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This paper proposes a probabilistic hazard assessment model for debris flows considering the uncertainties of multiple influencing
factors based on copula approaches. Fifty-nine rainfall-induced debris flows occurred between 2001 and 2009 in Taiwan are taken
as an illustrative example to validate the proposed approaches. A copula-based probabilistic model is developed to model the joint
probability distribution of debris-flow volume V and its influencing factors (e.g., rainfall intensity, RI and landslide area, AL). The
developed model is then used to make probabilistic prediction of debris-flow volume for a specific hazard level, and compared with
the empirical approaches. The proposed probabilistic model is also used to develop the exceedance probability charts of quantities
for a specific debris-flow basin. Results show that the developed V–RI–AL probabilistic model can provide reasonable estimates of
debris-flow volume in Taiwan for a specific probability level of 0.94, and show better predictive performance than the empirical
relationships by using an independent debris-flow dataset in Taiwan for validation. The developed multivariate joint probabilistic
model can also provide the exceedance probability of debris flows through considering the uncertainties of debris flow and its
influencing factors, providing a preliminary reference for hazard assessment of the debris flows.

1. Introduction

Debris flows are characterized with large discharge, high
velocity, and enormous destructive power that can usually
cause devastating damages to the buildings, infrastructures,
local residents in the downstream [1, 2]. To reduce the
damages of debris flows, performing accurate hazard assess-
ment of debris flows is necessary for risk management and
remedial measure designs [3–5]. Hazard assessment of debris
flows generally includes the quantitative estimation of the
most important parameters (e.g., the debris-flow volume,
mean flow velocity, and runout distance), and determination
of the probability that a debris-flow event can occur in a
specific debris-flow basin [6, 7]. Among the most important
debris-flow parameters, the debris-flow volume, V, is one of

the most important parameters for potential debris-flow haz-
ard assessment, which is a prerequisite for predicting the
peak discharge and runout distance of debris flow [8–10].
Meanwhile, the probability level of debris flows can be quan-
titatively determined by a probabilistic model of debris-flow
volume [11, 12]. However, due to various uncertainties and
variabilities in debris flows, it is difficult to accurately esti-
mate the volume of debris flow and its corresponding prob-
ability of occurrence.

Various attempts have been made to estimate the debris-
flow volume for a specific debris-flow basin, including theo-
retical and empirical approaches. Theoretical methods are
physically based models to simulate the dynamic processes
of debris flows [13–16]. Theoretical approaches generally
have the limitation of selecting appropriate rheological
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parameters [17]. Due to the scarcity of rheological parameter
data and size effects in laboratory tests, the rheological
parameters are associated with great uncertainties. Empirical
approaches usually provide a simple and useful tool for its
convenience, which have been widely used in estimating the
debris-flow volume. Most empirical equations are developed
by relating the debris-flow volume to the basin area of a
specific debris-flow basin [18–21]. Some empirical equations
were also proposed to consider more factors (e.g., geological
and rainfall parameters) to make more accurate estimation of
debris-flow volume [22–24]. For example, Gartner et al. [20]
developed a multivariate nonlinear empirical equation for
predicting the debris-flow volume by considering the basin
area and the total storm rainfall. Chang et al. [24] proposed
an empirical relationship by including geological, topographic,
rainfall parameters. However, there are various unavoidable
uncertainties and variabilities that exist in debris flows [25–27].
For example, due to the sedimental production, erosion, and
deposition, the debris-flow volume for a specific basin may
change over the time. Moreover, the topography of a particu-
lar debris-flow basin also changes over time, affecting the
propagation of debris flow [28]. These influencing factors
are also associated with various uncertainties, which are usu-
ally ignored in estimating the debris-flow volume. Thus, it is
necessary to take various uncertainties into account in the
hazard assessment of debris flows.

This paper proposes probabilistic hazard assessment mod-
els for debris flow considering the uncertainties of multiple
influencing factors based on the copula approaches. Probabi-
listic analyses are conducted on the 59 past rainfall debris-
flow events in Taiwan. First, 59 datasets of past debris flows
are divided in to 50 sets of data for model construction and
9 sets of data for validation. A multivariate copula model is
developed based on the 50 sets of observation data to model
the joint probability distribution of debris-flow volume V and
its influencing factors (e.g., rainfall intensity, RI and landslide
area, AL). Then, the developed V–RI–AL copula model in
Taiwan is used to make probabilistic prediction of the debris-
flow volume for a specific hazard level, and compared with
the empirical approaches. Finally, the proposed probabilistic
model is validated by the independent nine sets of data. The
proposed probabilistic model is also used to develop the exceed-
ance probability charts of quantities (e.g., the debris-flow vol-
ume, V and rainfall intensity, RI) considering a given landslide
area, AL for a specific debris flow. This paper successfully char-
acterizes the high uncertainties and variabilities of debris-flow
volume and its influencing factors, and provide a preliminary
reference for debris-flow risk assessment and control measure
design.

2. Methodology

2.1. Definition of Multivariate Copula Model. According to
Sklar’s [29] theorem, the basic idea of copula theory is to
decompose a joint probability function into the modeling of
dependence and the modeling of multiple marginal distribu-
tions. Let X1, X2,…, Xn (n> 2) denote debris-flow parame-
ters. The multivariate joint cumulative distribution function

(CDF) of X1, X2,…, Xn is denoted as F1; 2;⋯; n ðx1; x2;⋯; xnÞ.
Then, F1; 2;…; n ðx1; x2;…; xnÞ can be presented as follows
[30, 31]:

F1;2;…;n x1; x2;…; xnð Þ ¼ P X1 ≤ x1;X2 ≤ x2;…;Xn ≤ xnð Þ
¼ C F1 x1ð Þ; F2 x2ð Þ;…; Fn xnð Þ; θ½ �
¼ C u1; u2;…; un; θð Þ

;

ð1Þ

where PðX1 ≤ x1;X2 ≤ x2;…;Xn ≤ xnÞ is the cumulative
probability given X1 ≤ x1;X2 ≤ x2;…;Xn ≤ xn;  Cðu1; u2;…;
un; θÞ is the multivariate copula function with the copula
parameter θ; u1 ¼ F1ðx1Þ; u2 ¼ F2ðx2Þ;…; un ¼ FnðxnÞ are the
marginal CDFs of X1, X2,…, Xn, respectively. The most
appropriate marginal distributions of X1, X2,…, Xn can be
determined by Akaike information criterion (AIC) based on
the observation data among various candidate distributions (e.g.,
Truncated Normal, Lognormal,Weibull, and Truncated Gumbel
distributions). From Equation (1), the joint probability-density
function (PDF) ofX1, X2,…, Xn, f1; 2;…; nðx1; x2;…; xnÞ is writ-
ten as follows:

f1;2;…;n x1; x2;…; xnð Þ ¼ ∂nC F1 x1ð Þ; F2 x2ð Þ;…; Fn xnð Þ; θ½ �
∂F1 x1ð Þ∂F2 x2ð Þ…∂Fn xnð Þ ∏

n

i¼1

∂Fi xið Þ
∂xi

¼ c F1 x1ð Þ; F2 x2ð Þ;…; Fn xnð Þ; θ½ �∏
n

i¼1
fi xið Þ

¼ c u1; u2;…; un; θð Þ∏
n

i¼1
fi xið Þ;

ð2Þ

where f1(x1), f2(x2),…, fn(xn) are the marginal PDFs of X1,
X2…, Xn, respectively; cðu1; u2;…; un; θÞ is the multivariate
copula density function associated with the copula function
Cðu1; u2;…; un; θÞ, which is given by:

c u1; u2;…; un; θð Þ ¼ ∂3C u1; u2;…; un; θð Þ=∂u1∂u2…∂un:
ð3Þ

Multivariate copula functions, such as elliptical copulas
(e.g., Gasussian copula) and Archimedean copulas (e.g., Frank,
Clayton, and Clayton copulas) have n-dimensional generaliza-
tions, which can be used in Equation (3) to construct the joint
distribution of multivariate parameters. The copula parameter
θ can be estimated by the maximum likelihood estimation
(MLE) based on the observation data fx1j; x2j;…; xnj; j¼ 1;
2;…;Ng with a sample size of N, which is derived as follows:

L θð Þ ¼ ∑
N

j¼1
ln c u1j; u2j;…; unj; θ

À Á
; ð4Þ

where ðu1j; u2j;…; unjÞ are the empirical distributions of
observation data ðx1j; x2j;…; xnjÞ, which are defined as follows
[30, 31]:
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u1j ¼
rank x1j

À Á
N þ 1

; j¼ 1; 2;…;N

u2j ¼
rank x2j

À Á
N þ 1

; j¼ 1; 2;…;N

⋮

unj ¼
rank xnj

À Á
N þ 1

; j¼ 1; 2;…;N

8>>>>>>>>>><>>>>>>>>>>:
; ð5Þ

where rankð⋅Þ is the ranking function. For example, rankðx1jÞ
denotes the rank of x1j among the list x1 ¼ðx11; x12;…; x1NÞ

in an ascending order. Then, the copula parameter can be
obtained by maximizing the likelihood function LðθÞ, which
can be expressed as follows:

bθ ¼ argmax L θð Þ ¼ argmax∑
N

j¼1
ln c u1j; u2j;…; unj; θ

À Á
:

ð6Þ

The best-fit copula among the set of candidate copulas
can be selected by the AIC score, which is given by [28]:

AIC¼ N ln
1

N − k
∑
N

j¼1
Fm x1j; x2j;…; xnj

À Á
− C u1j; u2j;…; unj; θ

À ÁÂ Ã
2

( )
þ 2k; ð7Þ

where Fmðx1j; x2j;…; xnjÞ¼ PðX1<x1j;X2<x2j;…;Xn<xnjÞ
¼ 1

Nþ1∑
N
l¼1∑

N
m¼1∑

N
n¼1Nl;m; n is the measured joint probabil-

ity of multivariate parameters (i.e., X1, X2,…, Xn); Cðu1j; u2j;
…; unj; θÞ is the candidate copula; k is the number of copula
parameters for the candidate copulas.

2.2. Construction of Multivariate Copula Model. The n-
dimensional multivariate copula model in Equation (1) can
be established based on the multivariate observation data
fx1j; x2j;…; xnj; j¼ 1; 2;…;Ng for X1, X2…, Xn. The con-
struction of multivariate copula model generally includes
four steps:

(1) Determine the most appropriate marginal PDFs
f1(x1), f2(x2),…, fn(xn) of X1, X2…, Xn among various
candidate distributions (e.g., Truncated Normal,
Lognormal, Weibull, and Truncated Gumbel distri-
butions) by AIC;

(2) Determine the copula parameter θ for a candidate
copula function by MLE (i.e., Equation (6)). Note
that the measured data fx1j; x2j;…; xnj; j¼ 1; 2;…;
Ng are transformed to the empirical distributions
ðu1j; u2j;…; unjÞ using Equation (5);

(3) Identify the best-fit multivariate copula model for X1,
X2…, Xn by using Equation (7);

(4) Develop the joint PDF f1; 2;…; nðx1; x2;…; xnÞ of X1,
X2…, Xn by using Equation (2), based on the mar-
ginal PDFs of X1, X2…, Xn and the best-fit multivari-
ate copula model.

3. Data Sources and Marginal
Probability Models

3.1. Data Sources of Rainfall-Induced Debris Flows. This
paper collected 59 datasets of rainfall debris-flow events
occurred between 2001 and 2009 in Taiwan from Chang
et al. [24]. These 59 debris-flow basins were affected by fre-
quent earthquakes, which often induced a large number of

landslides. A large amount of loose material deposited in the
debris-flow basins, making it easy to form debris flows after
intense rainfall. Chang et al. [24] collected physiographical
parameters, geological index, and rainfall factors. Consider-
ing that the debris flows were mainly triggered by the inten-
sive rainfall in the study area, thus, the rainfall intensity, RI,
and landslide area, AL are taken as the main influencing
factors. Fifty-nine datasets of past debris flows are divided
into 50 sets of data for model construction and 9 sets of data
for validation, as shown in Table 1. More details of the geo-
logical conditions and debris flows in the study area are
refered to the study by Chang et al. [24].

Table 1 summarizes the statistical characteristics of RI,
AL, and V of 50 datasets of debris flows in Taiwan. It shows
that the mean value of AL in the study area is 263,785.70m2,
with a coefficient of variation (COV) of 2.37. Even with the
same rainfall conditions in the study area, the landside area
for different debris-flow basins vary by many orders of mag-
nitude. The mean value of V is 97,905.920m3 with a COV of
1.37. Compared with the variability of RI with a COV of 0.28,
AL and V show great variability. Considering that there are
the high uncertainties in the debris-flow volume and its
influencing factors, RI, AL, and V are considered as random
variables, where X1=RI, X2=AL, and X3=V.

The Kendall rank correlation coefficient is used to illus-
trate the cross-correlation between the debris-flow volume
and its influencing factors (i.e., RI, AL, and V), as shown in
Table 2. It is found that these three variables are positively
correlated. It can be seen that there is a strong positive cor-
relation between AL and V with Kendall rank correlation
coefficient of 0.603. Such a strong correlation between AL

and V may implies that more loose material can be trans-
ported downstream to form larger debris flows. RI–AL and
RI–V are also positively correlated with the Kendall rank
correlation coefficients of 0.180 and 0.181, respectively.

Considering that RI, AL, and V are positively correlated
variables, three-dimensional copula density functions are used
to construct the joint probability model of RI, AL, and V. Four
three-dimensional Archimedean copula functions, namely
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Clayton, Frank, Ali–Mikhail–Haq, andGumbel–Houggard cop-
ula, are considered as the possible copulas to characterize the
dependence structure of RI, AL, and V. These four commonly
used copula functions and the copula parameters are presented
in Table 3. Because, the copula functions in Table 3 are single-
parameter copulas. Therefore, the number of copula parameters
for the four candidate copulas k equals to 1.

3.2. Best-Fit Marginal Distributions. To best-fit the marginal
distributions of RI, AL, and V, four commonly used marginal

distributions, namely truncated Normal (TruncNormal),
Lognormal, Weibull, and truncated Gumbel (TruncGumbel)
distributions in the geotechnical literatures [26–28], are used
in this paper. Table 4 summarizes the CDFs and PDFs of
these four distributions.

Based on the 50 sets of debris-flow data, the optimal
marginal distributions of RI, AL, and V are identified by
AIC, respectively. Table 5 presents the AIC scores for the

TABLE 1: Fifty-nine datasets of debris flows in Taiwan and the statistics of RI, AL, and V.

No. RI (mm) AL (m
2) V (m3) No. RI (mm) AL (m

2) V (m3)

50 Sets of data for model construction
1 25.85 1,518,000 455,500 26 19.13 19,440 15,000
2 26.77 1,326,000 342,300 27 14.15 38,472 22,400
3 30.85 595,000 236,000 28 15.09 90,720 50,000
4 30.97 588,000 155,500 29 19.25 6,370 52,800
5 25.75 144,000 99,400 30 28.84 30,000 5,250
6 31.09 84,000 157,700 31 26.67 2,530 12,600
7 27.6 614,000 604,606 32 34.14 10,000 6,000
8 36.56 3,884,000 402,585 33 29.28 700 2,600
9 12.75 16,100 8,400 34 22.62 13,400 9,200
10 11.81 1680 5,200 35 24.5 8,570 50,000
11 16.11 1624 4,830 36 10.56 11,000 75,000
12 13.4 3,520 2,700 37 23.45 1,005,000 326,000
13 23.04 600 2,700 38 27.3 20,800 45,000
14 18.71 104,593 79,400 39 27.42 28,400 15,000
15 19.68 9,410 15,369 40 27.42 236,900 150,000
16 19.7 75,620 87,000 41 26.8 25,700 30,000
17 19.67 231,600 180,000 42 16.66 485,400 70,000
18 21.98 30,561 20,900 43 20.17 26,000 6,000
19 19.17 9,490 8,000 44 21.2 660,450 50,000
20 10.12 472,872 269,500 45 18.75 18,520 30,000
21 11.92 8,000 7,000 46 21.47 20,900 30,000
22 17.86 493,923 256,000 47 21.43 116,700 15,000
23 19.22 5,700 19,428 48 21.89 31,400 68,000
24 31.65 50,400 200,000 49 22.25 6,500 100,000
25 18.82 1,120 19,428 50 22.74 5,600 20,000

Mean 22.08 263,785.70 97905.920 Max 111 3,884,000 604,606
COV 0.28 2.37 1.37 Min 15 600 2,600

9 Sets of data for validation
51 10.47 112,200 49,140 56 22.76 2,080 3,500
52 18.26 199,100 46,800 57 26.88 94,390 120,000
53 16.23 7,320 9,000 58 19.84 96,600 9,000
54 18.69 11,410 40,000 59 14.44 21,700 10,000
55 23.06 7,960 9,000 — — — —

TABLE 2: Kendall rank correlation coefficients of RI, AL, and V.

Statistics X1 X2 X3

X1= RI 1.000 0.180 0.181
X2= AL 0.180 1.000 0.603
X3= V 0.181 0.603 1.000

TABLE 3: Three-dimensional Archimedean copula functions.

Copula Cðu1; u2; u3; θÞ Range of θ

Clayton max½ðu−θ1 þ u−θ2 þ u−θ3 − 2Þ−1
θ; 0� [-1, ∞)\{0}

Frank −
1
θ ln ½1þ ðe−θu1−1Þðe−θu2−1Þðe−θu3−1Þ

ðe−θ−1Þ2 � (-∞, ∞)
\{0}

Ali–Mikhail–Haq u1u2u3
1−θð1−u1Þð1−u2Þð1−u3Þ [-1, 1)

Gumbel–Houggard e−½ð−ln u1Þθþð−ln u2Þθþð−ln u3Þθ �
1
θ [-1, ∞)
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four candidate marginal distributions of RI, AL, and V. It can
be seen that as for RI, Weibull distribution has the minimum
AIC value (i.e., 328.24) among the candidate distributions.
Thus, Weibull distribution is taken as the most suitable mar-
ginal distribution for RI in the study area. As for AL, the AIC
values for TruncNormal, Lognormal, Weibull, and Trunc-
Gumbel distributions are 1,438.31, 1,273.85, 1,281.22, and
1,397.95, respectively. It is obvious that the Lognormal dis-
tribution for AL has the lowest AIC value (i.e., 1,273.85),
which is identified as the most suitable marginal distribution
for AL in the study area. Similarly, the most suitable marginal
distribution for V in the study area is Lognormal distribution
(Table 5).

Figures 1–3 show the PDFs and CDFs of the measured
data and four candidate marginal distributions for RI, AL,
and V, respectively. It is clear that as for RI, the Weibull
distribution fits well with the observation data of RI. Lognor-
mal distribution is in good agreement with the measured
data of AL and V. This validates the accuracy of the identifi-
cation of marginal distributions of RI, AL, and V.

4. Probabilistic Prediction Model of Debris-
Flow Volume Based on Copula Approaches

Based on the 50 sets of observation data of RI, AL, and V in
Table 1, copula approaches are used to construct their joint
probabilistic model. Table 6 presents the results of calibra-
tion of the most suitable copula function and its correspond-
ing copula parameter. The AIC values for Clayton, Frank,
Ali–Mikhail–Haq, and Gumbel–Houggard copulas are
−235.346, −244.087, −197.52, and −100.01, respectively. It
is obvious that Frank copula has the minimum AIC value.
Therefore, it is identified as the most suitable copula to char-
acterize the dependence structure of RI, AL, and V in the
study area. The corresponding copula parameter θ of Frank
copula is calculated as 2.808.

By substituting the best-fit marginal distributions for RI,
AL, and V (i.e., Weibull, Lognormal, and Lognormal distri-
butions), and the most suitable copula function (i.e., Frank
copula) into Equation (1), the three-dimensional joint distri-
bution for RI, AL, and V can be expressed as follows:

F RI;AL;Vð Þ ¼ P RI ≤ RI∗;AL ≤ A∗
L;V ≤ V∗ð Þ ¼ C uRI ; uAL

; uV ; θ
À Á

−
1

2:808
ln 1þ e−2:808uRI − 1ð Þ e−2:808uAL − 1

À Á
e−2:808uV − 1ð Þ

e−2:808 − 1ð Þ2
� �

; ð8Þ

where RI∗;AL
∗, and V∗ are the arguments for RI, AL, and V,

respectively; uRI ; uAL
, and uV are the marginal CDFs for RI,

AL, and V, respectively. Then, based on the probability

theory, the conditional probability α that the debris-flow
volume V for a specific basin equals to V0 considering RI
=RI0 and AL=AL0 can be calculated as follows:

TABLE 4: Four commonly used marginal distributions.

Marginal distribution CDF F(x; p, q) PDF f(x; p, q) μ and σ

TruncNormal Φðx−pq Þ−Φð−p
qÞ

1−Φð−p
qÞ

1ffiffiffi
2π

p
q
exp½−ðx−pÞ2

2q2
�

1−Φð−p
qÞ

μ¼ p; σ¼ q

Lognormal Φðln x−pq Þ 1ffiffiffiffi
2π

p
xq
exp½− ðln x−pÞ2

2q2 � μ¼ expðpþ 0:5q2Þ
σ2 ¼ ½expðq2Þ − 1�expð2pþ q2Þ

Weibull 1− exp½− ðxpÞq� q
p ðxpÞq−1exp½− ðxpÞq� μ¼ pΓð1þ 1=qÞ

σ2 ¼ p2½Γð1þ 2=qÞ − Γ2ð1þ 1=qÞ�
TruncGumbel expf−exp½−qðx−pÞ�g−exp½−expðpqÞ�

1−exp½−expðpqÞ�
q expf−qðx−pÞ−exp½−qðx−pÞ�g

1−exp½−expðpqÞ� μ¼ pþ 0:5772=q; σ2 ¼ π2=6q2

Note.Φ denotes the CDF of standard normal distribution; p and q are the parameters of the marginal probability distribution function; μ is the mean value; σ is
the standard deviation.

TABLE 5: Summary of the calibration for the best-fit marginal distributions.

Marginal distribution
AIC value

RI AL V

TruncNormal 328.52 1438.31 1299.18
Lognormal 331.68 1273.85 1239.22
Weibull 328.24 1281.22 1243.13
TruncGumbel 336.80 1397.95 1275.52

Note. Bold indicates the minimum AIC value among the four candidate marginal distributions.
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α¼ P V ≤ V0 RIj ¼ RI0;AL ¼ AL0ð Þ

¼ C V ≤ V0 RIj ¼ RI0;AL ¼ AL0ð Þ ¼
∂2

∂uRI∂uAL
C uRI0 ; uAL0

; uV0

À Á
∂2

∂uRI∂uAL
C uRI0 ; uAL0

À Á ; ð9Þ

where CðuRI0 ; uAL0
Þ is the bivariate joint distribution of RI

and AL. From Equation (9), it can be seen that given RI=RI0
and AL=AL0, the risk level of a potential debris-flow event
that the debris volume equals to V0 is quantitatively
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FIGURE 1: Best-fit marginal distribution of RI: (a) PDF and (b) CDF.
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FIGURE 2: Best-fit marginal distribution of AL: (a) PDF and (b) CDF.
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characterized as α. Equation (9) also shows that the debris-
flow volume can be estimated with a given probability level α
considering RI=RI0 and AL=AL0. Obviously, there exists a
value of α that can derive the best-fit estimates of debris-flow
volume. Mean-square error (MSE) is a measure of the differ-
ence between the measured and estimated value, which is
given by:

MSE¼ 1
N

∑
N

i¼1
V 0
i − Við Þ2; ð10Þ

where N is the sample size of the debris-flow observation
data; V 0

i is the estimated value of debris-flow volume with
a given probability level α; Vi is the measured value of debris-
flow volume. The probability level α with minimum MSE is
considered as the best-fit risk level, which is subsequently used
to estimate the debris-flow volume by using Equation (9).

Figure 4 shows the relationship between MSE and the
probability level α. It is clear that MSE has the minimum
value when the probability level α equals to 0.94. Given the
conditional probability α= 0.94 and 50 sets of observation

data in Table 1, the volumes for the 50 past debris-flow
events are estimated by using Equation (9). Figure 5 shows
the results of estimated debris-flow volumes by copula
approaches. The determination coefficient is about 0.743. It
is obvious that estimated debris-flow volumes are generally
around the 1 : 1 line. About 98% estimated values are within
the 95% confidence interval.

To further validate the proposed copula approaches,
nine sets of independent observation data in Table 1 (Nos.
51–59) are employed to forecast the debris-flow volume using
Equation (9), where the conditional probability α is set as 0.94.
Meanwhile, an empirical relationship is developed with the 50
sets of “training” data in Table 1, as shown in Figure 6. The
determination coefficient of empirical relationship is about
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FIGURE 3: Best-fit marginal distribution of V: (a) PDF and (b) CDF.

TABLE 6: Identification of best-fit copula function and copula
parameters.

Copula AIC value θ

Clayton −235.346 0.797
Frank −244.087 2.808
Ali–Mikhail–Haq −197.52 0.990
Gumbel–Houggard −100.01 0.000

Note. Bold indicates the minimum AIC value among the four candidate
copulas.
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FIGURE 4: Relationship between MSE and the probability level α.
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0.643, which is then used for comparison. Figure 7 shows the
measured values and predicted values obtained from the pro-
posed copula approaches and the empirical relationship. It is
clear that the V values predicted by the proposed copula
approaches are closer to the measured values. The V values
estimated by the proposed copula approaches show smaller
scatters than that obtained from the empirical relationship.
This indicates that the proposed copula approaches properly
characterizes the high uncertainties and variabilities of the

debris-flow volume and its influencing factors, and can pro-
vide reasonable forecasting of the debris-flow volume.

In addition, it should be noted that the debris-flow vol-
ume also depends on the debris-flow parameters (e.g., flow
velocity) and physiographical parameters. These factors are
not considered in this paper and should be considered for
more rigorous and more accurate estimates of debris-flow
volume. Although the proposed method has the above limits,
these limits do not impact the proposed method itself but are
the common problems of most physical and empirical meth-
ods. The probabilistic model is developed based on a limited
number of observation data from debris-flow events in the
study area. If more debris-flow event data are available, the
joint probability model can be recalibrated to substantially
improve the prediction accuracy of debris-flow volume.

5. Exceedance Probability Charts for Debris-
Flow Hazard Assessment Based on
Multivariate Joint Probabilistic Model

Considering that the debris-flow volume is a key parameter
in the hazard assessment of debris flow, it is worthwhile
developing exceedance probability charts for mitigation
strategies design based on the previous analyses of this study.
The developed probabilistic model (i.e., Equation (8)) can be
used to develop exceedance probability design charts for
debris-flow hazard assessment. From Equation (8), the
exceedance probability of RI and V given a specific landslide
area AL= AL0 is defined as follows [26]:

P V ≥ V0ð Þ ∪ RI ≥ RI0ð Þ ALj ¼ AL0½ � ¼ 1 − P V ≤ V0ð Þ ∩ RI ≤ RI0ð Þ ALj ¼ AL0½ �
¼ 1 − C V ≤ V0;RI ¼ RI0 ALj ¼ AL0ð Þ : ð11Þ

Using Equation (8), the respective exceedance probabil-
ity values of RI and V can be calculated at different threshold

values. Figure 8 shows the conditional probability distribu-
tion and bivariate exceedance probability chart considering
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AL= 263,785.70m2 (i.e., the mean value in Table 1). Each
line in Figure 8(b) implies an equal exceedance probability
line. The bivariate exceedance probability chart of RI and V
shows that the exceedance probability increases with the
decreasing threshold values of RI and V. The exceedance
probability chart of RI and V can also provide a means to
determine the magnitude of a debris flow. For example, if the
rainfall intensity RI= 60mm/hr, the corresponding debris-
flow volume can be estimated with different exceedance prob-
ability. In addition, the intensity of a debris flow can be char-
acterized in a probability-based manner. For example, the
exceedance probability of RI= 60mm/hr and V= 10,000m3

equals to 0.7 from the chart, which can provide a preliminary

reference for debris-flow risk assessment and design of con-
trol measures. Similarly, the exceedance probability chart of
AL and V given a specific rainfall intensity RI= 22.08mm/hr
(i.e., the mean value in Table 1) has the same results, as shown
in Figure 9. The bivariate exceedance probability of AL and V
also increases with the decreasing threshold values of AL and
V. The exceedance probability chart of AL and V can also
provide a means to determine the magnitude of a debris flow.

6. Summary and Conclusions

Hazard assessment is crucial for debris-flow risk assessment
and design of the control measures. This paper proposed
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probabilistic models for debris-flow hazard assessment con-
sidering the uncertainties of multiple influencing factors
based on the copula approaches. The proposed probabilistic
models not only can provide probabilistic estimation of the
debris-flow volume, but also determine the probability of a
potential debris-flow event. The proposed copula approaches
were illustrated by using the 59 past rainfall debris-flow
events in Taiwan. First, 59 datasets of past debris flows
were divided in to 50 sets of data for model construction
and 9 sets of data for validation. Then, a three-dimensional
copula model incorporating the debris-flow volume V and its
influencing factors (e.g., rainfall intensity, RI and landslide
area, AL) was developed based on the 50 sets of observation
data. Finally, the developed V-RI-AL joint probabilistic
model in Taiwan was used to make probabilistic prediction
of the debris-flow volume for a specific hazard level. The
proposed approaches were validated and compared with
the empirical approach by using nine sets of independent
observation data in the study area. The proposed probabilis-
tic model was also used to develop the exceedance probabil-
ity charts of quantities (e.g., the debris-flow volume, V and
rainfall intensity, RI) considering a given landslide area, AL

for a specific debris flow. The findings are summarized as
follows:

(1) The statistical goodness-of-fit tests show that the
Weibull distribution is the most appropriate mar-
ginal distribution for rainfall intensity, RI in Taiwan.
Lognormal distribution is the most appropriate mar-
ginal distribution for debris-flow volume V and land-
slide area, AL in the study area.

(2) Among the Clayton, Frank, Ali–Mikhail–Haq, and
Gumbel–Houggard copula, the Frank copula is the
best-fit copula for characterizing the dependence
structure between RI, AL, and V in the study area.
A three-dimensional joint probabilistic model that
incorporates Weibull–Lognormal–Lognormal distri-
bution, and the Frank copula can be used to charac-
terize the joint probability distribution of RI, AL, and
V in Taiwan.

(3) The joint probabilistic model of RI, AL, and V can be
used to provide reasonable prediction of debris-flow
volume with a specific conditional probability α=
0.94. Compared with the empirical relationship, the
estimated debris-flow volume by using the proposed
copula approaches are closer to the measured values.
The proposed approaches can provide an alternative
method for forecasting the magnitude of a potential
debris-flow event in Taiwan.

(4) The developed probabilistic model of RI, AL, and V
can provide exceedance probability-design charts for
debris-flow hazard assessment. The exceedance prob-
ability increases with the decreasing threshold values
of RI and V given a specific landslide area AL=AL0.
The exceedance probability chart can provide a pre-
liminary reference for debris-flow risk assessment and
design of the control measures.
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