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In order to address the issues pertaining to the subjective nature and limited precision associated with selecting feature points in the
point cloud of a large steel truss structure, this study proposes a batch automatic extraction approach for identifying key feature
information, including boundaries, corner points, and bolt holes of large steel truss components. This method relies on the nested
application of established processing algorithms such as Euclidean clusters, regional growth clusters, and random sampling
consensus. In addition, a novel approach is suggested for validating the precision of feature information extraction through the
utilization of standard theoretical models. The results of the experimental and large-scale lower chord tests demonstrate that our
approach is not dependent on specialized software, exhibits excellent efficiency, and possesses an acceptable degree of automation.
The findings of this study can provide accurate data support for reverse modeling, virtual trial assembly, and dimensional
inspection of steel truss components.

1. Introduction

The prevalence of steel structures in bridge construction can
be attributed to several factors, including the abundant avail-
ability of steel as a material, the well-established industrial
production methods for steel structures, the favorable mechani-
cal characteristics exhibited by steel, the convenient transport-
ability of steel components, and the efficient installation
processes associated with steel bridges. Recently, there has
been an increasing scholarly focus on the advancement of
3D point cloud processing technologies. This technology is
a mechanism for establishing connections between physical
structures and digitized information. The utilization of com-
puter technology and 3D measurement technology has sup-
planted conventional approaches, such as outbound quality
checking, overall deformation monitoring, and preassembly
of steel structures. The execution of these duties has transi-
tioned to a digital format facilitated by point clouds [1–4].

The structural dimensions of large steel truss members
are mostly expressed through the borders, corner points, and
centers of bolt holes. In the structural fabrication process, the
geometries and dimensions of the members can be verified to

meet the design requirements through accurate measure-
ment. The extraction of boundary points, corner points,
and bolt hole centers plays an essential role in the virtual
trial assembly based on point clouds. These assembly points
give vital geometric information about steel truss compo-
nents in an intuitive manner. The closely related work with
this study is the feature extraction on steel members with
bolted connections. In the boundary detection of truss mem-
bers, Lamas et al. [5] proposed an algorithm for the auto-
matic extraction and segmentation of truss elements. The
algorithm begins by sectioning the truss into horizontal
and vertical planes, then uses PCA and clustering algorithms
to measure and judge the neighborhood distribution of each
point and finally completes the automatic extraction of truss
elements. Fotsing et al. [6] proposed a novel region-growing-
based method for fast extraction of planes of structure in
point clouds. The method uses an iterative closest point algo-
rithm to extract reliable seeds, and a voxel grid representa-
tion of the point cloud is used in the growth process. Based
on the above method, Truong-Hong and Lindenbergh [7]
coarsely extract the original point cloud, which effectively
improves the accuracy of feature extraction for complex
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bridge structures. The process starts with the coarse extrac-
tion of candidate points by decomposing the point cloud of
the bridge into 2D cells and analyzing the distribution of data
points within the cells in a vertical direction. Kim et al. [8]
used a hybrid algorithm with mean-shift clustering, noncon-
vex hull, and random sample and consensus (RANSAC) to
extract geometric primitives with solid lines on edges from
point clouds to digitalize reverse engineering in the engineer-
ing and construction domains. In the extraction of bolt hole
feature information, Truong-Hong et al. [9] calculated the
eigenvectors and eigenvalues of the correlationmatrix formed
by the kNN points and used the angle criterion to detect the
boundary points of the circle. Zhou et al. [10] used principal
component analysis (PCA) to convert the 3D point cloud
into 2D data, combined with a clustering algorithm and kNN
algorithm to extract the boundaries of bolt holes. Tabib et al.
[11] proposed a deep learning framework to detect whether
each point in the point cloud is a hole boundary point, and the
detected hole boundary points are used for hole filling by
fitting a surface and interpolating points on the surface. After
extracting the boundary points for the bolt holes, fitting the
data points using an algebraic method is relatively easy to
solve. However, the circular objects are often partially hidden
in practical situations as the boundary points on the occlusion
boundary fall inside the circle, which behave as outliers and
may strongly affect the estimate of the circle’s parameters. To
solve the aforementioned problem, a random sampling con-
sistency algorithm [12], Hough transform [13], and robust
least squares [14] have been adopted.

Current approaches for extracting features from point
clouds are unable to completely automate the extraction of
many features at the same time. To overcome the above
problems, Xu et al. [15] used the spatial position relation-
ships and geometric features of the structure in the point
cloud model to set constraints and the Euclidean clustering
algorithm to extract columns and beams in the frame struc-
ture synchronously. However, the algorithm hasmany extrac-
tion parameters, poor automation of different types of feature
extraction, and is only applicable to typical assembled frame
structures. Wang et al. [16] built and set the feature parameter
thresholds by vector angle criterion and extracted the bound-
ary feature points and sharp feature points in the point cloud
synchronously by traversing each K-neighborhood point and
discriminating the feature parameter. Cabaleiro et al. [17]
proposed a method to extract the connection centroid, the
contour of the bars, and the orientation of the connection
centroid in the point cloud of the metal frames, which was
based on the 2.5D density image. The Hough transform was
used to determine the flange and web lines of the steel frame
connections. Finally, the coordinates of the connection center
points were selected based on the orthogonal geometric rela-
tionships of the bars. Wang et al. [18], for the dimensional
inspection and building information modeling of the precast
concrete bridge deck, first converted the 3D point cloud into a
2D image, then implemented multifeature extraction of pre-
cast concrete bridge decks using an edge line estimation algo-
rithm, finally determined all the edge lines and corner points
of the structure. Due to their high efficiency and accuracy,

deep learning algorithms have been increasingly applied to
multifeature point cloud extraction in recent years. Still, the
existing algorithms focus on the coarse-scale semantic repre-
sentation of the target rather than the detailed features. To
address the above problems, Du et al. [19] designed a multi-
scale feature fusion segmentation network (MSSCN) to real-
ize the extraction of detailed features in point clouds.
However, the method has no advantage in terms of the accu-
racy of feature boundary segmentation.

A prevalent issue with these current techniques is their
inability to automatically extract every feature straight from
the point cloud of a steel truss component. This presents a
challenge to automated point cloud analysis used in virtual
trial assembly and reverses modeling based on point clouds
of bolted connecting parts. When it comes to processing
large structural point clouds, machine learning and deep
learning methods are computationally complex and take a
long time to process feature information. On the other hand,
traditional methods neither process the information of all the
feature points (such as corners, boundaries, and bolt holes)
of large steel truss members at once nor can they be auto-
matically extracted.

To address this issue, a novel approach is presented in
this paper for the batch automatic extraction of key feature
data, including bolt holes, corners, and boundaries, from
large steel truss member point clouds. These extracted point
clouds can subsequently be utilized in reverse modeling and
the virtual trial assembly of said truss members. The method
consists of two parts: part 1: extraction of boundary and
corner points and part 2: extraction of bolt hole features.
Moreover, a method to verify the feature extraction accuracy
using a standard point cloud model is proposed.

The contributions to this work are as follows: (1) a fea-
ture extraction method for large bolted steel members is
established, and the developed nested algorithm realizes
the simultaneous automatic extraction of all feature informa-
tion for large steel truss members. (2) A novel approach is
provided for extracting boundary points from cross-section
and side point clouds of large complex members. The method
combines the region expanding algorithm, clustering algo-
rithm, and RANSAC to achieve intelligent point extraction.
Additionally, correct coordinates of corner points are obtained
through the utilization of plane intersection. (3) A fast extrac-
tion method for bolt hole feature information is proposed
based on classical algorithms such as alpha shapes and Euclid-
ean clustering segmentation. (4) A new verification method
for the extraction accuracy of the algorithm is proposed. The
method verifies the extraction accuracy of the algorithm by
establishing a standard point cloud model and comparing
the differences between the design and feature extraction
dimensions.

2. Feature Information Extraction Algorithm

The feature information of large-volume steel trusses mainly
includes boundaries, corner points, and bolt hole groups.
The main process of boundary and corner point extraction
is as follows: first, the plane point cloud is segmented by
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using the region growth algorithm; then the plane equations
are fitted by using the random sampling consistency algo-
rithm; finally, the boundary and corner point feature infor-
mation is obtained through the intersection of the planes; for
the extraction of bolt hole clusters, the bolt hole point cloud
is first segmented by using the Euclidean clustering based on
the boundary extraction; then the bolt hole point cloud is fit
by using the random sampling consistency algorithm; finally,
the bolt hole feature information is obtained by using the
random sampling consistency algorithm. The objective of
batch processing numerous point cloud clusters is accom-
plished by nesting the fitting step within the clustering algo-
rithm. The specific flow is shown in Figure 1.

This work proposes to use the standard point cloud
model for the test in order to verify the precision of the above
feature extraction algorithm and prevent the influence of
external factors on the size and shape of the steel structure
throughout the construction process. Last but not least, the
test depends on a large-scale lower chord to confirm the
algorithm’s suitability for real-world engineering applications.

2.1. Automatic Batch Extraction of Boundary and Corner
Features. In this paper, three nonparallel planes are used to
calculate the boundary and corner points, so it is especially
critical to automatically obtain all the plane equations in a
large point cloud, and the main steps are as follows.

2.1.1. Planar Point Cloud Clusters Segmented by Regional
Growth Clustering. The point cloud segmentation algorithm
based on region growth is a commonly used method for
extracting point cloud clusters in the end plane of rods [20].
Each set of outputs using the region growth segmentation
plane is recognized as part of the same smooth surface,
making the algorithm optimal for planar extraction of point
clouds at the ends of rods. In addition, the algorithm is
robust to noise and local shape variations in the point
cloud, enabling accurate segmentation in complex point
cloud environments. The selection of seed points and the
growth criterion are key factors affecting the quality of
point cloud segmentation. This study used the points with
the least curvature as seed points because starting growth in
a smooth region reduces the total number of regions and
avoids overlapping segments. The normal plane is solved by
the data points with their neighboring points, so the setting
of the number of neighboring points affects the result of
solving the normal vector. Set the NormalSearch parameter
of the normal vector neighborhood search value, which

indicates the number of neighboring points involved in
solving the normal vector. In the setting of the growth
criterion, information such as geometric features, curvature,
and vectors of the point cloud model are used as judgment
conditions. MinClusterSize and MaxClusterSize represent
the minimum and maximum number of clustered points,
respectively, and values less than the minimum or greater
than the maximum are ignored, so this parameter should be
set according to the number of point clouds in the mini-
mum and maximum planes of the member. NumberOf-
Neighbors represents the number of points in the test
near the seed point as the region grows, indicating the
number of point clouds needed to define a plane. Smooth-
ness and curvature are the two most essential thresholds.
Smoothness represents the value of the angle between the
normal vector of the current seed point and each neighbor-
ing point, and if it is less than the set threshold, the neigh-
boring point will be given priority. Curvature represents the
curvature threshold. If a neighboring point is less than the
set value, the point will be added to the set of seed points.
The geometric characteristics of the trusses are thin-walled
box sections, and the parameters selected in this study
based on the density of the captured point cloud model
are NormalSearch=10, MinClusterSize=100, MaxClusterSize=
500,000, NumberOfNeighbors=10, Smoothness=5/180×M_PI,
Curvature=0.05.

The planar extraction process of the region growing
method is shown in Figure 2. The planar clustering algo-
rithm based on region growth takes each extracted plane as
a clustering condition to complete the segmentation of all
planes. Figure 3 shows the effect of the point cloud region
growing clustering segmentation of planes. Different colors
are set for different point cloud clusters in the segmented
point cloud to make the clustering segmentation effect more
intuitive.

2.1.2. RANSAC Fitting Plane Equations. The random sam-
pling consistency algorithm is a method for estimating the
parameters of a mathematical model in a dataset containing
various defects such as noise, outliers, and so forth. Steel
trusses consist of regular flat planes and the most common
and simplest way to fit the planes is least squares. However,
the number of noise points in the point cloud is increased
due to the large number of bolt holes distributed in the
member. The noise points are composed of a point cloud
of the hole wall and a point cloud of the hole’s edge where the
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FIGURE 1: Point cloud feature extraction flowchart.
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drift effect occurs. The fitting accuracy of the least squares
method is easily affected by noise points, so RANSAC is used
to improve the fitting accuracy by eliminating the influence
of noise points through iterative fitting. The steps and
parameter settings of the method are as follows:

Step 1: Three points are randomly selected from the
acquired planar point cloud clusters, and then the planar
model parameters A, B, C, and D are calculated according
to the planar equations:

Ax þ By þ Cz þ D¼ 0: ð1Þ

Step 2: Calculate the distance of all other points to the
plane; if it is less than DistanceThreshold, these points are
considered to be in the same plane as the plane. Therefore,
DistanceThreshold should be set according to the distribution
of noise points in the plane in the point cloud. In this study,
the selected DistanceThreshold is 2.0.

Step 3: Save the plane and mark the points as matched if
there are more than n points in the same plane.

Step 4: The termination condition is that three unlabeled
points cannot be found after N iterations or the number of
plane points is less than n. The setting of the iteration num-
ber N determines whether the final fitted plane is reliable,
and this paper sets the size of the parameter N according to
Equation (2), where p is the expected probability of selecting
at least one sample from the outliers, which is set to 0.99, and
e is the outlier rate. The maximum number of iterations
chosen is N= 500:

1 − 1 − eð Þsð ÞN ¼ 1 − p: ð2Þ

Repeat the above steps to continuously update the model
parameters, saving the model parameters with the highest
number of interior points. Finally, the internal points esti-
mate the model parameters, as shown in Figure 4.

2.1.3. Intersecting Planes to Get a Boundary and Corner
Information. According to all the plane equations in the
end point cloud obtained above, as shown in Figure 5, the
equations are combined sequentially, with each of the three
equations as a group, and solved simultaneously. The posi-
tional relationship of the three planes in space is related to
the rank of the augmentation and generalization matrices
of the system of linear equations in which they are associated.
If the nonzero row (rank) of the coefficient matrix of the
system of linear equations r(A)= 3, the three planes intersect
at one point, as shown in Figure 6. Therefore, this can be
used as a decision condition to eliminate groups of planes
that are not parallel and complete the subsequent processing.

Consider a system of equations. The equations of the
three nonparallel planes are as follows:

A1x þ B1y þ C1z þ D1 ¼ 0

A2x þ B2y þ C2z þ D2 ¼ 0

A3x þ B3y þ C3z þ D3 ¼ 0

8><
>: : ð3Þ

Then, the normal vector of the intersecting line between
planes 1 and 2 is ~n¼ðp;  q;  rÞ, calculated as follows:

p¼ B1 C1

B2 C2

����
����; q¼ C1 A1

C2 A2

����
����; r ¼ A1 C1

A2 C2

����
����: ð4Þ
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FIGURE 2: Region growth algorithm flowchart.
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The line can be expressed as follows:

x ¼ x0 þ pt

y ¼ y þ 0þ qt −1<t< þ1ð Þ
z ¼ z0 þ rt

8><
>: ; ð5Þ

Putting x;  y;  and z into A3xþB3yþC3zþD3 ¼ 0, we
can solve for t and thus find the coordinates of the intersec-
tion point ðx0; y0; z0Þ, where:

x0 ¼
xD
D

;  y0 ¼
yD
D

;  z0 ¼
zD
D
; ð6Þ

ðaÞ ðbÞ
FIGURE 3: Plan view of region growth clustering: (a) original point cloud and (b) point cloud after plan segmentation.
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where:

D¼
A1 B1 C1

A2 B2 C2

A3 B3 C3

2
64

3
75; XD ¼

−D1 B1 C1

−D2 B2 C2

−D3 B3 C3

2
64

3
75;

YD ¼
A1 −D1 C1

A2 −D2 C2

A3 −D3 C3

2
64

3
75; ZD ¼

A1 B1 −D1

A2 B2 −D2

A3 B3 −D3

2
64

3
75:

ð7Þ

2.2. Automatic Batch Extraction of Bolt Hole Features. The
process of extracting information from bolt holes generally
consists of four key processes. These steps include projecting
planar point cloud clusters, extracting boundaries from the
planar point cloud, segmenting bolt hole point cloud clusters
using Euclidean clustering, and fitting equations to the bolt
holes. Each of these steps is described in detail below.

2.2.1. Planar Point Cloud Cluster Projection. In bolt hole
point cloud segmentation, the plane point cloud cluster pro-
jection is performed first. For the steel truss members, the
bolt holes at the end of the truss are all standard, and the
error in the thickness direction of the holes is negligible, so
the point clouds of the bolt holes on the same side are all
projected onto the outer plane equation. According to the
density distribution of the projected point cloud of the bolt
hole surface, the hole center coordinates can be obtained
more accurately, which increases the robustness of the bolt
hole extraction algorithm. The general equation of the 3D
space plane is shown in Equation (1).

Assume that the coordinates of the 3D space not in the
plane are ðx0; y0; z0Þ and the coordinates of its projection
point in the plane are ðxp; yp; zpÞ. Since the current point
to the projection point is perpendicular to the plane,

according to the vertical constraint, it is known that yp and
zp satisfy the following conditions:

yp ¼
B
A

xp − x0
À Áþ y0; ð8Þ

zp ¼
C
A

xp − x0
À Á

− z0: ð9Þ

Substituting Equations (8) and (9) into Equation (1):, we
get the following equations:

xp ¼
B2 þ C2ð Þx0 − A By0 þ Cz0 þ D

À Á
A2 þ B2 þ C2 ; ð10Þ

yp ¼
A2 þ C2ð Þx0 − B By0 þ Cz0 þ D

À Á
A2 þ B2 þ C2 ; ð11Þ

zp ¼
B2 þ A2ð Þx0 − C By0 þ Cz0 þ D

À Á
A2 þ B2 þ C2 : ð12Þ

This gives the projection coordinates ðxp; yp; zpÞ of the
3D point in space onto the plane. Figure 7 displays the pro-
jection of the point cloud onto the plane. The original point
cloud is represented by the white points, while the green
points represent the projected point cloud.

2.2.2. Planar Point Cloud Boundary Extraction. The alpha
shapes algorithm was first proposed by Edelsbrunne. The
algorithm uses a circle of radius α to roll outside the point
set P. If α is large enough, the circle will not roll inside the
point set, as shown in Figure 8. Inside the point set P, a circle
of radius α can be drawn over any two points p1, p2. If there is
no other point inside the circle, p1 and p2 are considered
boundary points, and the line p1, p2 between them is
the boundary segment, as shown in Figure 9. The points
p1(x1, y1) and p2(x2, y2) are known, and the center p3(x3,
y3) of the circle over these two points can be obtained by
the posterior distance rendezvous method. After obtaining the
center of the circle, by judging the relationship between
the distance of other points to the center of the circle and
the radius α, it can be determined whether there are other
points in the circle. The value of the parameter α determines
the accuracy of the point cloud contour extraction. This
implies that as α increases, fewer edge points may exist in a
point set P, which blurs the outline details of P. Thus, the value
of αmust be set appropriately. In this study, the parameter α is
set to 50.0 based on the density of the point cloud model.

x3 ¼ x1 þ
1
2

x2 − x1ð Þ þH y2 − y1ð Þ

y3 ¼ y1 þ
1
2

y2 − y1ð Þ þ H x1 − x2ð Þ

8><
>: ; ð13Þ

where H¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

ðx1−x2Þ2−ðy1−y2Þ2
q

−
1
4 :

FIGURE 6: Schematic diagram of plane intersection.

6 Advances in Civil Engineering



2.2.3. Segmentation of Bolt Hole Point Cloud Clusters by
Euclidean Clustering. After extracting the boundary point
cloud using the alpha shape algorithm, Euclidean clustering
was used to segment all the clusters in the bolt hole point
cloud. In this study, a nearest neighbor search algorithm based
on KD-tree is used to divide the space into a multidimensional
data structure withmultiple disjoint subspaces. Euclidean clus-
tering has three main parameter settings: the cluster search
radius ClusterTolerance, the minimum value of point cloud
clustersMinClusterSize, and the maximum valueMaxCluster-
Size. The search radius is used to define the extent to which a
point searches for its neighboring points during the clustering
process and is the most important parameter. An extensive
search radius indicates that the neighboring points of each
point are searched more extensively, resulting in excessive
clustering. The opposite will cause points that originally
belonged to the same cluster to be split into multiple clusters.

Thus, the settings of the above parameters should be tuned
according to the size of the point cloud raw data. The main
parameters selected for this study are ClusterTolerance= 200,
MinClusterSize= 60, and MaxClusterSize= 380. The main
steps are as follows:

Step 1: Find the k nearest points to P by the KD-tree
algorithm for any point P in the space.

Step 2: Put points with distances less than the ClusterTo-
lerance intoQ and remove them from the source point cloud.

Step 3: Repeat step 1 until the points in Q are no longer
increasing.

Step 4: Save the point cloud cluster when the number
of points in the point cloud cluster is MinClusterSize< k<
MaxClusterSize. Otherwise, delete the cluster. The workflow
is shown in Figure 10.

2.2.4. RANSAC Fitted Bolt Hole Equation. After the clustered
segmentation of the bolt hole surfaces, the RANSAC algorithm is
used to fit the information of the 3D spatial circle.When a sphere
intersects a plane, the intersection line is a circle. Conversely, any
circle in space can be represented as the intersection of a sphere
with a plane. Therefore, the coordinate equation of a circle in the
area is given as follows:

FIGURE 7: Point cloud to plane projection diagram.

P

FIGURE 8: Boundary point extraction diagram.

p1 p2

p0

FIGURE 9: Boundary point judgment diagram.
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y ¼ x − x0ð Þ2 þ y − y0ð Þ2 þ z − z0ð Þ2 ¼ R2

Ax þ By þ Cz þ D¼ 0 A2 þ B2 þ C2 ≠ 0ð Þ

(
: ð14Þ

The RANSAC algorithm is characterized by three primary
parameters, namely the number of iterations (N), the number
of subsets (S), and the threshold (T).N can be calculated by the
Monte Carlo type probabilistic approach, as shown in
Equation (2). e is the percentage of inliers taken as 50% accord-
ing to the obtained data by terrestrial laser scanning (TLS), p is
a coefficient usually set as 0.99, S is set as 20% of all boundary
points, and T is taken as 5mm in this study. Since the proposed
algorithm is robust to selected parameters, N is taken as 1,000
in this study. The fitted bolt holes can be obtained using the
RANSAC algorithm, as described above.

3. Accuracy Verification

In this paper, we propose a method to verify the accuracy of
the feature points obtained by the above method using vir-
tual standard parts. First, a point cloud model with accurate
dimensions is created. Then, the point cloud model is mea-
sured using the above method; and finally, the results are
compared to determine the accuracy of the feature points
obtained by this method.

3.1. Standard Theoretical Point Cloud Model Creation

3.1.1. Solid Model Creation. To make the theoretical type as
close as possible to the bars in the actual project, the dimen-
sions of the bars in the existing project were used as a refer-
ence. The dimensions of the box model are determined as
follows: the outer profile of the section is 1.5× 2m, the inner
shape is 1.34× 1.88m, the total length of the bar is 12m, the
radius of the bolt hole is 0.1m, the hole center distance is
0.5m, and the coordinates of the hole center distance from
the edge corner point are 0.71m.

The specific solid model creation process is shown as
follows: first, the 3D profile of the theoretical model is

created by the designed dimensions, as shown in Figure 11(a);
then, the solid model is constructed by lofting the edges and
Boolean operation of the bolt holes in the 3D profile, as
shown in Figure 11(b); finally, to reduce the computation
time, the end point cloud of the bar is extracted by profiling,
and the solid model is constructed, as shown in Figure 11(c).

3.1.2. Point Cloud Model Creation. First, the solid model
created by CAD (Figure 12) was exported to a file in STL
format and imported into CloudCompare software; then,
using the “point cloud” function in the software, a point cloud
was added to the surface of the solid model, and by setting the
density and sampling parameters of the point cloud, the solid
model was transformed into a point cloud model with 1mil-
lion data points, as shown in Figure 13; finally, Gaussian noise
was used to simulate the random noise of the point cloud, and
the comparison before and after adding Gaussian noise is
shown in Figure 14.

3.2. Boundary and Corner Point Information Extraction Test.
To verify the accuracy of the algorithm proposed in this
paper, the standard point cloud model is used to perform
the edge point extraction test. First, the K-nearest neighbor
search algorithm is used for noise reduction of the standard
point cloud model; second, the planar cluster segmentation is
performed by using the region growing algorithm, and the
effect of the end-plane segmentation is shown in Figure 15(a);
then, for the obtained planar point cloud clusters, the planar
equations are fitted by using the RANSAC algorithm, as
shown in Table 1; finally, the planar nonparallel planes are
filtered out according to the rank of the matrix of the
equation system, and the solution of the equation system is
obtained by connective extraction. The coordinates of the
boundary points are obtained, and the coordinates of the
standard point cloud model boundary points are shown in
Table 2. The schematic diagram of edge point extraction is
shown in Figure 15(b).

The accuracy of corner point extraction has been evalu-
ated, as indicated in Table 3. This evaluation includes the
examination of the four sets of side lengths of the box section
and the length of the bars. By comparing the error informa-
tion of the bars, it can be inferred that the maximum error
value is approximately 0.59%. Thus, the corner point extrac-
tion technique described in this study demonstrates its capa-
bility to meet the engineering requirements in terms of
precision.

Three methods were used in this study to fit the data for
the above boundaries and corner points. The first method
was the one proposed in Section 2.1. The second method
used HarrisCorner to extract corner points, and it was imple-
mented directly using keypoints_harris_3d in Open 3D. This
method works by sliding the square detection window in the
point cloud and determining the corner points based on the
number of point clouds in it. The third one is the method of
ISS corner point extraction, which is solved using compu-
te_iss_keypoints in Open 3D. This method is a key point
detection method based on the curvature and normal vector
of the point cloud.

A point in
space P

KD-tree

Get k
nearest points

to P

Distance <
threshold

Pick a
point other
than in Q

No increase in
elements in Q

EndYes

Yes

No

Clustering
in the point

set Q

FIGURE 10: Euclidean clustering algorithm flowchart.
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ðbÞ

ðcÞ
FIGURE 11: Theoretical model creation: (a) theoretical model outline, (b) theoretical model entity, and (c) theoretical model tip.

FIGURE 12: Solid model.
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FIGURE 13: Solid model into the point cloud.

FIGURE 14: Gaussian noise before and after detail picture.

ðaÞ ðbÞ
FIGURE 15: Theoretical model feature information extraction: (a) region growth clustering planar point cloud cluster and (b) corner point
feature extraction effect.
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It can be seen in Table 4 that the error of our method is
the smallest regardless of the data noise, so it is the optimal
solution for noisy data. However, for the data containing
obvious outliers, the results extracted by Harris Corner and
ISS deviate from the actual values. Harris Corner identifies
the noise points as corner points and is less robust to noise

disturbances. The ISS algorithm requires establishing a local
coordinate system and modeling within this coordinate sys-
tem, which results in a longer execution time. Our method
achieves better results for data with the aforementioned three
types of noise and saves 44.0% in extraction speed compared
to traditional algorithms when there are outliers in the data.

TABLE 1: Plane coefficient parameters.

Plane factor A B C D

M1 0.000562 −0.000047 1.000004 −2,000.717219
M2 −0.002552 0.000051 1.000010 0.092759
M3 −1.002559 0.000050 0.000011 1,501.006984
M4 −1.002554 0.000058 0.000012 0.751837
M5 −0.000560 0.000051 −0.999994 1,941.318154
M6 0.997442 0.000050 0.000013 −79.668907
M7 −1.000555 0.000049 0.000003 1,420.197920
M8 −0.000557 0.000054 −0.999992 60.027501
M9 −0.000556 −0.999949 0.000010 0.491109

TABLE 2: Boundary and corner characterization information.

x y z x y z

1,497.2 −0.3 1,999.9 1,419.4 −0.3 59.2
0.8 0.5 2,000.7 1,497.8 12,000.1 2,000.4
1,497.2 −0.3 3.7 1.5 12,000.9 2,001.3
0.8 0.5 −0.1 1,497.8 12,000.1 3.1
1,419.4 −0.3 1,940.5 1.4 12,000.9 −0.7
79.8 0.5 1,941.3 1,420.0 12,000.1 1,941.2
79.9 0.4 60.0 79.2 12,000.9 1,941.9
1,497.2 −0.3 1,999.9 79.3 12,000.9 60.6

TABLE 3: Error detection of boundary and corner point feature information.

Projects Theoretical value (mm) Measured value (mm) Error (mm) Percentage of error (%)

Section side length 1 1,500/2,000 1,496/1,996 4/4 0.27/0.20
Section side length 2 1,340/1,880 1,348/1,883 8/3 0.59/0.16
Section side length 3 1,500/2,000 1,493/1,989 7/11 0.47/0.55
Section side length 4 1,340/1,880 1,340/1,881 0/1 0/0.05
Rod length

a 12,000 12,000.6 0.6 0.005
b 12,000 12,009.4 0.6 0.005
c 12,000 12,001.0 1.0 0.008
d 12,000 12,000.0 0 0

TABLE 4: Corner point extraction results of the three algorithms.

Gaussian noise
(σ2)

Our method Harris corner ISS

Time (s)
Error
(mm)

Correctness
(%)

Time (s)
Error
(mm)

Correctness
(%)

Time (s)
Error
(mm)

Correctness
(%)

0.1 104.46 2.5 100 159.61 2.5 84 219.38 3.2 76
0.2 109.59 2.8 100 168.67 3.6 64 237.81 3.4 73
0.3 121.69 2.9 100 177.42 4.7 53 244.57 5.3 57
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Compare the feature point index extracted by each algorithm
with the reference feature point index. If the indexes are consis-
tent, the feature point is extracted correctly. Use the proportion
of correctly extracted indexes to the total number of feature
points as the correctness. As shown in Table 4, our method
extracts fewer feature points with higher correctness compared
to other feature point extraction algorithms. This indicates that
the corner points extracted by our method have stronger feature
representations. The correctness of theHarris and ISS algorithms
decreases significantly with the addition of Gaussian noise as
they do not have the step of removing the boundary response
of corner points, resulting in a large number of false corner
points. Our method obtains corner points by associating three
plane equations, which provides an accurate and fast method of
extracting corner points for steel truss point clouds.

3.3. Bolt Hole Information Extraction Test. To increase the
robustness of the bolt hole extraction algorithm, the same
side plane clusters containing bolt holes are projected onto
the plane equations on the outside of the end, and a set of
bolt hole information is analyzed in detail below. The algo-
rithm parameters are set according to the characteristics of
the structure, the radius of the α circle in the boundary
extraction is set to 150mm, and the radius of the Euclidean
clusters is set to 400mm. Figure 16(a) shows the effect of
planar projection of the point cloud data. The results of
fitting the bolt hole feature information using the RANSAC
algorithm are shown in Table 5. The mean value represents
the radius of the bolt holes.

From the above results, it can be seen that for the obtained
point cloud, the Euclidean clustering algorithm based on

ðaÞ

ðbÞ
FIGURE 16: Bolt hole clustering: (a) plane projection effect and (b) TLS bolt hole clustering.

TABLE 5: Bolt hole extraction accuracy.

Bolt hole radius (mm)
Error

Hole center distance (mm)
Error

Theoretical value Measured value Theoretical value Measured value

100 100.6 0.60% 300 497.8 0.7%
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boundary extraction has an error of 0.73% after being
adjusted by the random sampling consistency algorithm; it
meets the requirements in terms of accuracy.

The accuracy of boundary extraction determines the pre-
cision of bolt hole fitting. Three methods were employed to
extract the point cloud of the bolt hole boundary. The first
method was the one proposed in Section 2.2. The second
method used the DBSCAN point cloud clustering segmenta-
tion algorithm. This method finds clusters of any shape in a
noisy point cloud, and it was implemented directly using the
pcb.cluster dbscan function in Open 3D. The third method is
to detect circular hole boundary points based on the distri-
bution of kNN points for the selected points, where angle,
half disk, and shape criteria are commonly used. The pcd
compute boundary points function in Open 3D is used and
solved based on the angle criterion.

It can be seen from Table 6 that the Euclidean clustering
algorithm based on boundary extraction is the best in both
computational efficiency and extraction accuracy. However,
the density clustering algorithm fails to extract the bolt holes
due to the uniform distribution of the point cloud obtained
by TLS near the bolt holes. For data containing significant
outliers, the relative error of extracting bolt hole edges using
only the angle criterion is significant. The efficiency of bolt
hole feature extraction is enhanced by 25.9% compared to
the traditional method. From the aforementioned results, it
can be concluded that our method can quickly compute the
parameters of bolt holes while being insensitive to noise.

4. Examples of Projects

The appearance of a single lower chord bar of a steel truss
structure is shown in Figure 17, with the following

dimensions: total length of 12.18m, cross-section outer con-
tour length of 1.3m, width of 1.42m, and inner profile length
of 1.20m, and width of 1.35m. The distance between the
centers of the bolt holes is 100mm, the minimum value of
the bolt holes from the edges and corners is 160mm, and the
bolt holes have a radius of 16.7mm. There are two groups of
holes on a single surface, and each group of holes on the side
surface contains 42 bolt holes, and each group of holes on the
top surface contains 32 bolt holes, for a total of 464 bolt
holes. There are two groups of holes on one side, and each
group includes 42 side bolt holes, and each group of holes on
the top side contains 32 bolt holes, for a total of 464 bolt
holes.

4.1. Point Cloud Data Preprocessing. The bar point cloud
contains some noise, and the outlier noise points can be
directly removed manually, and then the K-nearest neighbor
search algorithm is used to remove the interfering points. As
shown in Figures 18 and 19, the original point cloud data
volume is 1,228,019, and the point cloud after preprocessing
is 1,225,025.

4.2. Boundary and Corner Point Information Extraction.
After the preprocessing of the point cloud, the data volume
is still over 1 million. Since the final data have a large Euclid-
ean distance between them, to increase the processing speed
of the algorithm, the last data of the point cloud are first
segmented by Euclidean clustering. The clustering radius is
set to 5m according to the design size of the lower chord rod,
and the point cloud cluster threshold is set to 10,000–40,000.
The clustering results are shown in Figure 20(a), and differ-
ent colors indicate the different point cloud clusters.

Based on the Euclidean clustering segmentation, a pla-
nar clustering segmentation based on region growth is

TABLE 6: The results of the three algorithms for bolt hole feature extraction.

Time (s) Radius error (mm) Hole center distance error (mm)

Our method 23.61 0.60 2.17
DBSCAN — — —

Angle criterion 31.85 1.53 3.96

FIGURE 17: Site view of the lower chord bar.
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FIGURE 18: Rod raw point cloud.

FIGURE 19: Point cloud data after rod preprocessing.

ðaÞ

ðbÞ ðcÞ
FIGURE 20: Boundary and corner point feature extraction: (a) rod end data segmentation, (b) T1 point cloud plane segmentation, and (c) T1
corner point extraction.
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performed for each point cloud cluster to adjust all the planar
clusters. One of the final point cloud data, T1, is used for
detailed illustration, as shown in Figure 20(b). The number
of last point clouds is 612,544, eight planar point cloud clus-
ters are coclustered, and different colors distinguish different
planar point cloud clusters.

The plane equations are fitted to the extracted planar
point cloud clusters using the RANSAC algorithm, and the
coefficients of the plane equations are shown in Table 7. The
plane equations are arranged and combined in groups of
three. The rank r(A)= 3 of the linear equation system is
used as the screening condition to obtain the plane equation
system that can intersect at one point. The simultaneous
solution obtains the characteristic information of the corner
points. The coordinates of the corner points are shown in
Table 8, and Figure 20(c) shows the extraction effect of the
T1 corner points.

4.3. Bolt Hole Information Extraction. For the planar point
cloud clusters segmented by regional growth clustering, all
planar point clouds containing bolt holes are first extracted.
The height error is negligible since the bolt holes are all made
of standard parts. To improve the accuracy of the feature
information extraction, as shown in Figure 21(a), the neigh-
boring planar clusters containing bolt holes are all projected
to the outer planar equations, and then the projected point
clouds are merged to form a point cloud cluster. Then, using
the density-based DBSCAN clustering segmentation, the

neighborhood radius is set to 3mm, the minimum number
of points is set to 10, and the threshold of the number of
point cloud clusters is set to 50–1,000 to remove the boundary
point cloud. The effect of the bolt hole surface extraction is
shown in Figure 21(b). The feature information of the bolt
hole is fitted to each point cloud cluster using the RANSAC
algorithm. This includes the location of the bolt hole center
and the corresponding bolt hole radius. Figure 21(c) shows
the spatial location of the bolt hole center, and Figure 21(d)
shows its relative position with respect to the original point
cloud.

4.4. Dimensional Accuracy Test. The results of all the feature
information extraction for the bar are shown in Figure 22,
where the yellow point cloud is the original point cloud, the
red point cloud is the center of the bolt hole, and the blue
point cloud is the corner point. The feature information of
the bolt is the distance calculated to compare the theoretical
size results of the bolt, as shown in Table 9, and the average
value is used to show the measured values of the same type.
By comparing the dimensional information of the actual
measured data of the bars with the design data, the proces-
sing error of the structure is given visual feedback. According
to the relevant contents of the technical specification for high-
way bridge construction (JTG/T 3650-2020), the manufactur-
ing error of the bar is within the permissible range of the
specification.

TABLE 7: T1 plane equation coefficient.

Point cloud Plane name A B C D

T1

M1 −0.9886 0.1450 −0.0156 8.3954
M2 −0.0028 0.0110 0.9999 −162.5580
M3 −0.4100 0.9097 −0.0654 18.0125
M4 0.9983 0.0579 0.0005 −4.7387
M5 −0.0054 0.0107 −0.9999 162.6840
M6 −0.9978 −0.0667 −0.0009 4.0148
M7 0.9978 0.0668 0.0022 −4.2687
M8 −0.0005 −0.0099 −0.9995 161.4950

TABLE 8: Coordinates of plane intersection points.

Point cloud Corner point x y z

T1

P1 5.0442 −5.8329 162.6460
P2 5.0100 −5.8484 162.6460
P3 5.0101 −5.8512 162.6060
P4 4.2961 −6.1700 162.6480
P5 4.3261 −6.1565 162.6480
P6 4.3264 −6.1593 162.6070
P7 5.0498 −5.9076 161.5730
P8 5.0149 −5.9243 161.5590
P9 5.0442 −5.8329 162.6460
P10 5.0010 −5.8484 162.6460
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FIGURE 21: Bolt hole feature extraction: (a) T1 plane projection, (b) T1 bolt hole clustering, (c) T1 bolt hole center, and (d) T1 hole center
relative position.

FIGURE 22: The effect of rod feature information extraction.
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5. Conclusion

To address the problems of poor feature information extrac-
tion accuracy, large subjective factors, and low automation
degree of large steel joist structures, this paper proposed an
automatic extraction method of key feature information such
as boundary points, corner points, and bolt holes by nested
combination of classical algorithms for the engineering
needs of reverse modeling and virtual trial assembly. Based
on this study, the following findings were obtained:

(1) The feature point extraction algorithm based on the
region growing algorithm, the clustering algorithm, and
RANSAC can accurately extract the boundary and corner
points of large bolted steel members. The experimental results
show that the proposed method is robust to noise interfer-
ence, the algorithm has a high correct extraction rate, and it
saves 44.0% of the computation time compared with the tra-
ditional way.

(2) The bolt hole parameter calculation method based on
classical algorithms such as alpha shapes and Euclidean clus-
tering segmentation can accurately fit the circle center coor-
dinates and radius parameters. The average errors of the
calculated circular hole radius and hole center distance are
0.6 and 2.17mm, respectively, which improves the extraction
efficiency by 25.9% compared to the traditional algorithms.

(3) The new method of verifying the extraction accuracy
of the algorithm by establishing a standard point cloud model
effectively avoids the influence of factors such as manufactur-
ing error and observation error on the accuracy verification.
In addition, this method can add Gaussian noise to the stan-
dard point cloud model to verify the robustness of the algo-
rithm against noise interference.

(4) The proposed automatic feature batch extraction
method for bolted steel trusses shows good accuracy in prac-
tical engineering, which can provide accurate data support
for virtual trial assembly, reverse modeling, and dimensional
inspection.
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