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This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of
experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model,
tree-based ensemblemodels, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input
variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder,
brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To
evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), coefficient of determination (R2-score), and relative root mean squared error (RRMSE). The compara-
tive analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and
estimated outcomes. The boosting, bagging, and VR models achieved impressive R2-scores in the range of 86.69%–92.43%, with
MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly,
the VR model outperformed all other models with the highest R2-score (92.43%) and the lowest error rate. The developed models
demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and
designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research
can significantly contribute to enhancing the quality and sustainability of concrete construction practices.

1. Introduction

Machine learning (ML) has emerged as a transformative tool
in civil engineering [1–3], offering promising avenues for
advancing prediction and analysis within diverse domains.
Its integration into civil engineering practices holds the
potential to augment predictability and cost-effectiveness
by reducing the dependence on resource-intensive real-time
experimentation.

A significant application of ML in civil engineering is
the prediction of compressive strength (CS) in concrete [4].

The CS of concrete, a crucial factor for ensuring structural
integrity in constructions like buildings and bridges, tradi-
tionally involves time-consuming experimental testing. The
advent of ML presents an opportunity to create models capa-
ble of precise CS estimation, thereby streamlining the assess-
ment process.

Concrete, valued for its strength, durability, and adaptabil-
ity, serves as a cornerstone in construction. The CS of concrete
directly influences its performance, making accurate predic-
tions essential. Traditional methods are resource-intensive,
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prompting the exploration of ML models for efficient and
cost-effective CS assessment. This study focuses on applying
various ML models to experimental data involving concrete
and industrial byproducts to forecast concrete strength.

To contextualize the study, recent research by Nguyen-Sy
et al. [5] applied extreme gradient boosting regression (XGB),
artificial neural networks (ANN), and support vectormachine
(SVM) to predict uniaxial compressive strength in concrete,
revealing XGB’s superior performance. Additionally, studies
on sugarcane bagasse ash [6–8] demonstrated the effective-
ness of ML models.

The research landscape further expands with investiga-
tions into waste marble powder [9], self-compacting concrete
[10], lightweight fiber-reinforced concrete [11, 12], and recycled
aggregate cement [13], showcasing the versatility of ML in
diverse concrete compositions. Studies on foamed concrete
[14], high-performance concrete [15], and steelmaking slag
concrete [16] underscore the effectiveness of MLmodels, with
outcomes shaping future applications. In addition, ANN is
employed to predict the CS of concrete by mixing high
volumes of fly ash (FA) [17] is tested. Likewise, in the
domain of concrete containing industrial waste materials
such as ground granulated blast-furnace slag (GGBFS) and
FA, evolutionary learning algorithms like practical swarm
optimization (PSO) and genetic algorithm (GA) were employed
with the support vector regression (SVR) model as the objec-
tive function. The SVR–PSO and SVR–GA models [18] were
used on experimental data to forecast the CS of this type of
concrete. Moreover, the concrete containing FA [19] was
modeled with ANN and fuzzy logic for CS prediction.

In another study involving concrete with FA [20], research-
ers evaluated experimental data using various ML models.
The bagging model (BAM) emerged with a higher coefficient
of correlation (R2) compared to gene expression programing,
ANN, and decision trees (DT). The ML-based approaches
applied on the concrete mix with GGBFS [21] to predict
its CS.

Furthermore, research on geopolymer concrete [22], cement
with metakaolin [23], and supplementary cementitious mate-
rials [24] reflects the continuous evolution of methodologies.
Notably, the study incorporating rice husk ash (RHA) [25–27]
demonstrates stacking-based ensemble learning, ANN, and
ML models to predict concrete CS.

The present study focuses on a unique approach by com-
bining various types of waste materials with cement to create
concrete composites. The waste materials include limestone
powder (LP), FA, granulated glass blast furnace slag (GGBS),
silica fume (SF), RHA, marble powder (MP), recycled coarse
aggregate (RCA), superplasticizer (SP), voids in mineral
aggregate (VMA), and brick powder (BP). These materials
are combined with the conventional components of concrete,
namely coarse aggregate (CA), FA, and water (W).

The presented research makes a significant contribution
to sustainability efforts through its innovative approach to
concrete composite production. By incorporating an exten-
sive array of waste materials, including LP, FA, GGBS, SF,
RHA, MP, RCA, SP, VMA, and BP, into the concrete mix,
the study not only addresses environmental concerns related

to waste disposal but also reduces reliance on traditional raw
materials. This inclusive approach aligns with sustainable
practices by promoting the reuse of industrial byproducts
and minimizing the environmental impact associated with
waste generation.

The experimental results were obtained by conducting
extensive experimentation to assess the performance of these
different combinations. Subsequently, they utilized a com-
prehensive set of regression models to model these experi-
mental results. The study employed four baseline regression
models (BRM), namely linear regression (LR), SVM, k-nearest
Neighbor (KNN), andDT. Additionally, explored two boosting-
based models, light gradient boosting (LGBM) and XGB, as
well as tree-based BAMs like Random forest (RF) and extra
tree regression (ETR).Moreover, this study incorporated both
the ETR-based baggingmodel (BagETR) and XGB-based bag-
ging (BagXGB). Furthermore, average voting regression
(AVR) models are used in their analysis.

Additionally, the research contributes to sustainability by
leveraging advanced regression and ensemble models to predict
the CS of the resulting concrete composites. The utilization of
these modeling approaches demonstrated a commitment to
enhancing predictive accuracy and efficiency. By optimizing
concrete formulations through sophisticated modeling tech-
niques, the study aims to improve the overall sustainability
and performance of concrete in construction applications.

This current research stands out from the related works
mentioned previously, as it not only considers a wider range
of waste materials in the concrete mix but also employs a
diverse set of regression and ensemble models to predict the
CS of the resulting concrete composites. By combining vari-
ous waste materials with traditional concrete components
and leveraging multiple advanced modeling techniques,
this study aims to explore innovative ways to enhance the
sustainability and performance of concrete in construction
applications.

2. Materials and Methods

The primary objective of this study is to determine the CS of
concrete using artificial intelligence methods, offering an
efficient and cost-effective approach compared to extensive
empirical measurements. In this section, we outline the
methods utilized to predict the CS of concrete, the dataset,
and the testing procedures. This work employed the follow-
ing artificial intelligence techniques such as BRM, boosting
model (BM), BAM, and tree-based ensemble models (TAEM).

2.1. Dataset. The initial dataset used in this study consists of
223 experimental compositions of concrete. The CS of the
concrete samples ranged from 10 to 120MPa. The dataset
includes the following features: cement (C), LP, FA, GGBS,
SFs, RHA, MP, BP, CA, fine aggregate (Fa), RCA, W, SP,
and VMA.

2.2. Data Collection and Testing Procedures. The data collec-
tion process involved testing concrete cube samples of size
150× 150× 150mm3. These samples were tested in a univer-
sal testing machine with a capacity of 100 T, adhering to the
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recommendations of the Bureau of Indian Standards (IS
516(1959)).

The experimental data was compiled and accumulated in
three phases. In the first phase, the experimentation is car-
ried on the combination of cement, CA, Fa, RCA, and W. In
the second phase, MP, brick power, CA, Fa, and W were
added with cement. Next, in the third phase, LP, Fa, GGBS,
SP, RHA, VMA, CA, and W were combined with cement. By
employing the described artificial intelligence methods and
utilizing the comprehensive dataset obtained from the
experimental tests, we aim to accurately determine the CS
of concrete. This approach offers a valuable alternative for
assessing the mechanical properties of the material, taking
into account both linear and nonlinear relationships between
input features and predicted values. The statistical character-
istic of the dataset is shown in Table 1.

The dataset consists of 223 instances with 15 features (as
reported in Table 1) in which CS is a dependent feature, and
the remaining 14 are independent variables.

From the dataset, it is observed that the 11 features/mate-
rials were not used many times, as reported in Table 2. In
such cases, the value for the correspondingmaterial is assigned
with zero as an indication of unused material. This phe-
nomenon makes it as noisy dataset [28–30], as well as close
to sparse matrix behavior.

3. ML Modeling and Performance Evaluation

3.1. Proposed Model Architecture. The proposed model con-
sists of three phases: first, it performs data scaling; second,

data splitting; and finally, model training, performance eval-
uation, and comparison analysis. The first two phases, such
as scaling and splitting of data, were common to all the
ML models. Figure 1 shows architecture for base regression
models, where the MLR;MSVR;MKNN; and MDT are trained
LR, SVR, KNN, and DT models, PLR; PSVR; PKNN; and PDT
are predicted data by the trained LR, SVR, KNN, and DT
models on test data, and ELR; ESVR; EKNN; and EDT are the
evolution results of the respective models based on pre-
dicted and actual data.

Figure 2 shows the architecture for the usage of boosting,
ensemble, and BAMs. In Figure 2, the MLGBM;MXGB;MRF;
METR; bagMETR are trained LGBM, XGB, RF, ETR, BagETR,
BagXGB models, PLR; PSVR; PKNN; and PDT indicates predic-
tion result of trained LGBM, XGB, RF, ETR, BagETR,
BagXGB models on test data, and ELR; ESVR; EKNN; and EDT
are the evolution results based on predicted and actual data of
the respective models.

Figure 3 shows the architecture of the proposed max
voting regression (MVR) model. The best-performed three
models, such as ETR, BagXGB, and BagETR, were used to
develop a max voting model. In Figure 3, the OETR;OBagETR;
and OBagXGB are objects of ETR, BagETR, BagXGB models,
MMVR indicates MVR model training, followed by model
testing MMVRT

and prediction PMVR result of on test data.
The EMVR is an evolution result based on predicted PMVR and
actual data of the MVR model. The best-performed models,
such as ETR, BagETR, and BagXGB, are integrated as MVR
models, as shown in Figure 3. The AVR takes the average
outcome of all these models as the final result.

TABLE 1: The statistics of experimental data.

Variable C LSP Fly ash GGBS SF RHA MP BP CA Fa RCA W SP VMA CS

Maximum 150.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 478.0 0.0 94.5 0.0 0.0 10.2
Minimum 570.0 272.0 350.0 330.0 250.0 200.0 185.2 67.5 1046.2 1135.0 865.4 250.0 22.5 1.2 117.0
Standard deviation 85.0 58.0 94.0 47.7 32.0 20.5 39.3 11.3 198.5 110.4 154.4 25.1 4.6 0.3 17.9

TABLE 2: The nature of the dataset.

S no. Features The unused count
Percentage of the respective sample

indicated with zeros

1 Cement Compulsory Compulsory (0%)
2 Limestone powder 187 83.86%
3 Fly ash 112 50.23%
4 GGBS 199 89.23%
5 Silica fume 179 80.27%
6 RHA 211 94.61%
7 Marble powder 205 91.93%
8 Brick powder 205 91.93%
9 Coarse aggregate 6 2.7%
10 Fine aggregate Compulsory Compulsory (0%)
11 Recycled coarse aggregate 205 91.93%
12 Water Compulsory Compulsory
13 SP 55 24.67%
14 VMA 186 83.5%
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3.1.1. Scaling. The feature standardization or scaling is an
important aspect in ML modeling since it makes the degree
of all the features as equal by transforming feature values into the
same range. This helps themodel to assign equal weightage to all
the features of the dataset during the learning process. The stan-
dardization finds mean μj of each feature through Equation (1),
standard deviation σj through Equation (2), and finally, obtains
scaled feature, as reported in Equation (3), where n indicates
number of instances Xij indicates ith value of jth feature.

μj ¼
1
n
∑
n

i¼1
Xij; ð1Þ

σj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

∑
n

i¼1f g
Xi;j − μj
À Á

2

s
; ð2Þ

Scaled Xij ¼
Xij − μj

σj
: ð3Þ

3.1.2. Data Splitting. The dataset was divided into a training
set with 189 instances and a test set with 34 instances, using
an 85% and 15% train and test split ratio, respectively. The
training set was further partitioned into two parts: one part
consisting of 189 instances with 14 independent features and
another part consisting of 189 instances with one dependent
feature. These parts are, respectively, referred to as the train-
ing data for the independent features and the training data
for the dependent feature. Similarly, the test set was split into
two parts: one part consisting of 34 instances with 14 inde-
pendent features and another part consisting of 34 instances
with one dependent feature. These parts are, respectively,
referred to as the testing data for the independent features
and the testing data for the dependent feature.

3.1.3. ML Models. In view of dataset nature [17–19], this
work considers four different categories of regression mod-
els, namely BRM, BM, BAM, and TAEM as described below:

(1) BRM. The BRM, such as LR, decision tree regression,
SVR, and elastic net regression, were applied on the dataset,
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FIGURE 1: The architecture and usage of base regression models.
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FIGURE 2: The architecture and usage of boosting-ensemble-bagging models.
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and its performance was evaluated through five metrics. These
models provide a straightforward approach for capturing lin-
ear relationships between input features and the predicted
output. The structure of each model is as follows:

(1) LR establishes a linear relationship between the waste
materials (LP, FA, GGBS, SF, RHA, MP, RCA, SP,
VMA, BP) and CS of concrete composites. The coef-
ficients and intercept were determined during train-
ing to predict the output CS.

(2) SVM utilizes a hyperplane to separate data points in
a high-dimensional space. It employs a kernel func-
tion to map input features into a higher dimensional
space, making it effective for capturing nonlinear
relationships between waste materials and CS.

(3) KNN operates by classifying data points based on the
majority class of their KNN. It assesses the similarity
between data points in feature space, offering insights
into the local relationships between waste materials
and CS. The number of neighbors (k= 3) and the
distance metric were important considerations dur-
ing implementation.

(4) DT comprises a tree-like model of decisions, where
each internal node represents a decision based on a
feature, each branch represents the outcome of the
decision, and each leaf node holds the predicted CS.
It provides a clear representation of decision rules.

(2) BM. Utilizing the concept of boosting, this model
combines weak learners to create a powerful predictive
model. Boosting is an ensemble learning approach used to
improve the performance of ML models that train a specified
set of weak learners; each model tries to improvise the effi-
ciency by correcting incorrect predictions of the previous
model and, lastly, takes the weighted average as the final

output. Moreover, BMs [1] handle noisy data, missing values,
zeros effectively and attain high accuracy. Similarly, the data-
set presented in Table 1 is almost close to the sparse matrix in
nature. Therefore, the proposed work uses LGBM and XGB
models. The LGBM is faster and consumes less memory.
However, it is prone to overfitting. On the other hand, the
usage of regularization methods in the XGB model prevents
overfitting, and as a result, it obtains more accurate results
than LGBM. The XGB uses default parameters such as a
learning rate of 0.1, a number of estimates of 100, random
state set as 0, and the maximum depth of tree is 3. On the
other hand, the LGBM employed the maximum depth of tree
as −1, and the remaining parameters were the same as XGB.

(3) TAEM. These models, including RF and extra trees,
leverage DT to create ensembles that improve prediction
accuracy. This approach combines multiple base regression
models to improve the model performance. Random forest
regression (RFR) and ETR were considered in this work.
Both models build multiple DTs and aggregate their results
to make a concluding result. The ETR randomly chooses the
splitting point and considers all the features and data, which
makes the ETR less sensitive to the noise comparatively with
RFR. Due to these reasons, sometimes, ETR performs better
than RFR with noisy dataset also. Therefore, this work
employed ETR in view of the sparse matrix nature of the
dataset. The number of estimators is set as 100, and the
random state is set as 1 for both RF and ETR.

(4) BAM. Based on the concept of bagging, this model
generates multiple bootstrap samples and averages their pre-
dictions to enhance accuracy. Bagging is also an ensemble
model in which training data are divided into different sub-
sets, and multiple models are trained independently on dif-
ferent subsets of training data, and then the combination of
their predictions is considered the final prediction. Bagging can
be built with any ML model. Hence, to increase effectiveness
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FIGURE 3: The architecture of the proposed average voting regression model.
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and prediction sore the proposedwork employed ETR andXGB
as base learners for bagging, which leads to build two more
models, such as BagETR and BagXGB models. These models
employed a number of estimators as 10 and a random state set
as true.

(5) VR. It is an ensemble meta-regression model that
takes several unfitted regressors and fits those regressors on
training data. Then, the prediction values of all regressors are
collected, and selects most common value (mode) among all
the regressor outcomes as the final prediction. In this work,
as reported in Figure 3, the best-performed three models
such as ETR, Bag ETR, and BagXGB, were used to develop
a max voting regressor model.

3.1.4. Evolution Metrics. The performance metrics such as
mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), R2-score, relative root mean
squared error (RRMSE), employed to evaluate, compare, and
analyze the performance of all the models.

(1) MAE. It is a mean absolute value of error. It is a
summation of all error values obtained from the difference
between the actual and predicted value of CS. The error value
for each instance is calculated, as shown in Equation (4), and
MAE is the summation of all error values divided by number
of instances, as shown in Equation (5).

CSei ¼ CS − CS; ð4Þ

where CS and CS is actual and predicted CSs, respectively,
CSei is error value for ith instance.

MAECS ¼
1
n
∑
n

i¼1
CSei
�� ��; ð5Þ

where MAECS indicates total MAE value for CS and n is
number of instances of a dataset.

(2) MSE. The MAECS, as in Equation (6), measures
squared average distance between actual (CS) and predicted
(CS) values in other way, it is the summation of squares of all
error values of all instances, where CSei as in Equation (4)
and n is number of instances.

MAECS ¼
1
n
∑
n

i¼1
CSei
À Á

2: ð6Þ

(3) RMSE. It is also known as root mean square deviation
or root mean squared error on prediction. It determines how
best the predicted (CS) values are surrounded around the
actual (CS). Equation (7) shows a mathematical formula
from RMSE.

RMSE¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAECS

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
CSei
À Á

2

r
: ð7Þ

(4) Coefficient of Determination or R2-Score. It is also
known as the model score, which lies between 0 and 1.

The R2 score close to 1 indicates that the model performance
is accurate in predicting with less error rate. Equation (8)
shows a mathematical formula.

R2 ¼ 1 −
∑i CSi − CSi
À Á

2

∑i CSi − cCSiÞ;� ð8Þ

where cCS¼ 1
n∑

n
i¼1CSi

(5) RRMSE. It measures the performance of a model in
terms of percentages. The model is said to be excellent when
it secures less than 10%, good when it lies between 10% and
20%, fair when it is in between 20% and 30%, and greater
than 30% is said to be poor. Equation (9) shows the calcula-
tion of RRMSE.

RRMSE¼ RMSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i CSiÞ2:
Àq ð9Þ

4. Comparison Analysis and Results

The results reported in Table 2 show that the performance of
base regression models, as in Figure 1, underperformed due
to the sparse matrix nature of the dataset. It is observed from
the dataset shown in Table 1 that four features/materials,
such as “Recycled Coarse Aggregate,” “Brick Powder,” “Mar-
ble Powder,” and “RHA,” consists of 90%–95% of zeros,
moreover, the other four materials, namely “Silica Fume,”
“Limestone powder,” “VMA,” and “GGBS” are having zeros
between 80% and 85%, furthermore, two materials “Fly Ash”
and “SP” are having 50%–55% of zeros, and the “Coarse
Aggregate” consists 2.7% of zeros. In general, any dataset
that consists of 66%–67% of zeros in total is treated as a
sparse dataset. However, this dataset consists of almost
56.04% of zero values in total. Because of this, the dataset
is close to sparse matrix statistics. In turn, this phenomenon
reduced the performance of standard regression models.
Table 2 shows the results of all regression models through
five evolution metrics, such as MAE, MSE, RMSE, R2-score,
and RRMSE.

The performance of BRM, such as DT, SVM, and LR,
secured 54.89%, 58.61%, and 69.96%, respectively. This indi-
cates that the base regression models are unable to handle the
sparse nature of the dataset. Hence, they secured less predic-
tion performance. However, KNN obtained 86% of the R2-
score, which is a reasonably good prediction performance
and the highest among all other baseline models.

Furthermore, our choice of ensemble models was guided
by their inherent capability to adeptly handle missing and
noisy data, addressing the challenges posed by the dataset
outlined in Table 1. The observed performance of boosting,
bagging, and TAEM surpassed that of the BRM, validating their
effectiveness in mitigating the impact of noise on predictions.

Notably, the proposed ensemble-basedMVRmodel, detailed
in Figure 3, emerges as the top-performing model, as corrob-
orated by the comprehensive results presented in Table 2.
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Figures 4–9 provide an insightful comparative analysis of the
predicted CS (CS) against the actual concrete strength,
employing various regression models.

Figure 4 highlights the distribution of (CS) for LR, SVM,
and MVR, while Figure 5 showcases the spread of (CS) for
KNN, LGBM, and MVR. In addition, Figure 6 visualizes the
spread of predicted values around actual CS through DT,
RFR, and MVR, while Figure 7 delineates the predicted (CS)
for XGB, ETR, and MVR. Further insights are provided by
Figure 8, displaying the predicted (CS) for BagXGB, BagETR,
and MVR, and Figure 9, illustrating the distribution of pre-
dicted values by MVR around the actual CS.

The BMs LGBMandXGB also secured 86.69% and 87.87%
of the R2-score, respectively. However, the ensemble models,
such as RF and ETR, performed well and obtained 91.65% and

92.05% R2-score, respectively. It indicates that the ensemble-
basedmodels are good when comparedwith base and boosting
regression models.

However, the BagETR and BagXGBmodels obtained even
better results, as shown in Table 3. The BagXGB obtained
92.18% of R2-score with MSE of 3.62 and 4.74 of RMSE.
The RRMSE is also 8%, which indicates that the model per-
formance is excellent. Furthermore, the AVR outperforms all
the models with 92.4307 of R2-score, MAE is 3.42, MSE is
21.74, RMSE is 4.66, and RRMSE is 8%, which shows that this
model performance is in the excellent category with less error
rate than any other models.

4.1. The Performance of ML Models on Augmented Dataset.
The extended evaluation of our regression models on the
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and ETR.
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FIGURE 8: Predicted vs. actual compressive strength of voting,
BagXGB, and BagETR.
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FIGURE 9: Predicted vs. actual compressive strength of voting.

TABLE 3: The performance of all the regression models.

Metrics

Models MAE MSE RMSE R2 RRMSE

DT 6.08 129.58 11.38 54.8936 0.19
SVM 8.55 118.90 10.90 58.6104 0.20
LR 8.13 86.28 9.29 69.9663 0.17
KNN 4.59 38.36 6.19 86.6482 0.10
LGBM 4.87 38.32 6.18 86.6942 0.11
XGB 4.56 34.84 5.90 87.8705 0.10
RF 3.60 24.10 4.91 91.6111 0.09
ETR 3.46 22.83 4.78 92.0511 0.08
BagXGB 3.62 22.44 4.74 92.1885 0.08
BagETR 3.76 24.00 4.90 91.6450 0.08
Voting 3.42 21.74 4.66 92.4307 0.08

TABLE 4: The performance of all regression models on the aug-
mented dataset.

Metrics

Models MAE MSE RMSE R2 RRMSE

DT 8.63 186.98 13.67 57.77 0.25
SVM 10.5 175.7 13.26 60.31 0.24
LR 11.10 187.63 13.70 57.62 0.26
KNN 5.95 66.82 8.17 84.9 0.15
LGBM 6.06 66 8.12 85.09 0.15
XGB 5.65 54.62 7.39 87.66 0.13
RF 5.78 62.89 7.93 85.8 0.15
ETR 5.61 50.58 7.11 88.57 0.13
BagXGB 6.12 65.22 8.08 85.26 0.15
BagETR 6.24 62.89 7.93 85.79 0.15
Voting 5.39 49.03 7 88.92 0.13
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FIGURE 10: Predicted vs. actual compressive strength of voting, LR,
and SVM.

Pr
ed

ic
te

d 
CS

 o
f K

N
N

, L
G

BM
, a

nd
 v

ot
in

g 100

80

60

40

20

20 40 60
Actual concrete strength

80 100

KNN
LGBM

Voting
Actual

FIGURE 11: Predicted vs. actual compressive strength of voting,
KNN, and LGBM.

8 Advances in Civil Engineering



augmented dataset aimed to assess the generalizability of our
approach, yielding promising results detailed in Table 4. In
this comprehensive testing phase, the Voting model exhib-
ited superior performance compared to other models, show-
casing a low error rate, satisfactory model performance (as
indicated by RRMSE), and an impressive R2-score of 88.92
on the augmented dataset. The predictive performance of the
Voting model is vividly illustrated in Figures 10−15, where
the predicted values closely align with the actual values. It
is noteworthy that the augmentation process, integrating our
original experimental data (223 instances) with additional
instances (59) from the literature [31–34], presented challenges
due to disparities in experimentation properties. Despite these
variations, the model demonstrated a commendable level

of performance. We acknowledge the inherent impact of
differences in experimental conditions on model outcomes
and recognize the need for careful consideration in future
studies.

5. Conclusion and Future Scope

In conclusion, this study adeptly harnesses a diverse array of
ML models to predict concrete strength, effectively navigat-
ing challenges presented by noisy and sparse datasets, while
also incorporating various waste materials. The robustness of
our proposed models was further tested on an augmented
dataset, seamlessly integrating our original experimental
data (223 instances) with additional instances (59) from
the literature [31–37]. Despite the inherent variations in
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FIGURE 12: Predicted vs. actual compressive strength of voting, DT,
and RFR.
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FIGURE 13: Predicted vs. actual compressive strength of voting, XGB,
and ETR.
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FIGURE 14: Predicted vs. actual compressive strength of voting,
BagXGB, and BagETR.
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FIGURE 15: Predicted vs. actual compressive strength of voting.
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experimentation properties, our models exhibited a com-
mendable level of performance.

The synthesis of key findings in conclusion emphasizes
the substantial correlation achieved by the AVRmodel between
predicted and actual concrete strength values.

Moving forward, it is vital to acknowledge that the con-
straints posed by the limited dataset size have influenced our
ability to fully utilize advanced modeling approaches. This
limitation underscores the need for caution when applying
our developed models to larger datasets and highlights the
importance of securing more extensive and diversified data-
sets in future research endeavors.

The future scope of our work extends to exploring advanced
ML techniques, with a specific focus on integrating deep
learning models. By doing so, we aim to overcome the dataset
size limitation and further refine the accuracy of concrete
strength predictions. This forward-looking initiative will
involve a dedicated commitment to collecting comprehensive
datasets that encompass a wider range of concrete composi-
tions, addressing challenges related to sparsity and noise, and
ensuring a more representative sample for robust model
development.

By incorporating these challenges into our future scope,
we aim to not only improve the forecasting tool’s accuracy
but also contribute to the sustainable evolution of concrete
strength prediction methodologies in the field of civil
engineering.
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