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Road smoothness not only directly affects the safety and comfort of vehicle travel but also relates to the efficiency and cost-
effectiveness of road maintenance. Traditional road smoothness detection methods usually require professional equipment and
personnel, leading to high costs and cumbersome operations. Therefore, finding a low-cost, simple, and accurate method for
detecting road smoothness is of great significance. This study uses vehicle-mounted acceleration sensors to detect road smoothness,
establishing a correlation between driving vibration acceleration data and the international roughness index (IRI). For this
research, a driving vibration acceleration data acquisition device was developed, and the driving acceleration data from the test
sections were denoised and their feature values extracted. The pseudo-vibration velocity range was used as the characteristic index
representing the road surface smoothness IRI value. Testing with different vehicle types showed that the method is applicable to
both sedans and SUV models, yielding a relative error of 8.9% for the sedan smoothness test model and 6.7% for the SUV
smoothness test model. This study contributes to conducting large-scale road smoothness detection at a low cost, improving the
efficiency of road maintenance and operations.

1. Introduction

Roads serve as crucial transportation infrastructure, fulfilling
people’s basic travel needs, and ensuring transportation effi-
ciency. However, roads inevitably deteriorate due to vehicle
loads and environmental factors, making timely mainte-
nance essential. Given that road maintenance budgets are
often limited, prioritizing which roads need maintenance is
of utmost importance [1, 2]. This requires real-time moni-
toring of road surface quality.

Road surface evenness detection can provide insights
into the condition of the road surface, and vehicle-mounted
laser rangefinders are commonly utilized for this purpose.
Urano demonstrated that point clouds recorded by a laser
scanner mounted on an autonomous vehicle can be used to
extract transverse road contours, offering a cost-effective
method for preliminary road surface evenness investigations
and identifying areas requiring detailed inspection [3, 4, 5].

Bennett introduced a precise rut depth measurement system
using laser technology, providing an accurate measurement
scheme [6].

However, current methods for detecting road surface
evenness face significant challenges. They require the use
of expensive, specialized equipment that demands intricate
calibration by trained personnel. Furthermore, these meth-
ods often necessitate specific equipment mounted on vehi-
cles, limiting their wider applicability. Typically conducted
on an annual basis, these assessments are costly and ineffi-
cient. Consequently, extending these techniques to lower
grade roads, particularly in rural areas, is problematic. The
high costs, complex calibration processes, and dependence
on specialized vehicle-mounted equipment hinder regular,
cost-effective evenness assessments, especially for rural road
networks. To address these issues, researchers proposed porta-
ble road surface evenness detection devices based on driving
acceleration, using low-cost acceleration data collection devices
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on small vehicles to assess road conditions through driving
acceleration data collection and processing. The vibration sig-
nal contains a lot of information, which can be used for road
surface evenness detection and structural health monitor-
ing [7, 8].

Various studies have explored road surface evenness and
damage detection using different techniques. Accelerometer-
based indices calculation methods include Tomiyama and
Kawamura’s [9] lifting wavelet transform (LWT)method using
vehicle axle accelerometers, Chen et al.’s [10] indices related to
evenness, Brunauer et al.’s [11] RSCI index reflecting road
bumpiness and abnormalities, and Zhang et al.’s [12] three-
axis vibration acceleration data collection using cushion-type
accelerometers with a GA-BP neural network. Machine learn-
ing models for damage estimation involve Chatterjee and Tsai
[13] RNNs with long short-termmemory units using 3D pave-
ment data, and Zhang et al. [14] CrackNet, a CNN-based
model for asphalt pavement crack detection. Regression mod-
els for road condition assessment encompass Elhadidy et al.’s
[15] simplified regression model using the LTPP database,
Aleadelat’s [16] correlation models between PSI and variance
of the smoothed signal, andHafez et al.’s [17] univariate regres-
sion multivariate imputation model using historical PMS data.
The smartphone-basedmonitoring systemsmentioned include
Zang et al.’s algorithm [18], which identifies potholes and
humps using smartphones mounted on bicycles. The projects
Nericell, Roadroid, and SmartRoadSense [19, 20, 21], which
offer web-based GIS platforms for visualizing results of road
surface evenness detection. Finally, Abdelaziz [22] developed a
flexible pavement IRI prediction model using the LTPP data-
base,multivariate linear regression analysis, and ANNs, achiev-
ing a correlation coefficient (R2) value of 0.75 for IRI
prediction. Zhang et al. [23] developed a client application
installed on smartphones, establishing a relationship between
acceleration, international roughness index (IRI), and longitu-
dinal profile elevations through theoretical formula derivation.
The IRI calculated by this theoretical method is close to that
calculated by digital survey vehicles, with a maximum relative
error of less than 10%, enabling various vehicles to be used for
road roughness evaluation. Xu and Yu [24] proposed a real-
time road surface evenness recognition method based on a
lightweight residual convolutional network and time-series accel-
eration, achieving a classification accuracy of up to 98.7% for road
surface evenness. This significantly improves the accuracy of rec-
ognition algorithms and reduces computational demands, mak-
ing it suitable for classifying road surface evenness levels.

Douangphachanh andOneyama [25]mounted twoAndroid
smartphones and a GPS recorder on a Toyota VIGO pickup and
aToyotaCamry sedan, testing surface evenness in the range from
1.5 to 16m/km at speeds of 10–80km/hr. They found a correla-
tion coefficient of 0.67–0.75 between IRI and acceleration, dem-
onstrating that vehicle type and equipment have a minor impact
on results. Bisconsini et al. [26] mounted a Samsung Galaxy S5
mini smartphone, equipped with an accelerometer and GPS, in a
standard passenger car. They tested surface evenness in the
range of 1–16m/km at speeds of 20–60 km/hr, finding a cor-
relation between IRI and acceleration of 0.97–0.99, with the
speed of measurement having no significant impact on

evenness assessments. Aleadelat et al. [27] collected IRI data
from 35 road sections at two different speeds (40 and 50 miles
per hour) and converted the recorded acceleration into
MATLAB software variables. The results showed that the
coefficient of determination (R2) between RMS and standard
IRI at the two speeds (40 and 50 miles per hour) was 0.83 and
0.86, respectively. According to the model constructed by
Alatoom and Obaidat [28], the correlation coefficient R2

between normalized root mean square, normalized variance
(NVAR) of the Z-axis acceleration, and IRI is 0.69, which
requires further optimization. Aboah and Adu-Gyamfi [29]
established three predictive models to correlate with actual
road surface IRI, with the model developed using deep learning
achieving an R2 of 0.79. However, the sample size for model
construction was small (only 36), making it difficult for the
model to interpret large datasets. Sandamal and Pasindu [30]
examined the ability of a smartphone application (Roadroid) to
estimate IRI on rural road surfaces. The results showed good
accuracy (R2= 0.77) in IRI measurement using Roadroid, com-
pared to IRImeasured by a Bump Integrator device. Xu et al. [31]
developed a portable road surface evenness detection device,
PRD, using the Arduino platform for data collection, and con-
structed an RFR model for immediate IRI prediction, achieving
an R2 of 0.967 in the test set when combined with subsequent
data analysis. Bidgoli et al. [32] developed an automated system
for the immediate collection of road evenness data. This system
was tested on a secondary road, comparing its data with those
from a road surface profiler device. The results showed a high
correlation (R2=0.85) between the two methods. Du et al. [33]
collected data by installing a self-designed vehicle-mounted sen-
sor terminal in a sedan and SUV, driving at non-uniform speeds,
achieving a final fit of R2= 0.87.

This study aims to address the issues present in current
road surface evenness detection methods, such as the need
for expensive equipment, specialized personnel, and complex
equipment calibration procedures. Although there have been
developments in portable road surface evenness detection
devices and data processing methods, there is still a need
for further optimization of algorithms and models. Against
this backdrop, we propose a road surface evenness testing
method based on driving vibration acceleration. This method
not only reduces equipment costs but also employs a simple
linear fitting model more suited to engineering applications.

Our method is characterized by its low cost, simplified
operation, strong applicability, and capability for large-scale
rapid testing. Compared to traditional methods, our approach
uses low-cost equipment, avoiding the need for expensive invest-
ments and thus reducing the overall cost of testing. By relying on
driving vibration acceleration for testing, it eliminates the need for
specialized personnel, simplifying the operation and obviating the
need for complex equipment calibration. The use of a simple
linear fitting model aligns more closely with the practical needs
of engineering applications, offering higher applicability and
operability. Additionally, our method enables large-scale rapid
testing, providing more efficient technical support for road
maintenance management. Overall, this new method based
on driving vibration acceleration offers a more economical,
practical, and rapid solution for road surface evenness detection.
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2. Driving Vibration Data and IRI
Data Collection

2.1. Test Equipment Development. Using a self-developed
driving vibration acceleration data collection device for data
collection, the device can simultaneously collect three-axis
acceleration (X-, Y-, Z-axis), GPS coordinates (latitude and
longitude), and vehicle speed while keeping all the informa-
tion time-synchronized, as shown in Figure 1.

The collection frequency of the accelerometer is 1,000Hz,
and the model of the accelerometer is ADXL355. Its sensitiv-
ity is 400mV/g, and the resolution is 0.65mg. The GPS uses a
u-bloxmodule, a high-performance global positioning system
component, with an output frequency of 10Hz and a posi-
tioning performance of less than 2.5m. The device is con-
nected to a computer via WiFi, and the acceleration data
can be displayed in real-time on the software interface. The
device can be fixed on the test vehicle using magnetic suction
or a custom fixed slot.

2.2. Test Plan Design. In order to measure the road surface
evenness and corresponding driving acceleration data, the driv-
ing vibration acceleration data collection device is installed on a
CICS vehicle. A fixed slot is fabricated for easy installation and
removal, and it is rigidly connected to the vehicle using bolts on
site. The driving vibration acceleration data collection device is
placed in the fixed slot and fixed with suction cups at the
bottom, as shown in Figure 2.

In order to ensure that the experimental process is as free
from interference as possible and to ensure the accuracy of the
test results, three sections of asphalt road on Shuinan Road in
Changping District, Beijing, were selected for testing. These
are six sections: 1–1, 1−2, 2–1, 2−2, 3–1, and 3–2. The traffic
and pedestrian flow in these sections is relatively low, and the
degree of road surface damage varies, making them represen-
tative. The total length of the road is 14 km, and it is a two-
way, four-lane first-class highway, as shown in Figure 3.

After controlling the vehicle speed between 40 and 60km/hr,
simultaneously press the collection buttons on both devices to
start measuring the road surface data of the same lane. At the
same time, record the speed and driving conditions during the
measurement. The X-axis direction is aligned with the longitu-
dinal direction (driving direction), the Y-axis direction is the

transverse direction, and the Z-axis direction is the vertical direc-
tion. The Z-axis acceleration data are used for analysis.

2.3. Test Data Collection

2.3.1. IRI Data for the Test Sections. Once the IRI values are
collected using the CICS vehicle, it is essential to align these
values with the driving vibration acceleration data based on
distance, while eliminating sections where lane changes and
traffic lights occur during data collection. Following the data
organization, the IRI (10m) values for the test sections are
illustrated in Figure 4.

Figure 4 shows the measured IRI values for the six sections:
1–1, 1–2, 2–1, 2–2, 3–1, and 3–2. As can be seen from the figure,
the IRI values for each section vary significantly, and the selected
sections have noticeable differences in road surface evenness.
This represents different road surface damage conditions.

2.3.2. Acceleration Data for Test Sections. In order to facilitate
the observation of the relationship between IRI values and
driving vibration acceleration, and to ensure proper data
alignment based on driving distance, the average driving
vibration acceleration is calculated. According to the IRI
value for every 10m, when driving at a constant speed of
40 km/hr, the average value needs to be calculated every 900ms.
Figure 5 shows the driving vibration acceleration values for
Section 1–1 before and after averaging.

From Figure 5, it can be seen that the driving vibration
acceleration data collection equipment collects uniform noise
fluctuations, but on uneven road surfaces, there will be signifi-
cant peaks and valleys, indicating that the vehicle is experiencing
vibrations, and the vibration signals are more pronounced than
the noise signals. The driving vibration data fluctuates within a
certain range, and the relationship between road surface even-
ness and driving vibration can be analyzed by comparing the IRI
data based on the difference and frequency of peaks and valleys.

3. Relationship Model between Driving
Vibration Feature Index and IRI

3.1. Pseudo-Vibration Acceleration Data Conversion. After
fitting the synchronized acceleration data with IRI values,
the standard deviation, range, and sum of absolute values
with the highest fitting degree were selected for subsequent
feature index calculation. Let the acceleration data be A= (a1,
a2, …, an), n is the number of sampling points; ai is the
acceleration (mg) of the i sampling point; and the arithmetic
mean of the acceleration of the sampling points (mg). The
calculation methods of the indicators are as follows:

m¼ 1
n
∑
n

i¼1
ai; ð1Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
ai −mð Þ2

r
; ð2Þ

where σ is the standard deviation (SD).

Range¼max Að Þ −min Að Þ; ð3Þ

FIGURE 1: Driving vibration acceleration data collection device.
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where Range is the range.

Sumabs ¼ ∑
n

i¼1
aij j; ð4Þ

where Sumabs is the sum of absolute values.

To make the driving vibration data fit better with the IRI
and establish a more accurate road surface evenness calcula-
tion model, pseudo-vibration velocity is innovatively used to
transform the acceleration data. The specific conversion pro-
cess is as follows:

V1 ¼ 0þ a1; ð5Þ

V2 ¼ V1 þ a2; ð6Þ

V3 ¼ V2 þ a3; ð7Þ

Vn ¼ Vn−1 þ an: ð8Þ

Form the pseudo-vibration velocity A’= (V1, V2,…, Vn),
adjust A in the above feature index to A’, and adjust ai to Vi.
Calculate the feature index using pseudo-vibration velocity.

By accumulating acceleration to obtain pseudo-vibration
velocities, it becomes easier to understand the changes in
velocity experienced by a vehicle within a unit of time.
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End Start

3–2

3–1

2–2

2–1
1–2

1–1

FIGURE 3: Schematic diagram of the selected test sections.

1–1
0

5

10

15

20

1–2 2–1
Test sections

IR
I

2–2 3–1 3–2

FIGURE 4: IRI values of the test sections (10m).

4 Advances in Civil Engineering



50,000 100,000 150,000 200,000 250,000

0.8

0.9

1.0

1.1

1.2

A
cc

el
er

at
io

n 
(m

/s
2 )

Time (ms)

ðaÞ

50 100 150 200

0.970

0.975

0.980

A
cc

el
er

at
io

n 
(m

/s
2 )

Time (ms)

ðbÞ
FIGURE 5: The driving vibration acceleration values for Section 1–1 before (a) and after (b) averaging.
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FIGURE 6: Vibration amplitude index calculated with pseudo-vibration velocity (10m calculation unit). (a) Pseudo-vibration velocity proces-
sing acceleration signal. (b) Standard deviation processing acceleration signal. (c) Range processing acceleration signal.
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This helps to more intuitively depict the vehicle’s vibrations
on the road. At the same time, the process of accumulating
acceleration to obtain pseudo-vibration velocities can sim-
plify the model to some extent, making the calculation of
characteristic indicators more straightforward and reducing
the complexity introduced in the computational process.
Finally, by using accumulated pseudo-vibration velocities,
it may be possible to better capture the cumulative effect of
vehicle vibrations on the road, thereby more comprehen-
sively reflecting the road surface evenness, especially in cases
of long-duration driving.

The term “pseudo-vibration velocities” is used to better
describe the method of calculating vibration velocity, which
is obtained by accumulating acceleration. The use of
“pseudo-vibration velocities” emphasizes that this is a veloc-
ity derived from the accumulation of vibration, not the actual
velocity of the object. It highlights the difference between
vibration velocity and real velocity, rather than directly mea-
sured velocity.

3.2. Feature Index Calculation Based on Pseudo-Vibration
Velocity. Using 10, 50, and 100m as calculation units, the
feature index calculation and analysis of pseudo-vibration
velocity data were performed. The pseudo-vibration velocity
amplitude variance (Var), standard deviation (SD), and
range (Range) were selected as the objects of analysis.

The calculation feature index with a 10m calculation unit
is shown in Figure 6. These feature indexes have high simi-
larity in amplitude peaks during vehicle driving.

Figure 6(a) shows the results of processing the vibration
amplitude signal using pseudo-vibration velocity (Var). In
the 0–100, 700–800, and 850–950m sections, there are four
relatively prominent peaks in vehicle amplitude. This indi-
cates that in these sections, the vehicle has a larger vibration,
the road surface evenness is worse, and it has a negative
impact on vehicle driving. Figure 6(b) shows the results of
processing the vibration amplitude signal using the standard
deviation (SD). Although there are also significant peaks in
the same four sections, there are more interference peaks,
which affect the accurate determination of the uneven road
section’s position. Figure 6(c) shows the results of processing
the vibration amplitude signal using the range (Range), and
these prominent sections are still within the four areas men-
tioned earlier. In summary, when using a 10m calculation
unit, the pseudo-vibration velocity, standard deviation, and
range can better express the similarity in processing road
surface vibration amplitude, and can more accurately reflect
the relationship between vibration amplitude and road sur-
face evenness within the test section.

Using pseudo-vibration velocity as the base data and
50m as the calculation unit, the feature index calculation is
shown in Figure 7. From Figure 7, it can be seen that for
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FIGURE 7: Vibration amplitude index calculated with pseudo-vibration velocity (50m calculation unit). (a) Pseudo-vibration velocity proces-
sing acceleration signal. (b) Standard deviation processing acceleration signal. (c) Range processing acceleration signal.
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different feature indicators (pseudo-vibration velocity, stan-
dard deviation, range), the vibration amplitude during vehi-
cle driving is basically consistent. There are more noticeable
peaks in the 100, 200, 300, 700–800, and 900–1,000m sections.
When calculating the feature value with a 50m calculation unit,
the road surface evenness displayed using the above three fea-
ture indicators is approximate in overall trend, and the peak
positions are almost coincident. Compared to the 10m calcu-
lation unit, the 50m calculation unit has a wider applicability in
expressing road surface evenness.

Using pseudo-vibration velocity as the base data and 100m
as the calculation unit, the feature index calculation is shown in
Figure 8. For different feature indicators (pseudo-vibration
velocity, standard deviation, and range), the trend of vibration
amplitude during vehicle driving is similar, and there is a more
noticeable peak near 1,000m, indicating that the vehicle’s vibra-
tion amplitude is larger, and the road surface evenness becomes
worse within this range.When using a 100m calculation unit to

calculate the feature value, the vibration amplitude is almost a
straight line in the parts where the road surface evenness
changes slightly, and it has a significant display for the parts
where the road surface evenness is worse, making the sections
that need maintenance more prominent.

In summary, when using the same calculation unit to
calculate the feature index, the vibration amplitude is basically
consistent during vehicle driving for different feature indica-
tors, and the consistency is higher when the calculation unit
length is larger. When using different calculation units to
represent the feature index, there is a certain deviation in
the peak position, which is mainly related to the selected
calculation unit length. The longer the calculation unit length,
the smoother the vibration amplitude curve, and the better the
identification of sections with poor evenness. The smaller the
calculation unit length, the clearer the vertical vibration
changes during vehicle driving, and the more detailed the
driving vibration situation can be reflected.
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FIGURE 8: Vibration amplitude index calculated with pseudo-vibration velocity (100m calculation unit). (a) Pseudo-vibration velocity
processing acceleration signal. (b) Standard deviation processing acceleration signal. (c) Range processing acceleration signal.

TABLE 1: Fitting results of V Range and IRI when the vehicle is driving at a uniform speed of 40 km/hr.

IRI (m) 10 20 30 40 50 60 70 80 90 100

R2 0.234 0.400 0.511 0.663 0.754 0.663 0.696 0.752 0.814 0.873
a 0.078 0.109 0.117 0.137 0.146 0.126 0.136 0.154 0.151 0.161
b 1.812 1.290 1.151 0.825 0.673 0.989 0.820 0.530 0.587 0.423
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3.3. Driving Vibration Feature Index and IRI Relationship
Model. According to the above analysis, the pseudo-vibration
velocity range (V Range) is selected as the feature index to
characterize the road surface evenness (IRI). Using linear
fitting, the linear relationship between V Range and IRI is
established, and the IRI is calculated by testing the V Range.
The linear fitting relationship between V Range and IRI cor-
responding to different calculation units at uniform speeds of
40 and 60 km/hr is shown in Tables 1 and 2. Here “a” repre-
sents the slope of the linear fitting formula, and “b” repre-
sents the intercept of the linear fitting formula.

The larger the calculation unit, the better the fit between
V Range and IRI, and the greater the slope of the fitting
curve. When the vehicle speed is uniform, the fitting degrees
of 40 and 60 km/hr are similar, and the uniform driving
speed within the range of 40–60 km/hr has little effect on
IRI prediction. Taking the linear fitting graph at 60 km/hr

as an example, as shown in Figure 9, the smaller the calcula-
tion unit, the more scattered the V Range data. As the calcu-
lation unit increases, the correlation between V Range and
IRI becomes better. The best correlation is achieved when the
calculation unit is 100m, with R2= 0.895. We observed that
as the interval between IRI values increases, there is an
improvement in the linear fitting results. This improvement
can be attributed to the larger IRI intervals effectively miti-
gating the measurement errors associated with smaller IRI
intervals. These errors primarily arise from the challenges in time
alignment during testing (where smaller distances demand
higher precision in time alignment), as well as the lower redun-
dancy in the vehicle’s travel path and potential sudden incidents
in smaller distances. Consequently, larger IRI intervals lead to
more stable and reliable fitting outcomes.

According to the model fitting results, the driving vibra-
tion acceleration is converted into pseudo-vibration velocity,

TABLE 2: Fitting results of V Range and IRI when the vehicle is driving at a uniform speed of 60 km/hr.

IRI (m) 10 20 30 40 50 60 70 80 90 100

R2 0.138 0.380 0.546 0.626 0.737 0.688 0.691 0.741 0.846 0.895
a 0.068 0.112 0.145 0.150 0.157 0.149 0.158 0.173 0.185 0.181
b 1.458 0.731 0.197 0.108 −0.005 0.095 −0.050 −0.273 −0.464 −0.411
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FIGURE 9: Fitting graph of V Range and IRI when the vehicle is driving at a uniform speed of 60 km/hr: (a) unit 40m, (b) unit 60m, (c) unit
80m, and (d) unit 100m.
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and then the range of pseudo-vibration velocity (V Range) is
obtained. Through the linear fitting relationship, the road
surface IRI value can be derived. To evaluate the applicability
of this method under different driving conditions, the model
is validated under various driving conditions.

4. Evaluation of Road Surface Evenness
Based on Driving Vibration Data

4.1. Collection of Vibration Acceleration Data under Different
Driving Conditions. Two vehicle models (Tesla Model 3 and
Toyota RAV) were equipped with driving vibration
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TABLE 3: Fitting results for each section in 100m unit.

Type Road segments R2 a b

Sedan

1–1 0.830 0.323 −0.020
1–2 0.851 0.364 −0.139
2–1 0.906 0.429 −0.472
2–2 0.918 0.590 −1.602
3–1 0.871 0.394 −0.210
3–2 0.876 0.311 0.734

SUV

1–1 0.805 −0.077 0.330
1–2 0.923 −0.100 0.346
2–2 0.892 −1.000 0.524
3–1 0.835 0.080 0.373

Advances in Civil Engineering 9



acceleration data collection devices and tested on the experi-
mental road sections that CICS vehicles had tested.

During the test, one person drove the vehicle at a constant
speed of 40 km/hr, while another person in the car was
responsible for operating the computer to collect data. They
started recording when the vehicle reached the beginning of
each test section and stopped recording when it reached the
end. They also recorded the time points when the speed chan-
ged or deviated from the lane. The test sections for the sedan
were the same as those for the CICS vehicles, namely 1–1, 1–2,
2–1, 2–2, 3–1, and 3–2. Due to traffic control reasons, the SUV
test sections were 1–1, 1–2, 2–2, and 3–1.

4.2. Construction of IRI Relationship Model Based on Driving
Vibration Acceleration Data of Different Vehicle Models.
After collecting the driving vibration data, the acceleration

was processed and converted into the pseudo-vibration
velocity range (V Range), which was then fitted with the
IRI value to establish the model. For 100m units, the linear
models for different test sections and vehicle models at a
speed of 40 km/hr are shown in Table 3.

From Table 2, it can be seen that there is a certain corre-
lation between driving vibration acceleration and IRI values.
The best-fit R2 value for the sedan can be as high as 0.91, and
for the SUV, the best-fit R2 value can be as high as 0.92. The
linear fitting models for different vehicle models are shown
in Figure 10.

As shown in Figure 11, the fitting trends of different
vehicle models in the same section are roughly similar. The
processed driving vibration acceleration data collected by
different vehicle models have a good correlation with the
IRI values. This proves the applicability of the model in
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FIGURE 11: Test section IRI prediction. (a) Comparison of predicted and actual IRI values for SUV model on Section 3–1. (b) Comparison of
predicted and actual IRI values for sedan model on Section 3–2.
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different vehicle models and demonstrates the feasibility of
using pseudo-vibration acceleration range for road surface
evenness prediction.

4.3. Road Surface Evenness Prediction Based on Driving
Vibration Data. Using the established relationship models
between driving vibration acceleration and IRI values for
different vehicle models, IRI value predictions for the test
sections were performed. In the fitting equation, Y represents
IRI100m and X represents V Range, as shown in Table 4.
The prediction results are shown in Figure 11.

As shown in Figure 11, the road surface evenness values
predicted by the linear fitting model are in good agreement
with the actual values. The average relative error between the
IRI predicted values and the actual values for the SUV test is
6.7%, and the average relative error between the IRI pre-
dicted values and the actual values for the sedan test is
8.9%. An error accuracy within 10% can meet the testing
requirements for low-grade road surface IRI values.

5. Conclusion

This paper demonstrates the feasibility of using driving
vibration acceleration data collection devices to detect road
surface evenness. It derives and establishes the relationship
between driving vibration acceleration data and the IRI,
obtaining road surface evenness evaluation results based on
acceleration. The main research findings are as follows:

(1) Developed a driving vibration acceleration data col-
lection device that synchronizes the collection of
acceleration, speed, and GPS data. By processing
and extracting the feature values of driving accelera-
tion data on the test sections, the acceleration data are
innovatively converted into pseudo-vibration data.

(2) For different calculation unit elements, the optimal
fitting result is obtained with the range index corre-
sponding to the pseudo-vibration velocity and the
IRI. As the calculation unit element increases, the
range and IRI linear fitting results improve, and
the fitting curve slope also increases. However, when
the calculation unit element is 100m, the fitting degree
is greater than 0.8.

(3) Using the pseudo-vibration velocity range as the fea-
ture index representing the road surface evenness IRI
value, linear fitting is performed. At 40 and 60 km/hr
uniform speeds, the correlation between the pseudo-
velocity range within the 100m section and the IRI
value reaches 0.8706 and 0.8960, respectively. The fit-
ting degrees at 40 and 60 km/hr are similar, and the
influence of uniform driving speed within the 40–60
km/hr range on IRI prediction is not significant.

(4) Testing with different vehicle models showed that the
pseudo-velocity range and IRI relationship model is
applicable to both sedans and SUVs, with similar
fitting trends and small fluctuation ranges for V
Range values. The relative error for the sedan even-
ness testing model is 8.9%, and for the SUV evenness
testing model, it is 6.7%.

This study developed a road surface evenness detection
method based on driving vibration acceleration data collec-
tion devices. Further research will extend the model’s appli-
cation to more vehicle types (such as, buses, taxis, etc.), and
achieve real-time monitoring and integration with intelligent
transportation systems and intelligent maintenance plat-
forms to improve the efficiency of road surface evenness
testing.

In the future, further improvements can be made by
enhancing the accuracy of both the accelerometer and GPS
sensors, thereby increasing the precision of road surface IRI
detection. By developing advanced data processing algo-
rithms, such as neural network models, the acceleration
data can be utilized more effectively for IRI value detection.
Additionally, these models need to be adjusted and tested for
different environmental conditions, road surface types, and
vehicle types to ensure their broad applicability and reliability.
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TABLE 4: Road surface unevenness IRI prediction based on driving acceleration.

Type Speed (km/hr) Test road segments Fitting formula Predictive road segments

Sedan 40 1−1, 1−2, 2−1, 2−2, 3−1 y= 0.3745x− 0.2069 3–2
SUV 40 1−1, 1−2, 2−2 y= 0.4853x− 0.6834 3–1
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