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Structural health monitoring and damage identification aim to detect the internal damage and evaluate the health conditions of the
practical engineering structure, which has been the most popular research field for several decades. The sensitivity-based method
incorporated with the regularization techniques is the classical and useful approach, and it can obtain accurate damage detection
results. However, with the development of civil engineering structures, this classical method faces two problems: one is it is only
applied to simple structures rather than full-scale structures, and second is the iterative calculation efficiency is lower. Therefore,
aiming at these drawbacks, the two improvement strategies have been introduced to the original method for its enhancement in the
application potential and computational efficiency. The proposed method has been verified based on two examples, i.e., a
numerical steel truss with 144 elements and a full-scale experimental steel truss with 160 elements. The results prove that the
proposed method has better efficiency and good application potential in the practical full-scale engineering structure.

1. Introduction

With the development of human civilization and science and
technology, civil engineering structures, like long-span bridges
and high-rise buildings, are constructed worldwide. Such engi-
neering structures enrich the lives of human beings and bring
convenience to transportation, business activities, and other
human-being social activities. However, accompanying the ser-
vice time increase, external forces and environmental factors
are continuously applied to the structures, leading to internal
damage or failure occurring in the hidden place of the struc-
tures [1, 2]. The internal damage will further cause the collapse
and threaten the safety of users. In this regard, structural health
monitoring (SHM) and damage identification have been pro-
posed to evaluate the internal damage and monitor the health
condition of the structure [3–7].

In the field of SHM, the most popular way of achieving
the targeted goal is to adopt the vibration features of intact

and damaged structures to make a comparison [8–10]. Fol-
lowing this idea, through combining the measured and ana-
lytical features with the finite element model (FEM) of the
structure, the damage site and severity can be determined
well. Regarding this point, numerous studies have paid atten-
tion to the research topic. For example, Gordan et al. [11]
adopted data mining techniques to the field of SHM, the
modal parameters were determined as damage detection
index, and then a hybrid artificial neural network-based
imperial competitive algorithm was proposed to evaluate
the damage site and extent, which is well validated based
on slab-on-girder bridge structures. Ghaedi et al. [12] com-
bined data mining and inverse analysis to further analyze the
target structure; also, different damage scenarios were con-
sidered in the study, and the results illustrate the proposed
method can achieve accurate damage localization and quan-
tification. The recent advances in data mining in the SHM
field are detailed in the paper [13]. Furthermore, there still
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exists some research that tries to incorporate industry 4.0
technologies [14], computational intelligence [15] and remote
sensing [16] into the SHM to consider the multiple factors
and lead to the more practical and economical applications
of SHM.

The most classical method is sensitivity-based damage
identification [17]. The sensitivity-based method for damage
identification was originally inspired by the linearization of
the changing relationship between the structural damage and
the measured vibration features, like structural natural fre-
quencies and mode shapes [18, 19], and some structural
time domain responses, i.e., acceleration and displacement
[20–22] are also utilized to identify the damage. For instance,
Zhu et al. [23] first adopted the times series model to fit the
measured acceleration of the structure and then to deduce the
sensitivity of coefficients of the time series model concerning
the structural stiffness reduction factor (SRF); after that, the
sparse regularization method was exploited to output the
structural damage location and severity, establishing a link
between the regularization method and time series analysis.
Furthermore, in order to evaluate the damage identification
performance of different regularization methods, Zhang and
Xu [24] conducted a comparative study between Tikhonov
and sparse regularization. For the condition of bridge struc-
tures subject to moving vehicles, Zhang et al. [25] exploited
the extended Kalman filter with L1-norm regularization to
solve the damage detection issue with the ill-posed equation.
In order to solve the damage evaluation based on the struc-
tural static model, Lu et al. [21]. proposed eigenparameter
decomposition incorporating sparse regularization to form
the new method, and the new objective function is con-
structed based on decoupling features. Furthermore, Dinh-
Cong et al. [26] aimed at the damage detection of composite
structures, modal kinetic energy change ratio sensitivity is
used to construct the damage equation set, then the Tikhonov
regularization and lightning attachment procedure optimiza-
tion algorithm are used to localize and quantify the damage
location and extent. Yang et al. [27] established the eigen
equations of a rotating beam, and the modal sensitivity anal-
ysis was also used; then, the sparse regularization was intro-
duced to solve the equations set and obtain the damage
situation. Moreover, Smith and Hernandez [28] presented
an impulse response sensitivity method, combined with the
least absolute shrinkage and selection operator, to achieve the
structural spatial sparse damage; the noise-polluted measure-
ments and incomplete mode shapes are also investigated well.

The existing literature indicates that sensitivity-based
damage identification with the regularization technique has
been widely applied to the field of SHM. However, among
most of the related studies, scholars always focused on small
structures, like a simply-supported beam [29], cantilever
beam [30], and several story frames [23]. Such these small
structures only have some dozens of degrees of freedom
(DOFs) or/and structural elements. In this regard, the dam-
age detection is easy to achieve, and for the full-scale struc-
ture, namely, the structure with many DOFs and structural
elements, it has not been investigated well. Furthermore,
damage identification based on the sensitivity-based method

needs to be iteratively calculated, not only including the
assembled structural stiffness and mass matrices but also
gradually approaching the optimal value. Therefore, these draw-
backs both set some obstacles to expanding the sensitivity-based
method to damage identification on the full-scale structure.
Regarding the abovementioned statement, in this study, a new
damage identification method for full-scale structures has been
proposed based on model condensation and mean-value nor-
malization regularization techniques. Numerical and experi-
mental examples are both used to validate the proposed
method, and the obtained results prove that the proposed
method demonstrates faster convergence speed and better
applicability in the full-scale structure, which is of great potential
in the practical engineering structure.

The remaining contents are organized as follows: Section 2
details the damage identification theory based on the structural
dynamics and finite element method, the traditional regulari-
zationmethod in damage identification, and then a novel dam-
age identification method has been proposed. For Sections 3
and 4, the numerical example and experimental validation are
adopted to verify the feasibility of the proposedmethod, respec-
tively; the discussions on the results are also stated here. Finally,
in Section 5, several conclusions and outlooks have been put
forward.

2. Theoretical Background and Methodology

2.1. Damage Identification Theory

2.1.1. Structural Dynamic Equation. According to the dynamic
theory, the free vibration equation of a civil engineering struc-
ture can be mathematized as follows [31]:

M ẍ þ Cẋ þ Kx¼ 0; ð1Þ

where M;K , and C are structural mass, stiffness, and damp-
ing matrices, respectively; ẍ; ẋ , and x stand for the accelera-
tion, velocity, and displacement of the structure. Then,
assuming the damping has been ignored, and the structural
eigenvalues and eigenvectors can be obtained based on the
following equation [32]:

K − λiMð Þφi ¼ 0; ð2Þ

where λi means the ith structural eigenvalue; φi is the ith
structural eigenvector or called mode shapes. Thus, it can be
observed that the change in the structural stiffness and mass
will cause variations both in the structural eigenvalues and
eigenvectors. Thus, the eigen-pair can be determined as a
good indicator to detect internal change in a civil engineering
structure.

2.1.2. Damage Identification Model. Zhou et al. [33] have
comprehensively summarized several techniques to simulate
structural damage, including structural element stiffness
reduction, element mass increase, cracked beam element,
and crack spring element. The conclusion of this research
also points out that structural damage greater than 15% can
be well identified based on the structural element stiffness
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reduction method. According to this valuable conclusion,
meanwhile, considering the function of civil engineering is
to support the external load, internal damage or failure in the
structure will cause a change in the mechanical performance
or carrying capacity and the actual damage extent in the
subsequent experimental example. Thus, this study assumes
that the internal structural damage can be seen as the stiff-
ness declination, but the mass has not changed [34]. Regard-
ing this assumption and adopting the classical finite element
theory, the internal damage of a structure can be measured
and localized through introducing the SRF, and then it can
deduce the overall stiffness matrix of the structure as follows
[35, 36]:

K ¼ ∑
Nele

n¼1
1 − αnð Þkn; 0 ≤ an ≤ 1; ð3Þ

where αn denotes the nth SRF, which can reflect the damage
extent and site; kn is the nth structural element stiffness
matrix; Nele is the total number of structural elements, which
is determined based on the situation of element mesh.

2.2. Regularization Techniques in Damage Identification

2.2.1. Structural Eigen-Pair Sensitivity Analysis. Referring to
theories of structural dynamics and finite element method,
taking the partial derivation of structural ith eigen-pair to the
nth SRF, the equation can be written as follows [37]:

∂λi
∂αn

¼ −φT
i Knφi; ð4Þ

∂φi

∂αn
¼ ∑

nmod∑

k¼1;k≠i

φT
k Knφiφk

λk − λi
; ð5Þ

where nmod is the total number of considered structural
modes, and Kn is the nth structural elemental matrix. The
above equations are also called the structural modal param-
eters sensitivity coefficients.

2.2.2. Regularization Method for Inverse Problem. Based on
the linear algebra theory, the relationship between the input
and output of the system can be described as follows [38]:

A × x þ z ¼ b; ð6Þ

where b is the interest output that can be observed, A stands
for the mapping matrix, x is the input vector, and z means
the noise pollution. When the measured output is less than
the unknown input, this mathematical equation is ill-posed,
and it is difficult to obtain a correct solution in this situation.
Regarding this problem, regularization techniques can be
adopted to rewrite the above equation as follows [39]:

min xk k1
x

; subject to Ax − bk k2 ≤ ε; ð7Þ

where ε is the error tolerance, and Equation (7) can be
transformed into Lagrangian form as follows:

J ¼min
x

1
2

Ax − bk k22 þ β xk k1; ð8Þ

where β is the regularization parameter, and it is used to
balance the residual term and regularization term, which
can be obtained using the L-curve method. Furthermore,
due to the introduction of the L1 regularization term, the
obtained solution is a sparse vector; thus, such method is
also called the sparse regularization technique.

2.2.3. Structural Damage Identification Based on Regularization
Method. When the damage has occurred in the structure, the
distribution of structural damage usually shows a sparse fea-
ture; namely, except for the specific damage site, the elements
in SRF are almost close to zeros. Second, due to the incomplete
measurements, the measured modal parameters are limited;
only the first several modes can be collected. Meanwhile, the
structural eigen-pair sensitivity analysis satisfies the application
requirements of the regularization technique. Therefore, the
damage identification process based on the regularization
method can be described as the following equation [40]:

J ¼min
α

1
2

Sα − fk k22 þ β αk k1; ð9Þ

where α is the SRF; f ¼ ½Δλ; Δφ�T means change in structural
eigen-pair between intact and damaged structure; and S¼
½Sλ; Sφ�T ¼ ½ ∂λi∂αn

; ∂φi
∂αn

�Tdenotes eigen-pair sensitivity matrix
[41]. Thus, the damage severity and location can be identi-
fied through solving Equation (9).

2.3. The Proposed Damage Identification Method. It is known
that the modeling difficulty and computational complexity
will increase with the expansion of physical geometry size,
especially for some full-scale bridges and high-rise buildings.
These problems are always reflected in the following aspects:
(1) increasing nodes and elements in the FEM cause the sizes
of structural stiffness and mass matrices to be very large, then
the existing solution method cannot meet the requirements,
further inducing the incorrect results [42]; and (2) the itera-
tive calculations in the damage identification need to repeat-
edly assemble the structural overall stiffness matrix, the more
complex structure, the lower convergence speed in the opti-
mization process.

For the purpose of satisfying the requirements of damage
detection for a full-scale structure, in this study, some new
strategies have been proposed to achieve successful damage
detection based on the regularization technique. At first, the
model condensation technology is adopted to reduce the size
of the FEM, only master DOFs are retained, but slave DOFs
will be condensed, and then, for the low iterative calculation
efficiency, the max-value normalization strategy is applied to
the sensitivity matrix to improve the convergence speed. The
details are described in the following sections.

2.3.1. FEMDOFs Reduction Based on theModel Condensation
Technology. Based on the displacement balance relationship,
the displacement of all DOFs of a structure can be defined as
follows [43]:
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a¼ am

as

" #
; ð10Þ

where am and as stand for the displacement in master and
slave DOFs, respectively. Then, a transform matrix T can be
defined to establish the relationship between the displace-
ment in master and slave DOFs, namely:

as ¼ Tam: ð11Þ

Then, Equation (11) can be written as follows:

a¼ am

as

" #
¼ I

T

" #
am ¼ T∗am; ð12Þ

where I means the identity matrix; T∗ is n× nm matrix, in
which n is the total number of DOFs, and nm is the total
number of considered master DOFs. Then, according to the
above content and Equation (2), the following block equation
can be obtained [44]:

Ka¼ Kmm Kms

Ksm Kss

" #
am

as

" #
¼ 0

0

 !
: ð13Þ

Then, to expand the second of Equation (13), it can be
written as follows:

Ksmam þ Kssas ¼ 0: ð14Þ

So, as can be deduced as follows:

as ¼ −K−1
ss Ksmam: ð15Þ

Based on the above equation, the transform matrix T can
be written as follows:

T ¼ −K−1
ss Ksm: ð16Þ

When the transform matrix T has been obtained, the
original FEM with large size can be reduced based on the
following equation:

KR ¼ T∗½ �T K½ � T∗½ �; ð17Þ

where KR is the reduced stiffness matrix of the structure, and
T∗ ¼ ½ I − K−1

ss Ksm �:

T . Meanwhile, the structural mass matrix
can be reduced according to the same idea.

2.3.2. Improving Convergence Speed Using Sensitivity Matrix
with Mean-Value Normalization. Considering the damage in
the different structural elements will show diverse influence
on the structural modal parameters, such differences will
cause the elements of the sensitivity matrix to have some
magnitude differences [45, 46]. These differences lead to a

low convergence speed when the iterative calculation is con-
ducted. In this regard, the mean-value normalization strategy
is proposed to enhance the convergence speed. The details
are shown as follows: based on Equation (9), the mean-value
of each mode is applied to the contribution corresponding to
the sensitivity matrix; therefore, Equation (9) can be rewrit-
ten as follows:

J ¼min
α

1
2

S∗α − fk k22 þ β αk k1; ð18Þ

where S∗¼ ½ S1
f 1

⋯
Sn
f n

� :, in which Sn and f n are the nth

column of the sensitivity matrix corresponding to the nth
structural element and the mean-value of the nth modal
parameters.

Thereby, the abovementioned strategies have been incor-
porated into the original regularization method, and to form
a novel way for highly effective damage identification, the
specific procedures are illustrated in Figure 1.

3. Numerical Example

3.1. A Brief Description of Numerical Example. In this sec-
tion, a numerical space steel truss is used to verify the
proposed method. The numerical example is shown in
Figure 2. The truss has 48 nodes and 144 elements; the
material properties, such as Young’s modulus, density,
and cross-sectional area are 6.964× 1010 Pa, 2,714 kg/m3,
and 3.76× 10−3m2, respectively. There are three types of
bars with different lengths; the lengths are 1.73, 1.64, and
0.3m, and the simply supported constraints are applied to
the truss.

In order to evaluate the feasibility of the proposed
method, several damage cases have been preset through the
stiffness reduction on the corresponding structural element;
the environmental interference is also considered by the
introduction of random noise to the modal data [47], and
the details are listed in Table 1. For the noise pollution
method, it can be described as follows:

f ∗ ¼ f ⋅ 1þ 2 ⋅ rand − 1ð Þ × γ½ �; ð19Þ

where f and f ∗ denote the modal data without and with noise
pollution, respectively; rand stands for the random number
between [0,1]; γ indicates the noise pollution level.

3.2. Results and Discussions of Numerical Example. Based on
the preset damage case in Section 3.1. This section has
adopted the proposed method to identify the damage loca-
tion and severity of the numerical example. The first ten
natural frequencies and mode shapes are determined as the
damage features. When the preset iteration number meets,
the iterative calculation will be terminated and output the
results. The obtained results and computational costs are
listed in Figures 3–5 and Figure 6, respectively.

From Figure 3, it can be seen that the two methods can
both localize the site of single-element damage cases under
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FIGURE 1: The flowchart of the proposed method.
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FIGURE 2: The numerical space steel truss.
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TABLE 1: The simulated damage cases.

Environmental interference Damage case no. Damage severity @ location

1%, 3%, and 5% random noise

1 30% @ 6#

2
30% @ 6#
10% @ 36#

3
30% @ 6#
10% @ 36#
15% @ 112#
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FIGURE 3: Damage identification for damage case 1 of numerical example: (a) 1% noise, (b) 3% noise, and (c) 5% noise.

6 Advances in Civil Engineering



different levels of noise interference. However, it can be
observed that there are some obvious false detections in
the results of the L1 regularization method. Also, it can be
found that the proposed method can achieve more accurate
damage localization and severity quantification; namely, the
identification errors are less than the traditional L1 regulari-
zation method, which means the proposed method is super-
ior in the damage identification issue.

Figure 4 illustrates the results of the two-element damage
case, and it is obvious that the false identifications are more
serious than the single-element damage case as the complexity
of the damage case increases. There are obvious false identifica-
tions that occur in the L1 regularization method, but for the
proposed method, the results are still accurate; only under the
situation of 5% noise level, the errors can be observed clearly,
whichmeans the proposedmethod shows good noise robustness.
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FIGURE 4: Damage identification for damage case 2 of numerical example: (a) 1% noise, (b) 3% noise, and (c) 5% noise.
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As shown in Figure 5, for the multiple-element damage
case, the L1 regularization method illustrates serious damage
identification errors and the false detection of structural ele-
ments exceeds 5. It can be owed that the method cannot
achieve the global optima in the issue of damage identifica-
tion. However, the proposed method still keeps good detec-
tion accuracy, not only in damage localization but also in

extent quantification; false identifications exist but are fewer,
which further proves that the proposed method can be deter-
mined as a high-performance approach in structural damage
detection.

Figure 6 illustrates the average iteration curves of two
methods under different levels of noise interference for the
same iteration number; the proposed method shows a faster
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FIGURE 5: Damage identification for damage case 3 of numerical example: (a) 1% noise, (b) 3% noise, and (c) 5% noise.
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iterative efficiency, and the needed iteration times can be
reduced; regarding this point, it can be owed to the mean-
value normalization strategy, which can improve the iterative
efficiency of the computational process. To summarize, the
proposed method has good damage detection performance;
also, it has faster calculation efficiency, which is more suit-
able for the damage identification of the full-scale structure.

4. Experimental Validation

4.1. A Brief Description of Experimental Example. In this
section, an experimental space steel truss bridge is used to
verify the proposed method [48, 49]. The experimental
example is shown in Figure 7, where the numbers with yel-
low color are used to indicate the sensor order, and numbers
with a white background and red color stand for structural

element numbers. There are five damage cases have been
considered in the experiment through the stiffness reduction
in a single bar, and the details are shown as follows: (1)
damage case 1: 52.7% in element 3; (2) damage case 2:
52.7% in element 18; (3) damage case 3: 42.5% in element
6; (4) damage case 4: 72.5% in element 16; and (5) damage
case 5: 60% in element 11.

4.2. The FEM of the Experimental Structure. Based on the design
data of the truss, the material properties, such as Young’s mod-
ulus, density, and cross-sectional area are 18.5GPa, 8,000 kg/m3,
and 0.0387m2, respectively. For the longitudinal, vertical, and
transversal bars, the lengths are 0.3937, 0.4, and 0.3937m,
respectively. The FEM of the truss is coded based on the
MATLAB platform with 56 nodes and 160 elements; the total
number of DOFs is 336 (Figure 8). The structure is modeled
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FIGURE 6: Average iteration curves for three damage cases: (a) damage case 1, (b) damage case 2, and (c) damage case 3.
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based on the three-dimensional beam element with 12 DOFs,
and for the boundary conditions, the simply supported
constraints are applied to the steel truss.

The comparative results between the experimental and
analytical structural dynamical properties are listed in
Table 2. From the comparison, it can be observed that there
are some discrepancies between the actual structure and
simulated model before the model updating, which can be
attributed to the structure simplification, uncertainties in the
boundary conditions, construction errors, etc. Therefore, the
Jaya optimization algorithm is used to correct the initial FEM
to obtain the benchmark FEM. After the updating, it can be
seen that the errors between frequencies are very small, and

MAC values both exceed 0.95, which means the updated
FEM can reflect the actual structure well.

4.3. Results and Discussions of Experimental Validations.
Based on Section 4.2, in this section, according to the experi-
mental example, the measured natural frequencies and mode
shapes of five damage cases are input to the proposed
method to check the capability of damage identification fur-
ther. The obtained damage identification results are shown in
Figure 9.

Figure 9 illustrates the damage identification results of
five damage cases. It can be seen that all the damage locations
are detected well; however, the damage extent quantifications

FIGURE 7: The experimental space steel truss.
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TABLE 2: The comparison between experimental and analytical modal parameters.

Mode Experimental frequency (Hz)
Before updating After updating

Analytical frequency (Hz) Error (%) MAC Analytical frequency (Hz) Error (%) MAC

1 7.9688 7.7132 5.72 0.9312 7.967 0.02 0.9912
2 26.7188 25.4561 8.47 0.9252 26.702 0.06 0.9831
3 37.2656 35.4521 5.67 0.9032 37.246 0.05 0.9742
4 41.7188 40.7541 3.75 0.8903 41.708 0.03 0.9683
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FIGURE 9: Damage identification results of experimental space steel truss: (a) damage case 1, (b) damage case 2, (c) damage case 3, (d) damage
case 4, and (e) damage case 5.
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show some errors. These errors can be explained as modeling
errors, measurement uncertainties, unknown boundary con-
ditions, etc. In conclusion, the proposed method can be vali-
dated based on the experimental structure well; according to
the damage identification results, it is obvious that the loca-
tions of the damaged elements are all identified, and the
actual damage situations can be reflected well. Thus, the
proposed method shows good performance in the damage
localization and quantification in the experimental example,
whose application feasibility is generally ensured.

5. Conclusions and Outlook

In this study, a new damage identification method has been
proposed based on model condensation and normalization
regularization techniques to solve the damage identification
issue of the full-scale structure. Numerical and experimental
examples are both used to verify the proposed method; the
obtained results prove the proposed method has faster con-
vergence efficiency and good damage detection performance.
There are several conclusions can be drawn as follows:

(1) Model condensation can be used to reduce the total
number of DOFs of the FEM, so that the analytical
modal analysis based on the reduced FEM can be
accelerated.

(2) The introduction of normalization regularization techni-
ques can improve the low convergence efficiency of the
iteration process of the damage identification and further
achieve the high efficiency in the damage detection.

(3) The proposed method, namely, the regularization
damage identification, incorporates model condensa-
tion strategies and the mean-value normalization tech-
nique, which shows a superiority in the computational
cost reduction over the traditional L1 regularization
method. Also, the damage identification performance
for the full-scale structure can be well ensured. Thus,
this method is of great potential in the application of
actual structures, like long-span bridges and high-rise
buildings.

And, for the outlook, several points can be addressed as
follows:

(1) This study has investigated the serious structural
damage situations; however, it is very common to
observe a very slight damage severity in the practical.
Future research should pay more attention to slight
damage cases.

(2) High-level environmental noise extensively exists in the
issue of damage identification, and noise-robustness is a
good criterion to evaluate the superiority of the
regularization-based damage identification method.
How to ensure the damage detection accuracy of the
proposed method under the condition of significant
noise is the key work we should do in the next.

(3) Finally, another limitation of this study is that some
practical engineering structures are lacking to further

validate the proposed method, and some complex
bridges or skyscraper buildings should be studied
in the future.
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