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Compressive strength of concrete is an important parameter in the design of concrete structures and the prediction of their
durability. Therefore, it is of great significance to predict the compressive strength of concrete. In this study, a fully connected
neural network model is developed using the PyTorch framework to predict the compressive strength of concrete and compared
with six other machine learning models. These models are multiple linear regression, K-nearest neighbor regression, support vector
machine, decision tree, random forest, light gradient boosting machine, and artificial neural network. The model is trained using
4,253 data with seven input parameters, including cement (C), fly ash (F), mineral powder (K), fine aggregate (FA), coarse
aggregate (CA), water reducer admixture (WRA), and water (W). Three thousand six hundred twenty-one data in the datasets
are used to train the prediction model after data cleaning, and 632 data are used to validate the model. The results show that the
fully connected neural network model based on PyTorch frame can predict the compressive strength of concrete with higher
accuracy. Therefore, it is a reliable and useful method to optimize the artificial network model. So, it has important application
value in practice. The strength of concrete can be predicted in advance, making the project more efficient and reducing costs.
Besides, by adjusting the mix ratio, combining the strength prediction results in different environments and industries to ensure the
quality of construction.

1. Introduction

Among various performance indicators of concrete, com-
pressive strength is the most fundamental because it directly
relates to the structural safety of construction products [1].
Therefore, predicting concrete strength is greatly important.
Within the first 3 days, 75% of the maximum strength of con-
crete is achieved, and the strength increases gradually with
time, reaching 95% of the maximum strength at 28 days.
Thus, the 28-day compressive strength is used for evaluation
in this study. The traditional approach to obtain concrete com-
pressive strength includes physical experiments, where cube or
cylindrical specimens are prepared with a specific mix design,
cured, and tested using a compression testing instrument.
However, this experimental method is time-consuming and
costly [2]. Researchers have proposed different machine

learning methods to predict the compressive strength of con-
crete based on different component compositions and mix
designs [3, 4, 5]. Moreover, research results show a nonlinear
relationship between the content of each concrete component
and its compressive strength, resulting in poor prediction
results for both methods.

In recent years, with the continuous development of arti-
ficial intelligence technology, machine learning (ML) has been
widely applied in various fields, and prediction using machine
learning has become a mainstream method. For example, tradi-
tional natural disaster prediction is often based on experience
and expert judgment, which has certain subjectivity and uncer-
tainty. Machine learning models can improve the accuracy and
reliability of early warning by training and learning from large
amounts of data.Machine learningmodels can discover the rules
and associations hidden behind huge data, so as to predict the
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probability and degree of natural disasters more accurately and
provide more accurate early warning information. Jia et al. [6],
Long et al. [7], andMa et al. [8] used machine learning methods
to conduct multilevel comprehensive evaluation of natural dis-
asters such as ground fractures and landslides and quantified the
specific values, which can be used to monitor the activity evolu-
tion of different natural disasters. Liu et al. [9] proposed a reliable
reservoir landslide displacement prediction method based on
optimal support vector regression (EOA-SVR). Experiments
show that EOA-SVR can stably provide reliable predictions
while maintaining the optimal solution.

Meanwhile, machine learning is often used in the field of
civil engineering. In this field, one of the most important
types of research is the prediction of concrete strength
through machine learning. Concrete strength prediction
belongs to the application of regression models, where input-
ting the features into the model for learning and training can
significantly improve the prediction accuracy, providing
clear advantages over traditional experimental and statistical
methods [10]. Machine learning has been developed for pre-
dicting concrete compressive strength for a long time, and
different machine learning model algorithms have been used
in various research studies. Li and Song [11] used four
ensemble learning model algorithms of XGBoost, AdaBoost,
GBDT, and RF to construct a model to predict the compres-
sive strength of high performance concrete (HPC). They
compared the GBDT model with the other three models
and proved that the GBDT model achieved the highest pre-
diction accuracy among the four machine learning models.
Al-Shamiri et al. [12] developed a new model for predicting
the compressive strength of HPC using the regularized
extreme learning machines (RELM) and evaluated the pre-
diction reliability of the developed RELM model through
k-fold cross-validation. The results of the study demon-
strated that the established RELM model accurately esti-
mated the compressive strength of HPC. Cho et al. [13]
estimated the compressive strength of high-strength concrete
and recycled aggregate by non-destructive test and numerical
analysis. Kumar et al. [14] achieved the highest accuracy in
predicting lightweight concrete (LWC) using an optimized
GPR model. This new model was economically practical,
efficient, and suitable for application by researchers and
engineers. Xia et al. [15] predicted the uniaxial compressive
strength of concrete using different parameters, such as
water–cement ratio, curing days, and substitution rate of
recycled aggregate, as input data. The model effectively pre-
dicted the compressive strength of recycled aggregate con-
crete (RAC) and satisfied the engineering requirements.
Meesaraganda et al. [16] developed a prediction model based
on an artificial neural network (ANN) using 99 experimental
data samples of fiber self-compacting concrete. Finally, they
examined a feedforward three-layer backpropagation neural
network with 10 hidden nodes using learning algorithms,
providing realistic results. Ahmed et al. [17, 18] used differ-
ent model methods in the field of machine learning to predict
the compressive strength of concrete in different environ-
ments and different proportions and found that machine

learning had the advantages of improving cost-effectiveness
and saving time for concrete strength prediction.
Mohammed et al. [19], Barkhordari et al. [20], and Jaf
et al. [21] applied machine learning methods to predict the
compressive strength of fly ash concrete. Emad et al. [22]
used four models: linear relational model (LR), pure qua-
dratic model (M5P-tree) and artificial neural model (ANN)
to predict the compressive strength of high performance
fiber concrete (UHPFRC). Mohammed et al. [23, 24] devel-
oped a systematic multiscale model to predict the strength of
polymer-containing compressed concrete using a machine
learning approach. At the same time, the effects of three
kinds of water reducing agents on the compressive strength
of concrete after curing from 1 to 28 days were studied. Piro
et al. [25] used adaptive network based Fuzzy Inference Sys-
tem (ANFIS), namely ANN, multivariate adaptive regression
spline (MARS) and M5P-tree model, to predict the compres-
sive strength of concrete after steel slag aggregate replaced
coarse aggregate. The results show that the model based on
fuzzy adaptive network inference system is superior to other
models in predicting the compressive strength of concrete
after steel slag replacement, and the compressive strength of
concrete after steel slag aggregate replacement is improved.

Although machine learning is widely used in areas such
as geological disasters prediction and concrete compressive
strength prediction, deep learning is rarely applied to the
prediction of concrete strength in the related research. In
general, machine learning algorithms usually require manual
feature extraction and selection, which is a complex and
time-consuming process. In contrast, deep learning algo-
rithms are able to automatically learn feature representations
from raw data, reducing human intervention. Besides, deep
learning algorithms usually have stronger generalization
ability than traditional machine learning algorithms, they
are able to learn hierarchical representation of the data and
capture more complex patterns, and machine learning is
difficult to deal with complex data structures and patterns.
Therefore, by comparing deep learning with traditional
machine learning, a fully connected neural network model
based on PyTorch framework is proposed in this paper. The
results show that the fully connected neural network model
based on PyTorch framework can accurately predict the
compressive strength of concrete much better. Therefore,
applying the related algorithms of deep learning to the field
of civil engineering can better carry out engineering con-
struction planning and save costs. At the same time, for
different environments and different industries, the com-
pressive strength of concrete can be quickly and accurately
predicted to ensure the construction quality.

2. Traditional Machine Learning

2.1. Multivariate Linear Regression. The linear regression
method in machine learning uses a linear prediction function
to model the data and estimate based on the output parame-
ters of the data. The concept of multivariable linear regression
multiple linear regression (MLR) has emerged given that
regression analysis often involves multiple input variables in
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many applications. The equation provides the general form of
the multivariable linear regression model, as follows [26]:

bY ¼ a0 þ ∑
m

j¼1
ajXj; ð1Þ

where Y is the output of the model, Xj is the independent input
variables of the model, and a0; a1; a2; …; am represent the
regression coefficients. The parameters are trained to obtain
similar model output to that of the training datasets [27].

2.2. K-Nearest Neighbor (KNN) Regression. KNN regression
is a machine learning algorithm. Whilst K-nearest neighbor
(KNN) is commonly used for classification problems, it can
also be applied to regression problems. It is a basic algorithm
often used for comparison prior to applying more complex
and advanced methods. The algorithm finds the K-nearest
examples to a query by measuring the distance between the
query and all examples in the data and then averages the
labels in the case of regression problems [28].

2.3. Support Vector Machines (SVMs). Support vector
machine (SVM) are commonly used for classification pro-
blems. However, to utilize SVM for regression fitting, Vapnik
et al. [29] introduced the insensitive loss function based on
SVM classification, that is the SVM for regression (SVR).
When SVM is applied to regression fitting, the basic idea is
no longer to find an optimal classification plane to separate
two classes but to find an optimal classification plane that
minimizes the error of all training samples regarding this
plane. The algorithm structure of SVMs is shown in Figure 1.

2.4. Decision Trees. Decision trees (DTs) classify instances by
arranging them from the root node to a leaf node. Each
nonleaf node represents a test on an attribute, and each
branch represents one of the test results. Each leaf node
represents a class label, simulating the tree structure to estab-
lish a classification or regression model. A DT is a tree-like

structure resembling a flowchart. It adopts a top–down
recursive approach, starting from the root node of the tree
and making attribute value comparisons at its internal nodes
until a conclusion at the leaf nodes is reached. The algorithm
structure of DTs is shown in Figure 2.

2.5. Random Forest. Random forest (RF) is an ensemble
learning method in machine learning [30, 31]. It consists
of multiple DTs, and the results are collected by randomly
selecting features for each tree. The final result is obtained by
majority voting or averaging, depending on the problem. In a
set of input data fHðx; θiÞ; i¼ 1; 2…; kg: with the prediction
value of a single DT of fHðx; θiÞg :, the final result of the RF
prediction model is the average of the predictions of all DTs
[32]. The algorithm structure of RF is shown in Figure 3.

2.6. Light Gradient Boosting Machine (LightGBM). Light gra-
dient boosting machine (LightGBM) is a GBDT algorithm
framework developed byMicrosoft. It supports efficient parallel
training. Generally, as the number of training data increases, the
efficiency and accuracy of the training decrease. To address this
issue, the gradient-based one-side sampling (GOSS) and exclu-
sive feature bundling (EFB) are applied to LightGBM. GOSS
allows the use of large-scale datasets, and EFB manages many
data features. In addition, the algorithm employs leaf-wise tree
growth, which is 20 times faster than traditional methods [33].
The algorithm structure of LightGBM is shown in Figure 4.

3. Fully Connected Neural Network-Based on
the PyTorch Framework

PyTorch is a framework for building deep learning models
developed by Facebook AI Research and several other labs.
In recent years, with the continuous development of artificial
intelligence, deep learning has been extensively studied, lead-
ing to the emergence of a large number of machine learning
and deep learning tools. Many popular deep learning frame-
works are currently available, namely, Caffe [34], CNTK
[35], TensorFlow [36], and Theano [37]; they construct static
data flow graphs representing computations that can be repeat-
edly usedwith batch data. In theory, this approach can improve
model performance and enhance generalization capabilities.
However, this approach sacrifices ease of use, ease of debug-
ging, and flexibility in expressing computation types when
improving model performance. Therefore, researchers aim to
achieve dynamic changes within the framework, thereby creat-
ing significant value for deep learning. PyTorch emerged to
enable dynamic execution without sacrificing performance by
carefully implementing and designing options. This study uses
PyTorch, which performs dynamic tensor computations using
automatic differentiation and GPU acceleration while main-
taining performance comparable to the fastest current deep
learning libraries [38].

A fully connected neural network, also known as a dense
network or a multilayer perceptron (MLP), consists of input
nodes, hidden layers, and output nodes. Each node in a layer
is connected to every node in the next layer, creating a dense
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FIGURE 1: Support vector machine algorithm structure.
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network where information can flow through all neurons.
The flowchart for this process is shown in Figure 5.

4. Data Preprocessing and Feature Handling

The methodology of the current study includes a series of
steps which has been drawn as a flowchart and is shown in
Figure 6.

4.1. Data Collection and Acquisition. The primary source of
data for this study is experimental data from the laboratory.
A total of 4,253 data points were collected during the data
acquisition process, with 3,621 of them used for training the
prediction model after data cleaning. The collected data were
consolidated into a .csv file, which includes seven attributes:
six input variables (cement in kg/m³, fly ash in kg/m³, min-
eral powder in kg/m³, fine aggregate in kg/m³, coarse
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aggregate in kg/m³, and water reducing admixture in kg/m³
and water in kg/m³) and one output variable (compressive
strengths).

4.2. Data Cleaning. Data cleaning is an essential step after
data collection given that most machine learning algorithms
require data processing. The quality of the final product
depends on the quality of the raw materials; thus, data clean-
ing aims to remove “dirty” data.

(1) Initially, duplicate values were identified. Here,
duplicate values refer to rows where all data values
are identical. A total of 243 rows of duplicate data
were found and removed.

(2) When dealing with missing values, Pandas was used
to read the data, and features with NaN values indi-
cated missing data. Missing values can have a signifi-
cant impact on model training, so they need to be
handled. The two approaches to handlingmissing values
are as follows: deleting the rows with missing values
directly and filling the missing values with the median
or mean. In this study, the first approach was selected,
and any existing missing values were removed. After
data cleaning, 3,621 data points remained.

4.3. Data Feature Handling

4.3.1. Standardization. Standardization processes the data
column-wise based on the feature matrix. It transforms the
features into a standard normal distribution, correlating
them with the overall sample distribution. Each data point
can influence the standardization. Different standardization
methods will have different effects on the evaluation results
of the system. In this study, Z-score standardization is
adopted, which gives the mean and standard deviation of
the original data for data standardization. The processed
data conforms to the standard normal distribution, that is,
the mean is 0 and the standard deviation is 1, and the nor-
malized data maintains useful information in the outliers,
making the algorithm less sensitive to outliers.

Standardization involves calculating the mean and stan-
dard deviation of the features using the following formula:

x0 ¼ x − X
S

; ð2Þ

where X represents the mean and S represents the standard
deviation.

4.3.2. Normalization. Normalization transforms the feature
values of samples to a unified scale, mapping the data to the
(0, 1) or (a, b) interval. Normalization changes the original
distances, distribution, and information of the data, whereas
standardization generally does not.

In the process of data processing, the units of input data
are different, and the range of some data may be particularly
large, resulting in slow convergence and long training time.
At the same time, inputs with a large data range may play a
larger role in pattern classification, while inputs with a small
data range may play a smaller role. Because the range of
activation function of output layer of neural network is lim-
ited, it is necessary to map the target data of network training
to the range of activation function. In this study, our output
is limited to (0, 1), so the training data are normalized to the
interval (0, 1).

The normalization formula is as follows:

x0 ¼ xffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

j
x j½ �2

s :
ð3Þ

4.4. Data Visualization Processing. The 3,621 cleaned data
points were subjected to visualization processing. Visualiza-
tion allows us to observe the distribution of variables and the
relationships between input and output variables.

4.4.1. Data Statistics. Python was used to obtain statistical
measures (average, median, minimum, maximum, and stan-
dard deviation) for each column of the datasets. The results
are summarized in Table 1.

The range of concrete mixes used in this study is as follows,
with cement content (C) ranging from 3.59 to 667 kg/m3, fly ash
content (F) ranging from 0 to 367.33 kg/m3, mineral powder

TABLE 1: Statistical summary of data variables.

Data variable Unit
Statistic measures

Average Median Minimum Maximum Standard deviation

Cement kg/m3 316.941 300.000 3.590 667.000 102.202
Water kg/m3 169.943 165.000 16.034 379.000 27.930
Fly ash kg/m3 54.708 58.330 0.000 367.330 58.498
Mineral powder kg/m3 43.401 0.000 0.000 375.000 59.543
Fine aggregate kg/m3 731.723 746.000 30.000 1,293.000 127.353
Coarse aggregate kg/m3 1,006.780 1,038.120 108.000 1,846.000 183.907
Water reducing admixture kg/m3 4.026 4.130 0.000 32.200 3.389
Compressive strengths kg/m3 45.346 44.600 5.660 95.300 13.526
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content (K) ranging from 0 to 375kg/m3, the fine aggregate
content (FA) ranges between 30 and 1,293 kg/m3, the coarse
aggregate content (CA) ranges between 108 and 1,846 kg/m3,
the water reducing agent content (WRA) ranges between
0 and 32.2 kg/m3, and the water content (W) ranges between
16.034 and 379 kg/m3. The compressive strength of the col-
lected datasets is ranged from 5.66 to 95.3MPa.

4.4.2. Data Variable Distribution. In machine learning or
deep learning regression problems, data are a crucial factor.
Good data lead to better-fitting results. For deep learning, if
the data are close to a normal distribution, then neural net-
works train faster and can avoid overfitting. However, in
practical applications, most acquired data do not follow a
normal distribution. Therefore, prior to training a model,
the data should be evaluated, and normalization or standard-
ization methods should be applied to obtain a data distribu-
tion closer to normal.

Skewness, a measure of the skewness and degree of devi-
ation of statistical data distribution, was used in this study to
determine the differences between data distribution and nor-
mal distribution. Skewness is the third standardized moment
of a sample. The general formula is shown in Formula (4), as
follows:

Skew Xð Þ ¼ E
X − μ

σ

� �
3

� �
¼ k3
σ3

¼ k3
k3=22

: ð4Þ

The quantile–quantile plot (Q–Q plot) is a graphical tool
used to compare the quantiles of data with the quantiles of a
normal distribution. If the data follow a normal distribution,
then all points fall on a straight line. In this study, cement,
water reducing admixture, and water content were used as
examples. The plots show that, except for the cement feature,
the other features have significant deviations from a normal
distribution. Therefore, data normalization was applied to
obtain a data distribution closer to normal. The distribution
before and after normalization is shown in Figure 7.

Research has shown that normalizing data can make
them closer to a normal distribution. Skewness values notice-
ably decrease when data are normalized. However, normali-
zation does not change the correlation coefficients between
the feature values and the predicted compressive strength.
Therefore, normalization is an essential step in data analysis
and deep learning.

4.4.3. Examining the Correlation of Feature Variables. The
correlation coefficient between two feature variables is used
to estimate the relationship and strength of correlation
between variables. The level of correlation between variables
is determined by observing the magnitudes of different cor-
relation coefficients in a heatmap. The formula for calculat-
ing the correlation coefficient is as follows:

ρx1x2 ¼
Cov X1;X2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DX1;DX2
p ¼ EX1X2 − EX1 × EX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DX1 × DX2
p ; ð5Þ

where ρ represents the correlation coefficient, Cov represents
covariance, and E represents the mathematical expecta-
tion/mean.

Some specific variables may depend on each other.
Therefore, as shown in Figure 8, all possible correlation coef-
ficients between variables have been derived. High positive or
negative correlation coefficients between input variables may
lead to poor efficiency and difficulty to determine the impact
of these variables on the outcome. The figure shows that the
highest correlation among independent input variables is
among cement, fly ash and slag, reaching 0.46. Regarding
the concrete strength CS, the highest correlations are with
cement content and superplasticizer content, at 0.39 and
0.33, respectively.

5. Model Establishment and Prediction

For model establishment, the following steps are performed:

(1) The necessary libraries are imported.
(2) The data are preprocessed, including importing the

datasets and processing the data, specifically han-
dling missing values and normalizing the data.

(3) The appropriate machine learning model is selected,
and the model is trained using the training set.

(4) The dataset to be predicted is input into the trained
model to obtain the prediction results.

5.1. Data Partitioning. Prior to model establishment, the
dataset is divided into training set and test set. The training
set is used to train the model, whereas the test set is used to
validate the model’s fit. The data are split using the “train_
test_split” function from the “sklearn” library in Python.
Typically, the ratio between the training set and the test set
is approximately 9 : 1, 8 : 2, 7 : 3, or 5 : 5. In this study, a split
ratio of 8 : 2 is used, resulting in 3,621 (80%) training set data
for model training and 632 (20%) test set data for data
validation.

5.2. Model Training

5.2.1. Traditional Machine Learning Methods. In this study,
six machine learning algorithm models are used to predict
the compressive strength of concrete: MLR, KNN regression,
SVM, DT, RF, and LightGBM. The performance of these
models is evaluated using three evaluation metrics: coeffi-
cient of determination (R2), mean absolute error (MAE),
and mean squared error (MSE).

R2, MAE, and MSE are all measures of a model’s predic-
tive performance, but each has a different emphasis. R2 is an
important indicator in regression analysis, which indicates
how well the model fits the data. The value of R2 is between 0
and 1, and the closer the value is to 1, the better the explana-
tory power of the model, that is, the better the independent
variable explains the change of the dependent variable. R2 is
calculated by comparing the difference between the actual

Advances in Civil Engineering 7



Cement original
D

en
sit

y

3.0

2.5

2.0

1.5

1.0

1.0

0.5

0.5
0.0

1.0

0.8

0.6

0.4

0.2

0.0

80

60

40

20

0.0 20 0.25 0.50 0.75 1.000.00–2

D
en

sit
y

3.0

3.5

2.5

2.0

1.5

1.0

1.0

0.5

0.5
0.0

1.0

0.8

0.6

0.4

0.2

0.0

80

60

40

20

0.0 20 0.25 0.50 0.75 1.000.00–2

D
en

sit
y

10

8

6

4

1.00

2

0.50 0.750.25
0

1.0

0.8

0.6

0.4

0.2

–0.2

0.0

80

60

40

20

0.00 20 0.2 0.4 0.6 0.8 1.00.0–2

D
en

sit
y

5

4

3

2

1.000.75

1

0.500.25
0

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

80

60

40

20

0.00 20 0.2 0.4 0.80.6 1.00.0–2

Skew = 0.3824 Corr = 0.39

Cement transformed Skew = 0.0090 Corr = 0.39

Water reducing admixture original Skew = 1.3826 Corr = 0.20

Water reducing admixture transformed Skew = 0.0310 Corr = 0.20

FIGURE 7: Continued.

8 Advances in Civil Engineering



observed value and the predicted value of the model, but it
does not directly reflect the size of the forecast error; MAE
is the average of the absolute value of the difference between
the predicted value and the actual value. It can better reflect
the true level of prediction error. The smaller the MAE
value, the closer the prediction result of the model is to

the actual data. Because MAE is more concise to compute,
it is often used to actually evaluate the predictive perfor-
mance of the model. MSE is a common measure of predic-
tion error, which is the average of the sum of squared
differences between the predicted and actual values. NSE
is more sensitive to larger errors and can amplify the effect
of larger errors.

In summary, R2 is mainly used to evaluate the fit degree
of the model, while MAE and MSE are used to measure the
size of the prediction error. This study uses R2 as the main
evaluation metric given its ability to reflect the degree of
explanation of independent variables for the dependent var-
iable and capture certain data distribution patterns, with the
two other metrics serving as auxiliary indicators.

(a) R2.
The R2 value reflects the extent to which the regression
model explains the variation of the dependent variable or
how well the model fits the observed values. The formula
for calculating R2 is as follows:

R2 y;byð Þ ¼ 1 −
∑

nsamples−1
i¼0 yi − byið Þ2

∑
nsamples−1
i¼0 yi − yið Þ2

: ð6Þ

(b) Mean absolute error.
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MAE is the absolute difference between the predicted
values and the true values. The formula for calculating
MAE is as follows:

MAE¼ 1
n
∑
n

i¼1
fi − yij j ¼ 1

n
∑
n

i¼1
eij j: ð7Þ

(c) Mean squared error.
MSE is the expected value of the squared difference
between the estimated parameters and the true parame-
ters. MSE can conveniently measure the mean error and
can be used to evaluate how much data have changed.
The formula for MSE is as follows:

MSE¼ 1
n
∑
n

i¼1
observedi − predictedið Þ2: ð8Þ

From Table 2 and Figures 9, 10, 11, 12, 13, and 14, it is
found that the nonlinear model is better than the linear
model in predicting the concrete strength, and ensemble
learning has the highest prediction accuracy in the same
data, mostly above 0.60. Overall, RF and KNN regression
models have the best-fitting effects, with R2 values of 0.69.

TABLE 2: Prediction performance of machine learning algorithms.

Machine learning algorithm models R2 ð%Þ : MAE ðMpaÞ MSE ðMpaÞ
Multiple linear regression 0.480395 7.756060 104.636304
K-nearest neighbor regression 0.699114 4.869058 54.626699
Support vector machines 0.545818 6.884988 85.594238
Decision tree 0.617070 5.499421 67.524841
Random forest 0.699438 5.344389 52.527007
LightGBM 0.668214 5.844512 63.049502
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FIGURE 9: Prediction of multiple linear regression models.
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FIGURE 10: Prediction of K-nearest neighbor regression models.
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FIGURE 11: Prediction of support vector machines models.
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However, the MSE of RF is lower than that of the KNN
regression model. Therefore, considering the comprehensive
evaluation, the RF model has the highest prediction accuracy
in machine learning, but it is still approximately 0.69. There-
fore, this study decides to optimize the RF model using opti-
mization algorithms. The optimization algorithms selected
are Harris Hawk optimization (HHO) and gray wolf opti-
mizer (GWO). The results are summarized in Table 3.

From Table 3 and Figures 15, the comparison between
the two algorithms indicates that the GWO has a significant
optimization effect on the prediction performance in this

research dataset, improving the fit from 0.69 to 0.74. Despite
the noticeable improvement, it does not satisfy the expected
effect. Therefore, deep learning methods are introduced for
prediction.

5.2.2. Fully Connected Neural Network-Based on the PyTorch
Framework. The fully connected neural network used in this
study has four layers: the first layer is the input layer with
seven nodes, the second and third layers are hidden layers
with 16 nodes each, and the fourth layer is the output layer
with one node. The activation function used is the ReLU
function. The structure diagram is shown in Figure 16. The
results are summarized in Table 4.

Figures 17 and 18 find that the fully connected neural
network based on PyTorch framework has higher accuracy
and less error in predicting concrete strength compared to
traditional machine learning. It can be seen from the experi-
ment that the loss value of this model is the lowest and tends
to be stable when the iteration is about 100 times, indicating
that the stability of the model is better and the learned data
features are more accurate. At the same time, the error
between the predicted value and the real value is basically
about 10% error. Therefore, this model is better than the
traditional machine learning model in predicting the com-
pressive strength of concrete and can be applied to engineer-
ing practice.

5.3. Best Performing Model. The results indicate that when
machine learning algorithms are not used with optimization
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FIGURE 12: Prediction of decision tree models.
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TABLE 3: Algorithm performance after optimization.

Optimization algorithm R2 ð%Þ: MAE ðMpaÞ MSE ðMpaÞ
Harris Hawk optimization 0.716600 5.231100 53.606300
Gray wolf optimizer 0.737000 4.696600 45.272300

Advances in Civil Engineering 11



100

80

60

40

20

0C
om

pr
es

siv
e s

tre
ng

th
 p

re
di

ct
ed

 v
al

ue
s (

M
pa

)

Training data

Testing R2 = 0.737000
Testing  MAE = 4.696600 Mpa
Testing  MSE = 45.272300 Mpa

Testing data
Y = X
+10% error

+20% error
–20% error
+30% error
–30% error

–10% error

0 20 40 60
Compressive strength observed values (Mpa)

80 100
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FIGURE 16: Fully connected neural network model structure.

TABLE 4: Fully connected neural network prediction performance for the PyTorch framework.

Model building R2 ð%Þ: MAE ðMpaÞ MSE ðMpaÞ
PyTorch-based neural networks 0.92000 3.984503 35.19259
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algorithms, RF performs the best in predicting the 28-day
concrete strength. The R2 and MAE values for RF are 0.69
and 5.45. When the GWO algorithm was applied to optimize
the RF algorithm, and the R2 and MAE values of the
GWO–RF algorithm reached 0.74 and 4.69, achieving good
prediction results.

Although general ANN models do not perform effec-
tively in deep learning, the proposed fully connected neural
network model based on the PyTorch framework outper-
forms all other models in predicting concrete strength,
with R2 and MAE values of 0.92 and 3.98. It demonstrates
higher prediction accuracy than regular ANN and machine
learning models, with loss values approaching stability after

100 iterations, indicating high prediction accuracy and
strong generalization ability.

6. Conclusion

This study investigated the application of machine learning
in predicting concrete compressive strength and introduced
the concept of deep learning into traditional machine learn-
ing models. For the traditional machine learning, Ibrahim
et al. [39] established four machine learning models to eval-
uate the effect of recycled coarse aggregate on the compres-
sive strength of concrete and found that the full quadratic
model could predict the compressive strength of recycled con-
crete aggregate much better. Mai et al. [40] and Li and Song
[41] proposed a stacking model to predict the compressive
strength of recycled brick aggregate and rice husk ash concrete
by using ensemble machine learning method, respectively, and
found that the model showed good performance for both dif-
ferent types of concrete. Li et al. [42] proposed a boosting-based
ensemble machine learning algorithm, the gradient boosting
regression tree (GBRT) algorithm, to predict the compressive
strength of concrete. The results showed that GBRT had better
prediction accuracy than other machine learning algorithms.
Phoeuk and Kwon [43] employed four machine learning mod-
els based on ensemble learning algorithms to predict the com-
pressive strength of RAC. The results showed that the proposed
model had good accuracy and generalizability.

From the prior literatures, we find that machine learning
algorithms usually require manual feature extraction of data-
sets, which is relatively complex and time-consuming. Deep
learning algorithms are able to automatically learn feature
representations from the raw data, reducing human inter-
vention, and improving computational efficiency. At the
same time, machine learning is generally difficult to deal
with complex data structures and patterns, while deep learn-
ing algorithms could capture more complex patterns by
learning hierarchical representations of data. So, the deep
learning algorithms usually have stronger generalization
ability. A new fully connected neural network model based
on the PyTorch framework is established for predicting the
28-day concrete strength in this study. The following con-
clusions are drawn:

(1) Comparison of traditional machine learning algo-
rithmmodels: Prior to using optimization algorithms,
the KNN regression model and the RF model in
ensemble learning achieve the highest accuracy in
predicting concrete strength. However, compared
with the KNN, the RF model is more stable and has
smaller errors. Therefore, two intelligent optimization
algorithms are applied to optimize RF, and the newly
constructed GWO–RF model shows the best-fitting
effect.

(2) Introduction of deep learning: General neural net-
work models are not as effective as the optimized
RF model, but the fully connected neural network
model based on the proposed PyTorch framework
achieve significantly better results in predicting
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concrete strength, with an R2 of 0.92. This finding
further demonstrates that the model can effectively
predict the compressive strength of recycled con-
crete, satisfying the engineering requirements.

(3) In this study, although the traditional machine learning
could successfully predict the compressive strength of
concrete, the traditionalmachine learningmodel has the
disadvantages of poor generalization and manual data
feature extraction. Therefore, this paper propose a fully
connected neural network model based on PyTorch
framework to predict the strength of concrete. The
results show that the introduction of deep learning
method not only strengthened the generalization ability
of the model but also significantly improved the predic-
tion accuracy, and achieved better results.

(4) Concrete compressive strength is a key parameter that
determines the performance of concrete structure. Accu-
rate prediction of concrete compressive strength is of
great significance for engineering design and construc-
tion. However, due to the influence of regional environ-
ment and climate, the accuracy and reliability of
concrete compressive strength prediction under differ-
ent circumstances should be considered in future
research, and more concrete sample data of different
types, different ages, and different environmental con-
ditions should be collected.
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