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This study aimed to map the landslide susceptibility in the Chemoga watershed, Ethiopia, using Geographic Information System
(GIS) and bivariate statistical models. Based on Google earth imagery and field survey, about 169 landslide locations were identified
and classified randomly into training datasets (70%) and test datasets (30%). Eleven landslides conditioning factors, including
slope, elevation, aspect, curvature, topographic wetness index, normalized difference vegetation index, road, river, land use, rainfall,
and lithology were integrated with training landslides to determine the weights of each factor and factor classes using both
frequency ratio (FR) and information value (IV) models. The final landslide susceptibility map was classified into five classes:
very low, low, moderate, high, and very high. The results of area under the curve (AUC) accuracy models showed that the success
rates of the FR and IV models were 87.00% and 90.10%, while the prediction rates were 88.00% and 92.30%, respectively. This type
of study will be very useful to the local government for future planning and decision on landslide mitigation plans.

1. Introduction

Landslide is a major natural hazard that poses a significant
threat to human lives and infrastructure [1, 2]. Natural hazards
such as landslides, flood, earthquake, and drought risk cannot
be avoided completely but the processes and consequences can
be mitigated [3, 4]. The Chemoga watershed, located in the
northern part of Ethiopia, is prone to landslide hazards due
to its steep slopes, rugged topography, and intense rainfall.
The increasing population pressure and the rapid expansion
of infrastructure have also contributed to the occurrence of
landslides in the area [5, 6].

In Ethiopia landslides mostly manifest as rock fall, earth
slide, debris and mudflow especially in the steep and hilly
areas of the highlands greater than 1,500m altitude [7, 8].
According to Meten et al. [9], from 1960 to 2010 about 388
people are reported dead, 24 injured, and a great deal of
agricultural lands, houses, and infrastructures were affected.
The occurrence of landslides is an extremely complex phe-
nomenon which depends upon various factors such as geo-
logic structure, lithological association, topography, rainfall,
earthquake, and human activity [10]. One of the most widely
used approaches to reduce the landslide damages is preparing

a landslide susceptibility mapping using suitable models and
selecting the effective conditioning factors [11, 12]. Over the
last decades, many studies utilized used different models to
prepare landslide susceptibility mapping. These models include
the frequency ratio (FR) model [2, 4, 13–18]. Frequency and
Shannon entropy models [19–24], weights of evidence model
[12, 25–29], and Shannon entropy model [11, 30–33]. Land-
slide susceptibility models based on the bivariate frequency
and weights of evidence models [34] and FR and information
value (IV) models [1, 10, 35], machine learning models [36, 37],
and deep learning models [38, 39] have been developed. With
the development of Geographic Information System (GIS),
other researchers have used bivariate FR and multivariate logis-
tic regression models [40–44] to help in the calculation and
visualization of the cumulative effects of conditioning factors
on landslides.

In this study, we aimed to develop a landslide susceptibil-
ity map using GIS and bivariate statistical models in the Che-
moga watershed, Ethiopia. We collected landslide inventory
data through field surveys and prepared various thematic
layers such as slope, elevation, aspect, curvature, topographic
wetness index (TWI), normalized difference vegetation index,
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road, river, land use, rainfall, and lithology from the digital
elevation model (DEM) and satellite imagery. Two bivariate
statistical models, namely, FR and IV, were used to analyze
the relationships between the landslide occurrences and the
thematic layers. The accuracy of the models was evaluated
using a validation dataset.

The results of this study can provide valuable informa-
tion for land use planning and management in the Chemoga
watershed. The development of a landslide susceptibility map
can help in identifying areas that are prone to landslide hazards
and prioritizing mitigation measures to reduce the risk of
landslide disasters.

2. Materials and Methods

2.1. Description of the Study Area. The Chemoga watershed
is located in the upper Abay River basin Ethiopia with an
area 1,414.85 km2. According from UTM coordinate system
(zone 37N), the location of watershed is approximately
between longitudes 330,000–380,000m E and latitude
1,110,000–1,170,000m N and topographically, the altitude
ranges from 863 to 3,946m, shown in Figure 1. Topographi-
cally, the altitude ranges from 863 to 3,946m and the slope
angle varies from 0° to 67°. In terms of land use, most of the
watershed is covered by scrub/shrub and crop lands. The study
area receives high amount of rainfall during the summer sea-
son. Based on Ethiopian National Metrological Agency, the
average recorded annual precipitation and temperature of the
area was 1,376mm and 16.95°C, respectively.

2.2. Data Source and Methodology. In this study, I used both
primary and secondary data. The primary data were col-
lected from field survey and observation and the secondary
data were acquired from governmental and nongovernmen-
tal institutions, journals, internet, and other documents. The

main data used for this study were sentinel-2 images and
30m DEM of the area, Google earth imagery and topograph-
ical map of the area. The data layer of land use and NDVI
were derived from Sentinel-2 images and DEM data used to
create the slope, elevation, aspect, curvature, and TWI data
layers and their extents through spatial analysis tools. The
data of annual rainfall were obtained from the National
Meteorological Agency of Ethiopia. The main road and river
were digitized from the topographical map of Ethiopia and
the geological map was used to create the lithology layer of
the study area. All the data layers have been constructed and
combined in ArcGIS 10.4 tool. Accordingly, the FR and IV
models were used to generate elaborative landslides suscep-
tibility map. The conditioning factors considered, their
format and sources is presented in Table 1, while the meth-
odological workflow is shown in Figure 2.

2.3. Landslide Inventory Map. Landslide inventory mapping
is the systematic mapping of existing landslides in a region
using various techniques such as field survey, aerial photo-
graphs or Google earth imagery interpretation, satellite
image interpretation, and literature search technical and sci-
entific reports, governmental reports, and the interview of
experts [45, 46]. In this study, the landslides inventory map
which has a total of 169 individual landslide locations was
generated according to the integration of different data
sources such as Google earth imagery digitized into points
and field surveys, i.e., GPS points (period between 2016 and
2022). Landslide types in the study area include rockslide,
soil slide, debris flow, earth flow, rock fall, and rock toppling.
Though there is no specific rule for defining how landslide
occurrence will be allocated into training and validation data
sets [47], usually research work has been done by using 70%
of landslides events as training data sets and the rest 30% for
validation of the output model [11, 14, 48]. In this study, 118
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FIGURE 1: Location map of study area.
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(70%) of the landslides inventory data were used for model
training and the remaining 51 (30%) of the landslides inven-
tory data were used for validation.

2.4. Landslide Conditioning Factors. To identify landslide
occurrence conditioning factors is a very complex phenome-
non, because there is no standard rule to select which factor
to be used [49]. In this study, 11 conditioning factors were
selected based on the literatures, effectiveness, availability of
data, and the relevance with respect to land slide occurrence
[23]. These conditioning factors are slope, elevation, aspect,
curvature, TWI, NDVI, road, river, land use, rainfall, and
lithology. Each factor was converted to a raster format and

was classified based on Jenks natural breaks method in Arc-
GIS, shown in Figure 3.

In landslide susceptibility studies, slope is considered one
of the major contributing factor [21, 50]. According to the
importance of slope contribution factor landslide occur-
rence, the slope data were classified into five classes. With
increase in slope angle, the possibility of landslide occurrence
increases [19, 51, 52]. Elevation is an important conditioning
factor in landslide susceptibility mapping and it also impacts
the environmental conditions on slopes such as human activ-
ity, vegetation, soil moisture, and climate [53, 54]. Curvature
has an important role in the surface runoff and ground infil-
tration thus affects the erosion of the surface and ground

TABLE 1: Type of conditioning factors, format, and source.

Type conditioning factors Format Source

Slope, elevation, aspect, curvature and TWI Raster (30m) Derived from of DEM image (2021)

Road and river Vector (scale 1 : 500,000)
Digitized from the study area of topographic map, Ethiopian
Mapping Agency, Addis Ababa, Ethiopia

Land use and NDVI Raster (30m) Analyzed from Sentinel-2 images in the USGS (2021)

Lithology Vector (scale 1 : 500,000)
Digitized from the study area of geological map, Minister of Water
and Energy, Addis Ababa, Ethiopia

Rainfall
Vector

Interpretation of Ethiopian National Metrological Agency, Addis
Ababa (1990–2021)

Landslide inventory Digitized from Google earth imagery and field survey

Input data

DEM
(30 m)

Slope map
Elevation map

Aspect map
Curvature map

TWI map

Land use map
NDVI map

Rainfall map

Reclassifield all conditioning factors map

FR and IV models using ArcGIS

Validation of (AUC and ROC)

Training (70%) Testing (30%)

Landslide inventory map

LSM

Road map
River map

Sentinel-2 sat
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FIGURE 2: Workflow of the methodology.
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FIGURE 3: Continued.
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FIGURE 3: Continued.
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water condition of the region [17]. The curvature map was
classified into concave (negative), convex (positive), and flat
(zero) surfaces. In the case of curvature, the more negative
the value, the higher the probability of landslide occurrence

[29]. Aspect represents the direction that a slope faces [53].
Slope aspect affects erosion, surface evaporation, desertifica-
tion, solar heating and surface weathering, thus affecting the
occurrence of landslides [50, 55]. TWI is among one of the
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FIGURE 3: Landslide conditioning factors; (a) rainfall map, (b) river map, (c) slope map, (d) curvature map, (e) elevation map, (f ) TWI map,
(g) aspect map, (h) land use map, (i) NDVI Map, (j) distance from road, and (k) lithology map.

6 Advances in Civil Engineering



important factors responsible for the landslide, which can
quantitatively display the control of terrain on the spatial
distribution of soil moisture, is a widely used terrain attri-
bute. The TWI conditioning factor was obtained from DEM
with 30m spatial resolution by Equation (1) to express as
follows:

TWI¼ Ln As=tanβð Þ; ð1Þ

where As is the specific catchment area (m2/m) and β is slope
angle in degrees [56]. TWI is used to measure topographic
control of hydrological procedures [57]. Rainfall is consid-
ered to be one of the landslides occurrences conditioning
factor. Rainfall map was prepared using five station locations
in the study area through the IDW interpolation method of
annual average precipitation (1990–2021). Road is one of the
most effective factors on landslide occurrence [1]. Road con-
struction near the hillside may lead to changes in the natural
conditions of areas. River networks plays an important role
in landslide occurrence factor closely to surface water. The
NDVI conditioning factor was obtained from Sentinel-2 sat-
ellite imagery with 30m spatial resolution by Equation (2) to
express as follows:

NDVI¼ IR-R
IR þ R

; ð2Þ

where IR is the infrared and R is the red bands of the elec-
tromagnetic spectrum. NDVI values between −1.0 and 1.0,
where any negative values are mainly generated from clouds,
water, and snow and values near zero are mainly generated
from rock and bare soil and the positive value indicates that
the ground is covered by vegetation. Land use is an impor-
tant conditioning factor that affects the occurrence of land-
slides. The map of land use was derived from Sentinel-2
satellite imagery, by using a supervised classification tech-
nique and classified in to six classes. The study area is pre-
dominantly covered with the cropland and scrubs. The lithology
also classified into four classes and the dominant lithology is
tertiary extrusive and intrusive rocks in the study area.

2.5. Landslide Susceptibility Modeling

2.5.1. Frequency Ratio (FR) Model. FR is one of the most
widely adopted and popular methods for landslide suscepti-
bility assessment [14, 16, 58]. The FR is the ratio of the area
where landslides occurred in the total study area and also is
the ratio of the probabilities of a landslide occurrence to a
non-landslides occurrence for a given attribute [59, 60]. Gen-
erally, a greater ratio indicates a stronger relationship between
a conditioning factor and landslide and vice versa. FR value is
greater than 1, it indicates a high probability of landslide
occurrence, and a value less than 1 indicates a low relationship
between probabilities of landslide occurrence. The landslides
susceptibility map (LSM) can be calculated by summing the
FR of all of the factors considered Equation (3) as follows:

LSM¼ ∑
n

j¼1
FR

LSM¼ FRslope þ FRelevation þ FRaspect þ FRland use

À
þ FRcurvature þ FRroad þ FRriver þ FRNDVI

þ FRTWI þ FRrainfall þ FRLithology

Á
;

ð3Þ

where LSM is landslide susceptibility map and FR represents
for each factor type or class, n is the number of factors. The
FR can be obtained by Equation (4) as follows:

FR ¼ N 00pix00 SXið Þ=∑m
i¼1SXi

N 00pix00 Xj

À Á
=∑n

j¼1N
00pix00 Xj

À Á
" #

; ð4Þ

where the number of landslide pixels in class i of the factor X
is represented by Npix (SXi); the total number of pixels within
factor Xj is represented by Npix(Xj); m is the number of
classes in factor Xi; and n is the total number of factors in
the study area [60].

2.5.2. Information Value (IV) Model. The IV model is a
bivariate statistical approach that objectively assesses land-
slide susceptibility using information theory, providing an
advantage in accurately identifying areas at risk of landslides
and the model was originally proposed by [61] and later
slightly modified by [46]. The information value model is
used to evaluate the spatial relationship between the condi-
tioning factor classes and the probability of landslide occur-
rence. Generally, the higher value of IV model corresponds
to the stronger relationship between the probability of land-
slide occurrence and the conditioning factor class. IV value is
greater than 0 indicates a high probability of landslide occur-
rence, and a value less than 0 indicates a low relationship
between the probabilities of landslide occurrence. Therefore,
the LSM for each pixel was computed by summing the infor-
mation values of each factor class as follows:

LSM¼ ∑
n

i¼1
IVi

LSM¼ IVSlope þ IVElevation þ IVAspect þ IVLand use

À
þ IVCurvature þ IVroad þ IVriver þ IVNDVI

þ IVTWI þ IVRainfall þ IVLithology

Á
;

ð5Þ

where LSM is the landslide susceptibility map and IVi is the
information value each factor class, n is the number of fac-
tors. IV was applied, and the weights were assigned to each
class of each conditioning factor. The information value (IV)
can be calculated using the following formula [61]:

IV¼ log Conditional probability=prior probabilityð Þ
¼ log

Nsl00pix00=Nc00pix00

Nts00pix00=Nta00pix00

� �
;

ð6Þ
where Nslpix is a number of landslide pixels in a given class,
Ncpix is the number of pixels in a given class, Ntspix is a total
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number of landslide pixels in the study area, and Ntapix is a
total number of pixels in the study area.

3. Results and Discussion

3.1. Application of Frequency Ratio (FR) Model. FR was mea-
sured for each class of every landslide conditioning factor by
dividing the landslide occurrence ratio by the area ratio. The
results of the FR model for each of the classes of effective
factors are shown in Table 2. In general, the FR value of 1
indicates the average correlation between landslide occur-
rence and effective factors. A FR value greater than 1 indi-
cates a high likelihood of landslide occurrence, while a FR
value less than 1 indicates a low likelihood of landslide occur-
rence [47]. The analysis of FR for the relationship between
landslide occurrence and slope degree indicate that class
33°–67°, the highest FR value of 9.27 among the other classes
of slope degree. The remaining classes of slope have low
probabilities of landslide occurrence. In the study area, it
was observed that the probability of landslide occurrence
increased with slope gradient up to a certain extent, and
then decreased, consistent with results from other literature
studies [20]. This is because higher slope values increase the
effects of gravity and shear stress [46]. The relationship
between landslide occurrence and elevation indicated that
the range between 1,509 and 2,042m, with a FR value of
2.78, had a high probability of landslide occurrence in
the study area. The elevation ranges between 863–1,509,
2,042–2,513, 2,513–3,059, and 3,059–3,946m, have lower
FR values (0.28, 0.99, 0.41, and 0.53, respectively), indicating
low probabilities of landslide occurrence. Commonly, as the
elevation increases, the probability of landslide occurrence
increases. The aspect factor classes with the highest abun-
dance of landslide occurrence probability were east facing
(FR= 1.03), south east facing (FR= 1.60), south facing (FR
= 1.24), south west facing (FR= 1.42), west facing (FR=
1.24), and northwest facing (FR= 1.04), indicating a high
probability of landslide occurrence in these areas. However,
the remaining aspect classes have lower abundance of FR
value less than 1, it indicates that a low probabilities of land-
slide occurrence. Considering the land use, results show that
the water body, forest area, grass and scrub/shrub and bare
land use types have values of FR (2.07, 1.50, 1.54, and 22.92,
respectively), implying a high probabilities of landslide
occurrence. The highest FR value of bare land are due to
its exposure to erosion and soil moisture [41]. In the case
of curvature factor classes of concave (−16.55 to (−0.98))
and convex (0.75–20.22), have the highest value of FR
(1.39 and 1.38), respectively, indicating a high probabilities
of landslide occurrence. The other curvature class of flat
slope has a low FR value (0.70), indicating that a low proba-
bilities of landslide occurrence. Distance from the road clas-
ses 6,985–11,577m with a value of FR (2.05), has the greatest
impact on landslide coherence. Commonly, the landslide
frequency increases as the distance from roads decreases.
Therefore, the existing road and the on-going constructions
disturb the stability of slope there by increasing the proba-
bility of landslide occurrence [19, 20]. According to Guzzetti

[62], the landslides probability decreases with the increasing
distance from river networks. In this study area, distance
from river network between 2,560–4,133m exerts the highest
influence on landslide occurrence. The reason is that perma-
nent rivers are the main source of moisture for landslide
occurrence. In the NDVI, the FR value is greater than one,
where the NDVI classes −0.04 to 0.10 and 0.23–0.48, indi-
cating a high probabilities of landslides occurrence. This
range of NDVI values represents the bare land, built up areas
and scrubs. However, the remaining NDVI classes have low
FR value less 1. The relationship between TWI landslide
probabilities showed that the range of TWI value from
2.72 to 5.30 has the highest FR (1.98). With regard to the
rainfall, the range 1,484–1,519, 1,519–1,539, and 1,539–
1,563mm/yr have higher FR value than the other classes
contributing more to landslide occurrence. Lithology factor
classes are the most abundance on Precambrian (FR= 1.89)
and Triassic and permain (FR= 2.29), indicating that a high
probabilities of landslides occurrence. However, the remain-
ing lithology classes have the lowest abundance of FR value
less than 1, it indicates that a low probabilities of landslides
occurrence.

3.2. Application of Information Value Model. The informa-
tion value of each conditioning factor was calculated through
Equation (5), and the spatial relationship between each con-
ditioning factors and flood occurrence is shown in (Table 2).
If the factor class of IV value is negative, there is a low
likelihood of landslide occurrence. On the other hand, if
the value is positive, there is a high-probability value is land-
slide occurrence [46]. The slope indicate that 33°–67° is
highly prone to landslide having the highest IV value of
0.967, whereas the flat slope shows less probability. The
occurrence of landslides tends to increase with higher slopes
and decrease with lower slopes. The elevation factor indicate
that the class 1,509–2,042m (IV= 445), has a high probabil-
ities of landslide occurrence and all other classes have very
low impact. Generally, landslides mostly occurred on the
higher area. But in this study, the landslides occurred in
the lower area. The aspect conditioning factor classes have
the lowest abundance on flat facing (IV=−0.534), north (IV
=−0.434), and northeast (IV=−0.166) indicating a low
probabilities of landslide occurrence. The remaining catego-
ries with positive IV values indicate a high probability of
landslide occurrence. In terms of curvature, the flat class
has the lowest IV value (−0.156) indicating a low probability
of landslide occurrence, while the convex and concave classes
have higher IV values (0.142 and 0.139, respectively), indi-
cating a high probability of landslide occurrence. Distance
from the road factor also shows that the class between
6,985–11,577m has the highest IV value (0.312), indicating
a high probability of landslide occurrence. The distance
to river factor has a high IV value (0.178) for subclass
2,560–4,133m, while the remaining subclasses have low IV
values indicating a low probability of landslide occurrence.
NDVI classes −0.04 to 0.10 and 0.23–0.48 have positive IV
values indicating a high probability of landslide occurrence,
while the remaining NDVI classes have negative IV values

8 Advances in Civil Engineering
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indicating a low probability of landslide occurrence. TWI
classes 2.72–5.30 also have a positive IV value (0.297), indi-
cating a higher landslide occurrence. In terms of land use,
settlements and crops can reduce the likelihood of landslide
occurrence, while forest area, water body, grasses, and bare
land have a high impact on landslide occurrence. The rela-
tionship between average annual rainfall and landslide occur-
rence shows that classes with higher rainfall (1,484–1,519,
1,519–1,539, and 1,539–1,563mm/yr) have positive IV values,
indicating a high probability of landslide occurrence, while
the other classes have negative IV values indicating a low
probability of landslide occurrence. The other important con-
ditioning factor is lithology in this study. Lithology factor
classes are the most abundance on Precambrian and Triassic
and per main (IV= 0.278) and Triassic and permain (IV=
0.360), indicating a high probabilities of landslide occurrence.

However, the remaining lithology classes have negative IV value
which indicates a low probabilities of landslide occurrence.

3.3. Landslide Susceptibility Maps. The calculated FR values
for each pixel indicate the relative susceptibility to landslide
occurrence. The higher pixel values of LSM have the higher
landslide susceptibility while the lower pixel values have
lower susceptibility. The LSM values for the FR and IVs mod-
els in the study area ranges varies from 14 to 81 (Figure 4(a))
and −5.59 to 3.91 (Figure 4(b)), respectively. These values
were classified into five susceptibility classes of very low,
low,moderate, high, and very high susceptibility in bothmod-
els using the geometrical interval method for visual interpre-
tation, shown in (Table 3).

3.4. Validation of Landslide Susceptibility Maps. The FR
and IV models were validated to check their reliability and
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FIGURE 4: Landslide susceptibility map using: (a) frequency ratio (FR) and (b) information values (IV) models.

TABLE 3: Landslide susceptibility classes and summery of FR and IV models.

Landslide susceptible classes
FR model IV model

Range Area (km2) Area (%) Range Area (km2) Area (%)

Very low 14–27 245.62 17.36 −5.59 to (−2.35) 129.73 9.17
Low 27–35 450.80 31.86 −2.35 to (−1.34) 341.72 24.15
Moderate 35–43 383.44 27.10 −1.34 to (−0.45) 492.47 34.81
High 43–54 247.59 17.50 −0.45 to 0.71 316.20 22.35
Very high 54–81 87.40 6.18 0.71 to 3.91 134.72 9.52
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performance. In the present study, the performance of the
LSM produced by FR and IV models was evaluated using
area under the curve (AUC). The AUC is the measure that
indicates the accuracy of the landslide susceptibility maps by
creating success and prediction rate curves [63]. The success
rate curve represents the model fitness to the existing land-
slide. The prediction rate curve indicates the model efficiency
to predict future landslide [47]. The AUC rate curves were
drawn through the x-axis both the training and validation
landslides (true positive rate) and y-axis (false positive rate).
The total AUC value can be utilized as a qualitative measure
to determine the accuracy of the susceptibility map, where a
larger value indicates a higher level of accuracy achieved. The
AUC value ranges from 0.5 to 1.0 are used to evaluate the
accuracy of the model [63]. The qualitative relationship
between AUC and prediction accuracy can be classified as
follows; excellent (0.9–1.0); very good (0.8–0.9); good (0.7–0.8);
average (0.6–0.7), and fair (0.5–0.6), [63]. If AUC value is
close to 1.0, then the model will have ideal performance,
where as a value is equal or less than 0.5, then the model
will have poor performance [64]. The results indicated that
the AUC values for the success rate curves were 0.870 and
0.901 for the FR and IV models, respectively, which can be
interpreted as prediction accuracies of 87.00% and 90.10%,
respectively (Figure 5(a)). The results indicated that the AUC
values for the prediction rate curves were 0.880 and 0.923 for
the FR and IV models, respectively, which can be interpreted
as prediction accuracies of 88.00% and 92.30%, respectively
(Figure 5(b)). The success rate and predictive rate value range
between 0.8–0.9 indicate a very good performance of FR
model. Also, the success rate and predictive rate value range
between 0.9–1.0 implies excellent performance of the IV
model.

4. Conclusion

The use of GIS and bivariate statistical models proved to be
an effective approach in mapping landslide susceptibility in
the Chemoga watershed, Ethiopia. The study identified several
factors that influence landslide occurrences in the Chemoga
watershed, such as slope, elevation, aspect, curvature, TWI,
normalized difference vegetation index, road, river, land use,
rainfall, and lithology. A landslide inventory map was pre-
pared using Google earth imagery and field survey assessment.
For this process, 169 landslide locations were identified and
mapped. The susceptibility maps produced with the FR and IV
models were divided into five susceptibility classes including
very low, low,moderate, high, and very high susceptibility. The
AUC rate curve quantitatively indicates the performance of the
susceptibility maps. The results of this study showed that the
IV model outperformed the FR model, with the accuracy of
success rate 90.10% and 87.00% and the predicative rate
92.30% and 88.00%, respectively. Finally, this study confirmed
that the integration of GIS and bivariate statistical models
provides an effective approach in mapping landslide suscepti-
bility in the Chemoga watershed, Ethiopia. The findings of this
study can contribute to the development of a comprehensive
disaster risk reduction strategy in the study area and other
landslide-prone regions in Ethiopia.
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