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Surcharge loading on slopes is a prevalent engineering practice that can precipitate landslides, posing significant risks to construc-
tion integrity and safety. This study elucidates the impact of surcharge loading on mixed soil–rock slopes and benchmarks their
response against that of pure soil slopes under analogous loading conditions. Investigating damage manifestations, this research
quantifies the distribution of plastic zones, the morphological alterations of slopes at characteristic stages, the dynamics of slip
velocity at monitoring points, and the extent of landslide run-out. The material point method is adopted for its proficiency in
simulating large deformation scenarios. Two-dimensional models of a representative soil–rock mixed slope and a pure soil slope
are meticulously crafted using digital image processing techniques. The distinct damage profiles exhibited by the mixed and pure
soil slopes are compared. The comparative assessment elucidates the distinct damage patterns of different slopes, enhancing the
understanding of their behavior under variable surcharge intensities and contributing to the discourse on slope stability
assessments.

1. Introduction

Human engineering activities, such as soil deposition on slopes
and the construction of edifices upon them, have been identi-
fied as significant contributors to landslide occurrences in prac-
tical engineering scenarios [1–8]. This issue has garnered
substantial attention from the academic community, with
researchers from both national and international institutions
dedicating efforts to investigate the phenomenon, thereby
yielding a wealth of scholarly insights. Regarding laboratory
experiments, a soil slope model was constructed by Ni et al.
[9], through which the dynamics of landslide progression
under various loading conditions were scrutinized. The find-
ings from this study indicated that the phase of accelerated
sliding in induced landslides is remarkably transient. The
work of Liao et al. [10] encompassed the examination of
strength-deformation characteristics of in situ loess under load-
ing conditions. Utilizing both triaxial tests and numerical simu-
lations, they explored stress and strength evolution on the most
critical sliding surfaces during slope stacking. Employing the

discrete element method, Hu and Lu [11] simulated slope fail-
ure behavior consistent with observations from laboratory
experiments. On the numerical front, Wu [12] applied the
material point method (MPM) to model the kinematic features
ofmound-load-induced earthen landslides, with their paramet-
ric study delineating 29 distinct operational scenarios and cul-
minating in the development of a predictive model for disaster
causation in such landslides. Wu and Zhao [13] formulated a
numerical model grounded in geological survey data and
probed the contact behavior of elastic–plasticmaterials, thereby
elucidating the deformation and damage mechanisms inherent
to mound-load-induced landslides. Additionally, various scho-
lars have delved into the deformation and damagemechanisms
of artificially induced landslides through theoretical research,
augmenting the understanding of the mechanisms governing
this intricate occurrence [14–16].

Recent studies have predominantly concentrated on iso-
tropic homogeneous soil slopes; however, nonhomogeneous
slopes present a more common scenario in practical engineer-
ing applications [17–19]. This paper presents an examination
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of the deformation and damage behaviors exhibited by non-
homogeneous slopes, specifically those comprising soil–stone
mixtures subjected to heap loads. The soil–rock mixtures
under consideration are primarily constituted of crushed
stone and soil, which exhibit substantial strength disparities.
This is largely attributed to the soil particle interconnectivity
being considerably weaker than the cementation forces
between the mineral constituents of the aggregate blocks
[20]. The deformation and damage responses of the soil com-
ponent are governed by the compaction of the interstitial
voids and the relative displacement and slippage of particles.
In contrast, the crushed stone is subject to microfracturing,
pore space compression, and the initiation and propagation of
cracks, culminating in material failure [21]. Owing to the
heterogeneity in physical and mechanical properties among
particles within the soil–rock mixture, the finer interactions
between soil particles, as well as the macroscopic interactions
between crushed stone and soil particles, manifest character-
istics that diverge from those observed in typical soil or rock
media [22, 23]. As a result, the stress–strain relationships and
yield conditions pertinent to this class of mixtures are dis-
tinctly differentiated from those associated with homoge-
neous soil or rock.

The MPM is employed due to its effectiveness in handling
large deformation simulations [24, 25]. Despite its advan-
tages, MPM faces stability challenges, particularly whenmate-
rial points intersect computational grids, which can lead to
errors or failure in the calculations [26]. Researchers have
addressed these challenges by incorporating characteristic
functions that stabilize themethod whenmaterial points cross
grids, drawing on ideas from the smoothed particle hydrody-
namics (SPH) method [27]. Additionally, the use of higher
order B spline basis functions has been investigated to
improve the method’s accuracy [2, 3, 28, 29]. The affine
particle-in-cell (APIC) method has been proposed to enhance
the mapping and projection processes within MPM, increas-
ing computational stability [30]. A further refinement has
been made with the PolyPIC format [31]. MPM’s integration
with other numerical methods such as the discrete element
method (DEM) and the finite element method (FEM) has
yielded a multiscale simulation approach that captures dam-
age behavior at both macro and microlevels [32–34]. In prac-
tical applications, scholars have realized the MPM’s
superiority in several fields, including aerospace [35], explo-
sion analysis [36], high-speed collision [37–39], biomechanics
[40], and geotechnical engineering [41]. In the geotechnical
field, the MPM has been specifically applied to the slope
[6, 7, 42–45], dam [46], multifield coupling [47], and fracture
analysis [48], yielding compelling results.

The study investigates the effects of surcharge loading on
soil–rock mixed slopes, with a comparative analysis of pure
soil slopes subjected to identical loading conditions. Emphasis
is placed on delineating the response of these slopes by asses-
sing various failure indicators such as the distribution of plas-
tic deformation zones, alterations in slopemorphology during
critical phases, the evolution of slip velocities at specific obser-
vation points, and the maximum extent of debris dispersion
postfailure. To capture the complexity of the damage

evolution, the research employs theMPM, a robust numerical
approach tailored for simulations involving significant defor-
mations. The slope models, including a standard soil–rock
mixed slope and a pure soil counterpart, are obtained by
digital image processing techniques. The entire process of
landslide motion is recreated, and the material motion and
deformation characteristics including slip velocity, slip dis-
tance, and plastic strain of the slope are recorded for analysis.

This paper is organized as follows: First, the MPM is
described in Section 2. The model setup and the material
parameters are then presented in Section 3. Section 4 outlines
the simulation results given by MPM. Conclusion is drawn in
the last section.

2. MPM

2.1. Methodology. The MPM evolved from the particle-in-cell
(PIC) method [49–51]. Sulsky et al. [25] replaced the solu-
tion of the instanton equations with the solution on the mass
points to overcome the challenge of considering event corre-
lation when solving the instanton equations on the grid.
Consequently, they proposed the MPM, which is more suit-
able for solid material simulation analysis. As illustrated in
Figure 1, the MPM utilizes two description systems, namely,
the material point and the grid, to characterize the simulated
object’s behavior during the simulation. The object is discre-
tized into a series of Lagrangian material particles that move
in the background grid. It is noteworthy that these two
description methods have different significance in the
MPM, with the material points occupying the primary posi-
tion and the background grid occupying the secondary posi-
tion. A new background grid is created at the start of each
time step, which is then discarded at the end of the

Material point, p
Subdomain, Ωp

Grid node, I
Weighting function transferring

Ω

FIGURE 1: Material point method discrete format.
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computational step, ensuring that the grid does not store any
information during the simulation. Thus, all information,
including mass, momentum, energy, strain, and stress, is
stored at the material point. After obtaining the information
from the material point at each computational step, the
momentum is updated on the grid, and boundary conditions
are imposed.

In the present study, the classical MPM has been
employed for the investigative analyses. Despite the superior
stability and accuracy offered by the generalized interpola-
tion MPM [26] and the B-sample MPM [29], these advanced
techniques necessitate a heightened computational intensity.
Considering the extensive computational demands of the
research delineated in this paper, the utilization of piece-
wise linear shape functions alongside the updated stress first
(USF) computational scheme [52] was deemed appropriate
for the solution strategy. Thermal exchanges are not
accounted for in this study; consequently, energy conserva-
tion is assured, and mass information is preserved within the
material points, ensuring no loss of material information
throughout the simulation. The weak form of the governing
equations, along with the associated intrinsic equations, is
expounded upon in the subsequent sections.

2.2. Discretization Formulations. As illustrated in Figure 1,
employing a rectangular linear finite element background
mesh to discretize the model, the density of the object can
be approximated as follows:

ρ xið Þ ¼ ∑
p
mpδ xi − xip

À Á
; ð1Þ

where mp represents the mass of the material point, δ is
the Dirichlet function, and xip denotes the coordinates
of the material point. The equivalent integral weak form of
the equation and the given surface force boundary condition
are given by the following:

Z
Ω
ρ üiδuidV þ

Z
Ω
ρσsijδui;jdV −

Z
Ω
ρbiδuidV

−

Z
Γt

ρt siδuidA¼ 0;
ð2Þ

where δui denotes the imaginary displacement equal to 0 at
the boundary Γu; σsij ¼ σij=ρ denotes the specific stress;
t si ¼ t i=ρ denotes the boundary surface force and the imagi-
nary displacement satisfies δui 2fδuijδui 2 C0; δuijΓu ¼ 0g:,
in which C0 denotes the set of continuous functions. Accord-
ing to Equation (2), we can transform the weak form of the
control equation into the form of summation over the
masses as follows:

∑
p
mp üipδuip þ ∑

p
mpσ

s
ijpδuip − ∑

p
mpbipδuip

−∑
p
mpt

s
iph

−1δuip ¼ 0;
ð3Þ

where the subscript p denotes the physical quantity carried
by the material point at the position xip, and h is the hypo-
thetical boundary layer thickness, which is introduced to
convert the last term at the left end of the weak form into
a volume fraction.

Within each computational step of the MPM, the rela-
tionship between the material points and the background
grid remains robust until the background grid is discarded.
The transfer of information between these two components
is accomplished via the interpolation of the shape function
NIðxiÞ :, which is constructed on the background grid nodes.
In this paper, the shape function is represented as a variable
with subscript I for the variables on the background grid
nodes. The specific form of the shape function NIðxiÞ : is as
follows:

NIp ¼
1
4

1þ ξIξp
À Á

1þ ηIηp
À Á

; I ¼ 1; 2; 3; 4; ð4Þ

where ξp 2 ½− 1; 1�:; ηp 2 ½− 1; 1� : denotes the natural coordi-
nates of the material point p, and ðξp; ηpÞ : is the natural
coordinate value of the unit node, which takes the value
ðÆ1;Æ1Þ :.

At the commencement of each computational step within
the MPM framework, the weight of each material point with
respect to the neighboring grid nodes is computed. Subse-
quently, the pertinent information from the material points
is transferred onto the respective grid nodes in accordance
with the calculated weights. Mathematically, the mass and
momentum at a grid node are formulated as follows:

mI ¼ ∑
p
mpNIp;   PIi ¼ ∑

p
mpvpiNIp; ð5Þ

where mp and vpi denote the mass and velocity of the mate-
rial points, respectively.

In the context of the USF calculation format, the stresses
at the material points are updated at the commencement of
the calculation step. Following the acquisition of material
point information, the grid is solved for the strain rate
ε̇n−1=2ijp and the spin rate Ωn−1=2

ijp of the material point based
on the velocity gradient of the grid nodes, facilitating the
determination of the objective stress rate, also known as
the Jouman stress rate [53].

ε̇n−1=2ijp ¼ ∑
I

1
2

SnIp;jv
n−1=2
iI þ Sn−1=2Ip;i vn−1=2jI

� �
; ð6Þ

Ωn−1=2
ijp ¼ ∑

I

1
2

SnIp;jv
n−1=2
iI − Sn−1=2Ip;i vn−1=2jI

� �
; ð7Þ

σ̇ ij ¼ σrij þ σikΩjk þ σjkΩik: ð8Þ

In the above equations, σrij ¼CσJ
ijklε̇kl is the Jouman stress

rate and CσJ
ijkl is the elastic stiffness tensor. Upon obtaining
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the objective stress rate, we can already calculate the trial
stress σ̃n

ijp ¼ σn−1ijp þ σ̇n−1=2
ijp Δt based on the isotropic elastic

intrinsic model. The return mapping algorithm [54] is then
utilized to bring the trial stress to the Drucker–Prager crite-
rion, followed by pulling any stress above the yield surface
back to the yield surface to derive the true stress σnijp. The
internal forces of the grid nodes can be calculated based on
the obtained stress information, and external forces can be
applied based on the boundary conditions. In this paper,
only the influence of gravity is taken into account as an
external force. After obtaining the nodal force information,
the momentum equation can be solved on the grid nodes as
follows:

f intiI ¼ −∑
p
SIp;jσijp

mp

ρp
; ð9Þ

f extiI ¼ ∑
p
SIpmpbip þ ∑

p
SIp

mp

ρp
t iph−1

mp

ρp
; ð10Þ

where σijp denotes the Cauchy stress of the material points,
NIp;j denotes the derivatives of shape functions, ρp denotes
the density of the material points, bip denotes the body force
such as gravity, t si ¼ t i=ρ represents the boundary surface
force, and h represents the boundary layer thickness.

pnþ1=2
iI ¼ pn−1=2iI þ f niIΔt; ð11Þ

where fiI ¼ f extiI þ f intiI , superscript represents the time step,

and pnþ1=2
iI represents the resultant force of node force at the

nth time step.
The terminal phase of the computational procedure

encompasses the remapping of the updated momentum to
the material point, followed by the revision of the material
point’s location. A hybrid momentum mapping approach,
integrating features from both the PIC and FLIP techniques,
is employed to map momentum information with the aim of
enhancing stability. This hybridization serves to attenuate
the instabilities typically associated with the FLIP method
[55].

vnþ1=2
ip ¼ α∑

I
Pnþ1=2
iI Nn

Ip=m
n
I þ 1− αð Þ vn−1=2ip þΔt∑

I

fIiNIp

mI

� �
;

ð12Þ

where the first term denotes PIC mapping, and the second
term denotes FLIP mapping. α¼ 0:01, which is known to
ensure good stability based on prior research [30]. However,
given the marked difference in strength between the soil and
stone materials, we adopt a slightly larger value α¼ 0:02 in
this paper. Notably, it is important to emphasize that the
momentum information associated with the PIC mapping
pertains to the postupdate momentum of the grid nodes,
whereas the momentum information associated with the
FLIP mapping corresponds to the momentum increment
over the time step.

The positions of the material points are updated as fol-
lows:

xnþ1
ip ¼ xnip þ Δtvnþ1

ip ; ð13Þ

where xnip and x
nþ1
ip denote the location of material points at n

and n+ 1 time step, respectively.

3. Model Setup and Material Parameters

In this study, digital image processing methodologies were
harnessed to develop a mixed soil–rock slope model. An
image portraying the soil–rock mixed slope, derived from
the work of Lianheng et al. [17], was digitized to capture
the image information. The RGB color values were extracted
and utilized to distinguish between stone and soil constitu-
ents, with pixels of distinct colors being designated as repre-
sentative material points. To achieve the desired number of
material points for the final model, the pixel count within the
image was systematically reduced or augmented. Upon ful-
fillment of the model’s criteria, the pixel coordinates were
appropriated as the coordinates for the corresponding mate-
rial points.

Figure 2 illustrates the finalized model of the slope, where
distinct colors represent different materials: earth yellow for
the mound carrier, blue for soil, and black for stone. The
model is composed of 45,697 material points, with stone
constituents forming approximately 20% of the total. More
precisely, the model comprises 9,207 material points attrib-
uted to stone, while the soil is represented by 36,490 material
points. The size distribution of the stones is aligned with the
observations made by Lianheng et al. [17], where stones with
diameters exceeding 0.8m and those below 0.2m constitute
6% and 5.5% of the total stone volume, respectively. The
predominant diameter range for stones in the model spans
from 0.4 to 0.7m, adhering approximately to a normal dis-
tribution pattern.

Table 1 displays the material parameters for both the
slope and the heap carrier. The mechanical properties of
the soil are mirrored in the heap carrier, save for the density,
where the heap carrier exhibits a marginally higher value
when compared to that of the soil.

For the computational analysis conducted, the open-
source code from the research by the Soga team was utilized
as a foundation, which was then enhanced to suit the specific
requirements of the present study [56]. The initialization of the
slope’s state was achieved through the adoption of a linear
incremental gravity model prior to the commencement of the
simulations. Boundary conditions were rigorously defined:
Vertical displacements at the base were constrained; lateral
movements were restricted on the left boundary; and the right
boundary was set to limit rightward movements, specifically at
the base of the slope within a vertical extent of 0–3.2m. As
illustrated in Figure 3, gravity was incrementally increased
from zero to half the terminal value, T, before reaching and
sustaining the target magnitude, thereby ensuring a steady state
from t=T onward. This methodical escalation of gravity was
strategically employed to circumvent the stress oscillations
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typically induced by its abrupt application. The initial state reso-
lution was executed using the pure PIC momentum mapping
method. Despite its known limitations, the method’s numerical
stability was leveraged to curtail oscillations effectively.

In the conducted simulation, a temporal resolution was
achieved by adopting a time step of 0.01ms for all computa-
tional increments. The background mesh was configured

with a grid dimension of 0.1m, and each cell within this
grid was populated with four material points, uniformly
positioned with an initial interpoint spacing of 0.05m. The
simulation spanned over a period of 25 s, culminating in a
total of 2,000,000 discrete time steps. To ensure a consistent
application of the pile load atop the slope, the pile carrier was
constrained to behave in an elastic manner throughout the
simulation duration. For the purpose of calibrating the soil
and rock constituents within the slope, the Drucker–Prager
(D–P) model was utilized to simulate elastic test stresses.

4. Simulation Results

4.1. Stability of Slopes. Figure 4 delineates the maximum
displacement responses of the slope under varying top loads.
It is observed that the soil–rockmixed slope retains superior stability
relative to a uniform top load. At a top load of 352.8kPa,
the maximum displacement registered is approximately
0.08m, indicative of the slope’s natural settlement attrib-
uted to its own weight. This suggests that the external load
does not exert a detrimental effect on the stability of the
slope. In contrast, a top load of 313.6 kPa results in a maxi-
mum displacement of roughly 1.2m, signifying substantial
deformation and the onset of complete destabilization dam-
age. Moreover, as the top load is increased to 352.8 kPa, the

TABLE 1: Mechanical parameters of the SRM slope.

Parameters Soil Stone Stacked objects

Density, ρ (kg/m3) 1,800 2,410 2,000
Young’s modulus, E (MPa) 50 20,000 50
Poisson’s ratio, ν 0.35 0.2 0.35
Internal friction angle, ϕ (°) 24 42 24
Cohesion, c (kPa) 30 900 30
Dilatancy angle, ψ (°) 24 42 24
Constitutive model Drucker–Prager Drucker–Prager Elastic

7.8 m 

3.8 m 

8.0 m 

18.0 m 

Stacked objects
Soil

Rock

5.4 m 

3.2 m 

2.0 m 

Slope angle: 45° 

FIGURE 2: Geometric parameters of soil–rock mixed slope model (45,697 material points in total; 36,490MPs for soil; 9,207MPs for stone).

Gravity

Time
T/2 T

Slope
Stacked objects

g

n·g

FIGURE 3: Incrementation of gravity over the period T.
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displacement escalates to a peak value of about 5.1m. These
observations underscore the considerable inaccuracies that
can arise from approximating the actual heterogeneous slope
to an isotropic pure soil model for the purpose of stability
analysis.

Figure 5 displays the time-dependent curves of the
slope body’s kinetic energy for top pile loads of 313.6 and
352.8 kPa. Several groups of examples under the same con-
ditions are made to demonstrate how mesh size and the
spacing of the material points influence the simulation
results. In the figures, PPC represents the number of particles
per cell, with a larger PPC indicating a smaller spacing
between particles. When studying the effect of PPC variation
on simulation results, the mesh size is fixed at 0.1m. As can
be seen from Figure 5(a), the simulation results are almost
identical when PPC changes, indicating that particle spacing

does not affect the simulation results at the current mesh
resolution. When investigating the impact of mesh size on
simulation results, the particle spacing is fixed at 0.05m.
From Figure 5(b), it is observed that, as the mesh size
increases, the simulated kinetic energy curve decreases
slightly, suggesting that a reduction in mesh resolution does
affect the calculation results, although the impact is minimal.

The analysis of kinetic energy variations reveals several
key observations. Initially, it is noted that the peak kinetic
energy of the pure soil slope demonstrates a linear escalation
in response to an increasing top load. Subsequently, upon
exceeding the bearing capacity of the slope, catastrophic fail-
ure ensues, and a rapid surge to peak kinetic energy is
observed in the system. Following this surge, the slope is
seen to reattain stability under a reduced top load, with the
duration of landslide activity lasting in the vicinity of 5 s. In
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FIGURE 4: The maximum displacement of the slope at different top loads.
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FIGURE 5: Kinetic energy curves of the pure soil slope under different stack loadings: (a) kinetic energy curves for various PPC scenarios; (b)
kinetic energy curves for various dx scenarios.
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the case of a larger top load, however, the landslide duration
prolongs to approximately 16 s, featuring a pronounced sta-
ble sliding phase within the decay process.

Figure 6 offers a critical comparison between the behav-
ioral responses of two types of slopes subjected to identical
mounding loads. When the top pile load imposed on the
pure soil slope reaches its threshold, a uniform and maxi-
mum displacement occurs across the slope body, which
translates as a whole. The sliding region is demarcated by a
sliding zone characterized by the utmost plastic deformation.
Below this zone, the slope body maintains stability, exhibit-
ing no signs of plastic deformation. The distribution of plas-
tic regions within the pure soil slope is predominantly
confined to the sliding area and the leading edge of the
mound carrier. In contrast, when subjected to an equivalent
load, the soil–rock mixed slope exhibits a markedly higher
degree of stability, with a maximum displacement not
exceeding 0.1m. The plastic deformation is mainly localized
at the lower portion of the mound carrier, demonstrating
minimal plastic deformation elsewhere.

4.2. Dynamics of Soil–Rock Mixed Slopes under Ultimate
Mounding Load. Figure 7 illustrates the deformation
response of the soil–rock mixed slope to an incrementally
increased top pile load. It is observed that as the loading

magnitude escalates, the slope undergoes pronounced defor-
mation. The maximum displacement of the slope rapidly
reaches a peak prior to the application of a 513.5 kPa load,
after which no further change is detected, indicating a swift
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FIGURE 6: Plastic zone as well as displacement distribution at the top load equals to 313.6 kPa. ((a: a1 and a2)) show the displacement
distribution and plastic zone distribution of pure soil slope; (b: (b1 and b2)) show the displacement distribution and plastic zone distribution
of the mixed soil–rock slope.
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restabilization without subsequent notable damage. At the criti-
cal load of 513.5 kPa, the displacement recorded during the
initial 0–10 s interval mirrors the displacement at 509.6 kPa.
Post the 10-s mark, however, the slope is subjected to significant
displacement, and by the 22-s time point, no indications of
impending stabilization are discernible.

To rigorously examine the behavior of a soil–rock mixed
slope under a load of 513.5 kPa, the duration of the simula-
tion was extended to 32 s, inclusive of the initial 2 s allocated
for establishing the baseline state. This facilitated the gener-
ation of curves depicting the evolution of displacement and
kinetic energy within the slope, as delineated in Figure 8.
Comparative simulations were performed under consistent
conditions to assess the effects of mesh granularity and mate-
rial point distribution on the fidelity of the simulation results.

The ensuing data suggest a conclusion parallel to that
observed in the pure soil slope analyses: The particle count
per cell (PPC) exerts minimal impact on the outcome of the
simulations, whereas an increase in mesh spacing has a mar-
ginally detrimental effect on the precision of the simulated
results.

Figures 4 and 8 elucidate the differential deformation and
damage responses exhibited by the soil–rock mixed slope as
opposed to the pure soil slope when subjected to the ultimate
load. It is observed that the displacement curve for the pure
soil slope exhibits a continuous rise over time until it reaches
a plateau under the ultimate load condition. By contrast, the
soil–rock mixed slope displays an initial phase of displace-
ment increase, succeeded by a period of stability lasting
approximately 10 s. Subsequent to this phase, a pronounced
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FIGURE 8: Displacement curve of soil–rock mixed slope at the top stack load equals to 513.5 kPa and kinetic energy change curve.
(a): (a1) displacement curves for various PPC scenarios; (a2) displacement curves for various dx scenarios. (b): (b1) kinetic energy curves
for various PPC scenarios; (b2) kinetic energy curves for various dx scenarios.
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escalation in the maximum displacement of the slope is
noted, which then proceeds to a gradual state of equilibrium
post the 25-s mark. It is noteworthy that the kinetic energy
curve’s trajectory shows a close correlation with that of the
displacement curve.

Figure 9 presents the velocity distribution contours for the
soil–rock mixed slope at various critical junctures throughout
the damage progression. In particular, Figure 9(a)) corre-
sponds to the initial acceleration stage, Figure 9(b) to the
stabilization stage, while Figures 9(c) and 9(d) correspond
to the secondary acceleration stage. Figures 9(e) and 9(f)
represent the deceleration and subsequent stabilization stages,
respectively. It is observed that the soil–rock mixed slope
attains its maximum velocity during the secondary accelera-
tion phase, with velocities reaching an approximate magni-
tude of 1.8m/s.

4.3. Final Configuration of Soil–Rock Mixed Slope under
Ultimate Mounding Load. Subsequent to the stabilization of
the slope, figures were generated to delineate the distribution

of plastic zones, the pattern of displacement, and the slope’s
ultimate morphology. These illustrative figures are provided
in Figures 10 and 11.

The analysis of Figure 10(a) reveals that the soil–rock
mixed slope, upon initial stabilization, developed a continu-
ous sliding zone and multiple plastic zones with a cross-
distributed pattern, characteristic of significant rock-binding
effects. It is important to note that the continuous sliding
zone emerged not at the slope’s base but rather at an elevated
position proximal to the foot of the slope. When juxtaposed
with the preliminary model depicted in Figure 2, it becomes
evident that the dispersal of stones at the base of the slope
served as a barrier, impeding the downward progression of
the plastic zone into this region.

In the poststabilization phase of the soil–rock mixed
slope, as depicted in Figure 10(b), plastic deformation was
observed to have reached its full extent. The slope mass
above the continuous sliding zone, along with the mound
carrier, underwent substantial displacement, excluding the
slope mass at the mound carrier’s leading edge, which
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FIGURE 9: The rate distribution clouds of the soil–rock mixed slope during the damage process: (a–f ) indicate the rate clouds at 1, 8, 10, 14, 18,
and 25 s, respectively.

Advances in Civil Engineering 9



retained its structural integrity. In contrast, the remainder of
the sliding mass displayed pronounced fragmentation. Sub-
sequent to stabilization, as illustrated in Figure 11, the maxi-
mum displacement was recorded at approximately 6.0m,
predominantly concentrated at the slope’s forefront adjacent
to the pile carrier. The displacement observed in the pile
carrier and its underlying slope was comparatively minor.
The results underscore the influence of stone distribution
at the base of the slope on the stability and deformational
response of the soil–rock mixed slope. The sliding and plastic
zones, which were initially identified during the early stabili-
zation stage, were instrumental in defining the ultimate
deformation and fragmentation patterns observed upon final
stabilization. These insights carry significant implications for
the design and maintenance of soil–rock mixed slopes in
engineering applications.

5. Conclusion

In this study, the deformation response of soil–rockmixed slopes
subjected to stacking loads is investigated utilizing the MPM. To
enhance the fidelity of the soil–rock mixed model simulation,
digital image processing techniques were employed to construct

a model that aligns more closely with the actual heterogeneous
block distribution. For the sake of computational efficiency, the
classical MPM was selected, and a mixed mapping scheme with
small time increments was implemented to maintain stability
throughout the computational process. The dynamic response
of the slope, along with its deformation and damage character-
istics, was effectively captured by simulating various operational
conditions under differing top pile loads. The research culmi-
nated in a set of conclusions based on the empirical data
gathered.

(1) The comparative analysis indicates enhanced stability
for soil–rock mixed slopes under top-loading condi-
tions as opposed to pure soil slopes. It was determined
that, upon reaching the loading capacity limit, pure
soil slopes demonstrate immediate sliding and a rapid
ascent to peak kinetic energy, with the peak magni-
tude displaying a linear dependency on the imposed
load. Postpeak kinetic energy decay varies with the
size of the stacking load, with larger loads precipitat-
ing a decay characteristic that encompasses a phase of
stabilized sliding. Contrarily, the soil–rock mixed
slopes show a markedly reduced sensitivity to the
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FIGURE 10: Distribution of plastic zone of soil–rock mixed slope at ultimate stacking load: (a) distribution of plastic zone at t= 10 s (first
stabilization stage); (b) distribution of plastic zone at t= 30 s.
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FIGURE 11: The final stage of the soil–rock mixed slope at the ultimate stack load: (a) displacement distribution at t= 30 s; (b) slope
configuration at t= 30 s.
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ultimate mounding load, suggesting an inherent
robustness in their stability profile.

(2) When the soil–rock mixed slope is subjected to its
threshold top pile load, it is not subjected to instan-
taneous landslide damage. Instead, it undergoes a
period of stability following the initial displacement
increase, which precedes a severe landslide event. It is
during the second phase of sliding that the maximum
landslide velocity is observed.

(3) The spatial distribution of boulders within the soil–rock
mixed slope critically dictates the emergence of the pri-
mary sliding zone when damage occurs. Furthermore,
the shear zones manifest in a staggered pattern rather
than a uniform distribution. The resultant damage is
characterized not by a cohesive sliding motion but by
a pronounced fragmentation of the slope material.
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