determines weights based on experts’ practical experience and
knowledge structure. Although it reflects subjective intentions
well, it still lacks scientific calculation. The EWMmainly relies
on the objective scientific calculation of data, but it is easy to
deviate from reality. The comprehensive weight ωi evaluation
indicators are determined jointly by AHP and EWM. The
relevant formula is as follows:

ωi ¼
αiβi

∑m
i¼1αiβi

; i¼ 1; 2; 3⋯m: ð13Þ

2.3. Scoring. Using the Delphi method to assign safety index
values for pump station operation. About, 10–20 experts score
are based on the specific situation of pump station operation
safety, considering the actual benefits and safety level of the
pump station. The expert scoring results are then averaged
and standardized.

2.4. Calculation. Based on the above evaluation work, the
comprehensive scoring method is used to comprehensively
score the safety status of the North–South Water Diversion
Project East Route Pump Station, with each indicator being
weighted and scored layer by layer, resulting in a compre-
hensive safety value for the operation safety of the East Route
Pump Station of the North–South Water Diversion Project.
The calculation formula is as follows:

pi ¼ ∑
m

i¼1
q xið Þ ⋅ ωi; ð14Þ

P ¼ ∑
m

i¼1
p xið Þ ⋅ ωi; i¼ 1; 2; 3⋯m: ð15Þ

In the formula, P is the comprehensive safety value of the
pump station operation, pðxiÞ : is the safety index of each
primary indicator, qðxiÞ : is the safety index of the secondary
indicator, andωi is the comprehensive weight of each indicator.

3. SSA-BP Neural Network

3.1. BP Neural Network. An ANN is a method of information
processing based on a biological neural network. In this the-
ory, ANNs can simulate any complex nonlinear relationship
through nonlinear units and have been widely used in artifi-
cial intelligence and sensitivity. The structure of an artificial
neural network consists of the input, hidden, and output
layers. The BP neural network model is one of the most

TABLE 2: Average random consistency index.

n 1 2 3 4 5 6 7 8 9 10 11 12

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54
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widely used ANN models. The typical BP network structure
model is shown in Figure 3.

The BP neural network generates the prediction value by
linking the input, hidden, and output layers with their cor-
responding weights and thresholds. The weights and thresh-
olds are updated through the gradient descent method by
comparing the predicted and true response values to mini-
mize the prediction error.

Initialize the weights and thresholds within the range of
ð0; 1Þ :, where the weights and thresholds connecting the
input layer and the hidden layer are represented as wih and
θh, respectively. The weights and thresholds connecting the
hidden layer and the output layer are represented as vhj and
δj, respectively.

Update the corresponding weights and thresholds. Spe-
cifically, the updated weight of the output layer is given by

the formula vðtþ1Þ
h j ¼ vðtÞh j þ ηgibh, and the updated threshold

of the output layer is given by the formula δðtþ1Þ
j ¼wðtÞ

j − ηgj.
The updated weight of the hidden layer is given by the for-

mula wðtþ1Þ
ih ¼wðtÞ

ih þ ηehxi, and the updated threshold of the

hidden layer is given by the formula δðtþ1Þ
j ¼wðtÞ

j − ηgj. Here,
η is the learning rate and t is the number of iterations.

During training, if the overall error is less than the pre-
determined value, the training is completed. Otherwise,
return to Step 3 for new training rounds until the error
exceeds the requirement or the algorithm reaches the maxi-
mum training time.

3.2. Sparrow Search Algorithm. Although, the BP neural net-
work can obtain the final convergence of the network learn-
ing process, its disadvantage is that the learning and training
time is too long, and it is easy to converge to the optimal local
value. The BP neural network has been improved by incor-
porating the SSA, the SSA-BP neural network, to address this
issue.

The SSA is a novel swarm optimization method proposed
by Xue and Shen [27] in 2020, based on sparrow foraging
behavior and antipredator behavior. The algorithm is imple-
mented by idealizing the behavior of sparrows and formulating

the corresponding rules. In SSA, each sparrow has three pos-
sible behaviors:

(1) As a discoverer, searching for food, which is the
individual who finds food earliest in the sparrow
group;

(2) As a follower, following the discoverer to obtain food;
(3) As a scout, guarding and scouting.

The basic process of SSA is to initialize the sparrow pop-
ulation, calculate individual fitness values and determine the
best and worst fitness individuals, sequentially update the posi-
tions of discoverers, joiners, and scouts, and update them
through continuous iteration until the termination condition
is met.

The position update of the discoverers is as follows:

Xtþ1
i; j ¼

Xtþ1
i; j × exp

−i
α× itermax

� �
; R2<ST

Xt
i; jþ Q × L; R2>ST

;

8><
>: ð16Þ

where t represents the current iteration number, L represents
a 1× d matrix where each element is 1, itermax is the maxi-
mum number of iterations, Q is a random number following
standard normal distribution, xij is the position of the i-th
sparrow in the j-th dimension, α is a uniform random num-
ber between 0 and 1, R2 2 ½0; 1� : represents the warning value,
and ST2 ½0:5; 1� : represents the safety value. When R2 ≫ ST,
indicates that some sparrows in the population have detected
the presence of predators and have issued warnings to other
sparrows in the population so that the population can
quickly fly to other safe areas for foraging. When R2<ST,
it indicates that there are no predators around the foraging
environment, and discoverers can search in a wider area.

The position update formula for the joiners is as follows:

Xtþ1
i; j ¼ Q × exp

xtw j − xti j
i2

� �
; i>

N
2

Xtþ1
p j þ xti j− xtþ1

p j

�� ��× L; other

8><
>: ; ð17Þ

whereN is the population size, A is a 1× dmatrix where each
element is randomly assigned as 1 or −1, and Aþ ¼
AT ðAATÞ−1 ; xwj is the current globally worst position, and
Xpj is the current discoverer’s best position. When i>N=2, it
means that the i-th joiner with poor fitness is in a hungry
state and has not obtained food and needs to continue to
search for food in other areas to obtain energy.

While sparrows are foraging, some individuals among
them are responsible for vigilance. When danger approaches,
they will abandon their current food, regardless of whether
the sparrow is a discoverer or a joiner, and move to a new
location. The position update formula for the scouts is as
follows:

Input layer Xi Hidden layer Tq
Output layer Yj

X1

Xi

Xn

Y1

Ym

Yj

Wih Whj

FIGURE 3: BP neural network structure.
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xtþ1
i j ¼

xti j þ β ⋅ xti j − xtb j

��� ���; fi> fg

xti jþ K ⋅
xti j − xtω j

��� ���
fi−fωð Þ þ ε

; fi¼fg

8>>><
>>>:

; ð18Þ

where K is a random number from ½− 1; 1� :, β is the step size
control parameter, which follows a random normal distribu-
tion with variance 1 and means 0, xbj represents the current
global best position, and ε represents a minimum constant to
prevent the denominator from being 0. fω, fg, and fi represent
the current sparrow’s global worst, global best, and individ-
ual fitness. When fi¼fg, it indicates that the sparrow in the
middle of the population has detected the danger of the
current position. It needs to move closer to other sparrows
to reduce the risk of being preyed upon. When fi> fg, it indi-
cates that the sparrow is at the population’s edge and very
susceptible to predator attacks.

3.3. SSA-BP Neural Network Algorithm. The BP neural net-
works with gradient descent may result in local minima
instead of global minima. These shortcomings can be
addressed by optimizing the initial connection weights and
thresholds. Therefore, this study uses SSA to optimize the
initial connection weights and thresholds of BP neural net-
works and assigns the optimal connection weights and
thresholds found by SSA to BP neural networks to establish
the optimal BP neural network model [36–38]. The specific
process of SSA-BP is shown in Figure 4.

Build a BP neural network and determine its topology.
Initialize the parameters of the SSA algorithm, including
initial population size, maximum evolution generation, the
proportion of producers in the population, the proportion of
sparrows aware of population danger, safety threshold, etc.
and input sample data. Calculate and rank the fitness values
of individual sparrows to determine the best and worst fit-
ness values and their corresponding positions. According to
Equations (16–18), compute the new sparrow position’s fit-
ness value, compare the updated population’s fitness values
with the original optimal weight, and update the optimal
global information. Check if the iteration meets the termina-
tion criteria. If it does, stop the iteration and record the best
solution, then continue with the previous step; otherwise,
recalculate. Stop the SSA algorithm iteration and use the out-
put global optimal solution as the initial connection weights
and thresholds in the BP neural network training model.

4. Experiments

4.1. Data Collection. This article uses Matlab software for
simulation verification. Based on the concept of data space,
100 safe operation supervision results of pumping stations
are selected from the 3-year data from the Huaihe River
Basin South-to-North Water Diversion Project from 2020
to 2022. This simulation experiment is completed using the
constructed pumping station operation safety index system
mentioned above.

4.2. Determine the Weight and Security Level of Data. The 26
secondary indicators of the safety indicator system for pump
station operation can be found in Table 3, and the calculation
of the comprehensive weight of the five primary indicators is
shown in Table 4.

Use the Delphi method to assign safety index values to its
underlying indicators, then use comprehensive weights to

Y

Initialize SSA parameters

Update the position of the
producer 

Update the position of the
sparrows who are aware of the

danger

Calculate and rank the fitness
values of individual sparrows to
find the best and worst fitness

values and  their corresponding
position

Calculate and rank the fitness
values of individual sparrows to
find the best and worst fitness

values and  their corresponding
position

Obtain optimal weights and
thresholds

Training BP neural networks
with optimal connection weights

and thresholds

Test network
Meet termination condition

N

BPSSA

Start

Input training sample data

FIGURE 4: Flowchart of SSA-BP neural network algorithm.

TABLE 3: The comprehensive weight of secondary indicators.

Indicator Weight Indicator Weight Indicator Weight

B1 0.1678 B10 0.1882 B19 0.1685
B2 0.2031 B11 0.1899 B20 0.1393
B3 0.2926 B12 0.1837 B21 0.2887
B4 0.3364 B13 0.1864 B22 0.2205
B5 0.1318 B14 0.2526 B23 0.2023
B6 0.3033 B15 0.1875 B24 0.1907
B7 0.1255 B16 0.1521 B25 0.1906
B8 0.1256 B17 0.1308 B26 0.1958
B9 0.1257 B18 0.1205 — —
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calculate the upper-level indicators one by one, finally obtaining
the comprehensive safety index of the pumping station and the
corresponding safety level. The safety index of the first-level
indicators and the comprehensive safety index and safety level
were selected for 10 pumping stations, as shown in Table 5.

4.3. Data Preprocessing. To verify the predictive model for
the safe operation of pumping stations, 100 sets of supervised
inspection results for the safe operation of pumping stations
were selected as data samples. In order to prevent the over-
fitting problems caused by too few training samples, the ratio
of training sample data allocation is higher than that of
test data. In order to get the right allocation problem, we
conducted a control treatment, as shown in Table 6. After
screening and processing, a ratio of 8 : 2 is more appropriate.
Twenty sample data were selected as the test set to verify the
model’s accuracy, and 80 data sets were used as the training
set for the network training. The input is the safety index
after the secondary indicators of each pumping station, and
the output is the comprehensive index and safety level of the
pumping station. Normalization was performed on it, and
five sets of training set samples are shown in Table 7.

4.4. Model Validation and Performance Indicators. The
structure of the BP neural network is as follows: 26 secondary
indicators, including the safety production management sys-
tem, comprehensive management system, and operation

management system of cranes, gate machines, etc. These
are used as the final input parameters. Therefore, the number
of input layer neurons is 26, and the number of output layer
neurons in the BP network is consistent with the expected
output. The decision variable of the sample is the safety index
of different pump stations, which is directly represented by the
numbers. Therefore, the number of output layer nodes is 1.
The maximum training iteration time is 1,000, the minimum
training target error is 0.00001, and the learning rate is 0.01.

A BP network can contain different numbers of hidden
layers. However, it has been theoretically proven that a BP
network with only one hidden layer can achieve any nonlin-
ear mapping. The number of neurons in the hidden layer is
generally determined by the empirical formulas, such as
Equation (19). Therefore, the number of neurons in the hid-
den layer is usually between 6 and 15. As shown in Figure 5,
when the number of neurons in the hidden layer is 10, the
model’s MSE is the smallest. Therefore, the number of neu-
rons in the hidden layer is set to 10 for the training model.

m¼ ffiffiffiffiffiffiffiffiffiffi
nþ l

p þ α; ð19Þ

where m is the number of hidden layer nodes, n is the num-
ber of input layer nodes, l is the number of output layers, and
α is a constant between 1 and 10.

TABLE 4: The comprehensive weight of the first-level indicator.

Indicator A1 A2 A3 A4 A5

Comprehensive weights 0.18482 0.24101 0.16455 0.25098 0.15864

TABLE 5: Safety index and safety level.

Serial number A1 A2 A3 A4 A5 Composite safety index Security level

1 88.8594 75.2774 85.319 82.0027 91.7650 83.7435 Ⅰ

2 64.2969 76.9891 76.1698 84.5829 85.6332 77.7857 Ⅱ

3 94.4698 84.1432 87.9483 90.6629 90.0537 89.2518 Ⅰ

4 71.2652 89.8414 81.8102 87.0267 86.9354 83.9192 Ⅰ

5 85.5054 80.5671 75.3314 83.9897 81.5630 81.6352 Ⅰ

6 74.8571 83.3191 70.9330 77.8022 85.9224 78.7454 Ⅱ

7 83.2548 71.6683 81.5562 85.1437 72.8172 79.0011 Ⅱ

8 84.2136 83.0831 83.6054 87.0326 89.3821 85.3685 Ⅰ

9 67.7215 76.9694 80.0456 89.7790 87.3681 80.6310 Ⅰ

10 90.3180 85.4226 88.5964 89.5538 85.0736 87.8311 Ⅰ

TABLE 6: Comparison of model performance under different proportion samples.

Performance metric
Number of training sets : number of test sets

6 : 4 7 : 3 8 : 2 9 : 1

MAE 0.28017 0.25073 0.22985 0.31753
MSE 0.096945 0.10452 0.085502 0.18496
RMSE 0.31136 0.32329 0.29241 0.43007
MAPE (%) 0.0033603 0.0030279 0.00002786 0.0038087
Hidden layer maximum holiday points 11 9 10 4
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The SSA initialization parameters are as follows: the ini-
tial population size is 30, the maximum number of iterations
is 50%, 20% of the population are discoverers who realize the
danger, and 20% are scouts who are conscious of the danger.
The safety threshold is 0.6. As shown in Table 8.

Tomore intuitively understand the prediction accuracy of
the model, we chose four performance indicators to evaluate
themodel error: mean-square error (MSE), root-mean-square

error (RMSE), mean-absolute error (MAE), and mean abso-
lute percentage error (MAPE); as shown in Table 9.

MSE is used to detect the deviation between the predicted
and actual values of the model. The smaller the MSE, the
higher the model’s accuracy in describing experimental data.
RMSE measures the deviation between the observed and true
values by taking the square root of MSE. MAE can more
accurately describe the true situation of prediction errors.
MAPE divides MAE by the true value and then multiplies
it by a percentage, which can more accurately describe the
relative error.

We also use goodness-of-fit ðR2Þ : as another evaluationmet-
ric for our model, goodness-of-fit is an indicator to describe the
degree of match between the model and actual data. It deter-
mines the model’s applicability by calculating the similarity
between the actual observed values and the theoretically pre-
dicted values, showing the reliability and stability comparisons
of the BP and SSA-BP prediction results.

Figure 5 shows that the model’s MSE is minimized when
the number of neurons in the hidden layer is 10; therefore,
the number of neurons in the hidden layer is 10.

4.5. Comparison of Results. The Matlab software was used to
simulate the operational safety status of 100 pump stations.
BP and SSA-BP models, GA-BPmodels, and PSO-BP models

TABLE 7: Normalization of five sets of training set samples.

Evaluation indicators
Online learning sample number

1 2 3 4 5

B1 0.875695 0.9 0.581153 0.789307 0.324511
B2 0.676737 0.65403 0.700238 0.81403 0.528106
B3 0.68762 0.770408 0.662724 0.766455 0.670014
B4 0.699119 0.530186 0.49135 0.549905 0.67124
B5 0.808913 0.724556 0.764392 0.815058 0
B6 0.175948 0.688268 0.830404 0.838578 0.739774
B7 0.288548 0.779178 0.670042 0.894084 0.751195
B8 0.788649 0.9 0.66417 0.68864 0.644865
B9 0.855003 0.651724 0.77205 0.742088 0.830849
B10 0.9 0.715084 0.605505 0.544461 0.274067
B11 0.701403 0.734548 0.647686 0.76752 0.684432
B12 0.629208 0.781921 0.829767 0.774236 0.715545
B13 0.83485 0.811616 0.608257 0.492256 0.742167
B14 0.729311 0.892097 0.703601 0.9 0.9
B15 0.591004 0.422002 0.821223 0.864107 0.739825
B16 0.770034 0.557941 0.645791 0.555882 0.856229
B17 0.1 0.594396 0.803587 0.653478 0.668024
B18 0.417515 0.30642 0.268766 0.545914 0.821657
B19 0.428529 0.764029 0.503529 0.557914 0.488529
B20 0.834285 0.460957 0.749532 0.347322 0.886857
B21 0.742802 0.8139 0.657588 0.673166 0.683268
B22 0.726259 0.691755 0.617986 0.845091 0.879676
B23 0.819787 0.899195 0.795784 0.785341 0.407178
B24 0.665463 0.84608 0.1 0.779025 0.629151
B25 0.702635 0.335649 0.767403 0.627829 0.604887
B26 0.9 0.722451 0.749736 0.864237 0.818532

0.006

0.005

0.004

0.003

M
SE

0.002

0.001

0.000

0.00504

0.0027

0.00179

0.00196
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0.00085

0.00098

0.00178 0.0018
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0.0011

0.00202
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Number of hidden layer nodes

13 14 15

FIGURE 5: MSE with different numbers of hidden layer nodes.
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were constructed. In Figure 6, it was found that compared
with the BP model, The SSA-BP model finds the optimal
connection weight and threshold and obtains stable and
accurate prediction values. This indicates that the SSA-BP
model has improved the reliability and predictive accuracy of
the pump station operation prediction model by combining
parameter optimization schemes with the basic BP model. It
can also detect anomalies and issue warnings, making it
easier for the future pump station safety management and
safe use of the pump station.

More specifically, in Figure 7, we found that the SSA-BP
model generates smaller errors than the BP model, indicating
that its estimates are more accurate.

To further verify the reliability of the predicted results,
the MAE, MSE, RMSE, and MAPE of SSA-BP were com-
pared with GA-BP, PSO-BP, and BP, as shown in Table 10.

In Table 10, the SSA-BP model produced smaller MAEs
than the BP, GA-BP, and PSO-BP models, decreasing by
75.65%, 57.66%, and 62.78%, respectively. Similarly, the
SSA-BP model produced a smaller MSE than the BP, GA-
BP, and PSO-BP models, decreasing by 95.7%, 64.83%, and
72.71%, respectively.

Further comparison of their fitting goodness-of-fit values
helped in analyzing and evaluating the effectiveness of the
models, aiding in the selection of the best predictive model.
The evaluation metrics of the goodness of fit and error anal-
ysis have different roles in analyzing experimental results.
The comparative results of the goodness-of-fit indicate the
applicability of the SSA-BP model and the selection of the
best model. In contrast, the comparative results of error
analysis indicate the accuracy and reliability of the model.
The results of all comparison metrics are consistent, verify-
ing that SSA improves the prediction accuracy of the basic

TABLE 8: Main parameters of the model.

SSA BP

Parameter Parameter value Parameter Parameter value

Population size 30 Number of input layers 26
Number of discoverers 6 Number of output layers 1
Number of followers 18 Number of hidden layers 10
Number of scouts 6 Minimum training error 0.00001
Early warning value 0.6 Learning rate 0.01

TABLE 9: Performance metrics for evaluating models.

Performance metric Formula

MSE MSE¼ 1
n∑

n
i¼1ðy̌ i − yiÞ2

RMSE RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1ðy̌ i − yiÞ2

q
MAE MAE¼ 1

n∑
n
i¼1jy̌ i − yij :

MAPE MAPE¼ 100%
n ∑n

i¼1j y̌ i−yiyi
j :

Note. y̌i and yi are the predicted and true values for the i-th observation, and
n is the number of observations.
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FIGURE 6: The model predicts the outcome.
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FIGURE 7: Model relative error comparison chart.

TABLE 10: Performance comparison of various models under differ-
ent evaluation indicators.

Model MAE MSE RMSE MAPE (%) R2

BP 1.1221 1.9882 1.41 0.0134 0.90475
SSA-BP 0.27322 0.0853 0.29207 0.0032 0.99876
GA-BP 0.64524 0.2417 0.4451 0.0047 0.97203
PSO-BP 0.73401 0.3126 0.7751 0.0053 0.95782
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BP model and is more effective than optimization algorithms
such as GA and PSO.

5. Conclusions

(1) Using the SSA to optimize the weights and thresholds of
the BP neural network, compared with other traditional mod-
els, the SSA-BP model produces lower MSE than the BP, GA-
BP, and PSO-BP models, with reductions of 95.7%, 64.83%,
and 72.71%, respectively. The results indicate that the SSA-BP
model has better robustness and accuracy.

(2) In addition, themodel also has certain limitations. The
model only considers the fivemain influencing factors and the
safety of the pumping station may be affected by the environ-
mental changes, such as changes in weather, water level, and
other factors. The SSA-BP model may not be able to adapt
well to this environmental change, resulting in inaccurate
prediction results for the safe operation of pumping stations.
Further improvement is still needed in the future.
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