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Predicting the status of train delays, a complex and dynamic problem, is crucial for railway enterprises and passengers. This paper
proposes a novel hybrid deep learning model composed of convolutional neural networks (CNN) and temporal convolutional
networks (TCN), named the CNN+TCN model, for predicting train delays in railway systems. First, we construct 3D data
containing the spatiotemporal characteristics of real-world train data. Then, the CNN+TCN model employs a 3D CNN compo-
nent, which is fed into the constructed 3D data to mine the spatiotemporal characteristics, and a TCN component that captures the
temporal characteristics in railway operation data. Furthermore, the characteristic variables corresponding to the two components
are selected. Finally, the model is evaluated by leveraging data from two railway lines in the United Kingdom. Numerical results
show that the CNN+TCN model has greater accuracy and convergence performance in train delay prediction.

1. Introduction

Complex systems are distinguished by their complexity,
uncertainty, relevance, and openness [1, 2]. These character-
istics make it difficult to predict the state of complex systems,
such as weather forecasts and energy consumption predic-
tions. With the development of artificial intelligence, the
study of complex systems has entered the data-driven era
[3]. Recently, the application of deep learning for the state
prediction of complex systems had some achievements. For
instance, 1D convolutional neural networks (CNN) have
been leveraged to predict the consumption of building
energy [4]. A predictive maintenance model of complex sys-
tems based on recurrent neural networks (RNN) has been
designed [5]. A new neural network has been designed to
predict train delays on Iranian railways [6]. However, the
performance of these state prediction models for complex
systems, especially in the application of train delay predic-
tion, raises the following questions that need to be discussed:

(1) Component complexity caused by a complex, hierar-
chical architecture and operational process makes the

characteristic factors for complex systems self-related
and cross-related [7]. As a result, the influencing
factors of train delay in railway systems should be
distinguished by their inherent attributes and the
degree of closeness among them.

(2) Influencing factors from different categories in rail-
way systems have different characteristics of self-
organization and self-evolution. To improve the pre-
diction accuracy of train delay, the model needs to
structure the corresponding deep learning compo-
nents for different categories of influencing factors.

(3) Some fluctuations and inputs from external environ-
ments may greatly change the interactions that connect
the individual agents in railway systems. Therefore, the
previous state of each characteristic factor will have an
impact on the later state of the train delay. We need a
powerful model to mine the intrinsic temporal charac-
teristics of train delay. However, the existing models
may have shortcomings in processing time-series data.

Predicting train delays accurately is crucial for railway
enterprises to promptly reschedule the timetable, despite the
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complexity of the issue within railway systems [8]. Railway
dispatchers can use precise delay prediction to evaluate train
statuses, make informed decisions, and optimize transporta-
tion networks for enhanced efficiency. Moreover, accurate
delay prediction data can help passengers estimate travel
times and revise plans, improving the service quality of rail-
way systems [9]. Additionally, railway systems are complex
systems that can be influenced by the environment, anthro-
pogenic factors, and train events, which may interact with
each other [10, 11]. Given the fact that events may be depen-
dent on two stations and trains, it is possible for the opera-
tions of railway systems to be both self-correlated and cross-
correlated [12, 13]. Self-correlated factors in railway systems
can contribute to the temporal characteristic of train delay.
Cross-correlated events in railway systems can result in train
delays exhibiting spatiotemporal coupling characteristics.
Extracting the features of train delays from railway operation
data is difficult, especially due to the interplay between tem-
poral and spatial factors. Therefore, predicting train delays
remains a challenging task. Most prior studies have catego-
rized characteristic factors into a single category, such as
time. However, these models fail to accurately capture the
interaction between internal and external factors in railway
systems. Moreover, these studies did not take into account the
correspondence between themodel and the characteristic factors,
especially the correspondence model for spatial characteristics.

Currently, some applications of hybrid deep learning
models [14] have provided us with a new idea to address
the problem of correspondence between the model and the
characteristic factors in the prediction of train delay. To
capture more comprehensive information, deep learning
models with different features are integrated to create hybrid
models [15]. With hybrid deep learning models, different
characteristic factors can be fed into correspondence models

to improve performance. For instance, in [16, 17], temporal
features were first extracted from the data by feeding it into
the long short-term memory (LSTM) model, and the spatial
features were then further retrieved by feeding the features
into the CNNmodel. An alternate serial link between LSTMs
and CNNs in [18] was proposed, wherein CNN was initially
utilized. In [19], the serial CNN-LSTM structure of a 1D and
a 2D CNN was compared. Following this research direction,
the study designs a novel hybrid deep learning model, named
the CNN+TCN model, to predict the delay of trains. In the
CNN+TCN model, the characteristic factors are divided
into the 3D spatiotemporal category and the 1D time series
category. Then, the CNN+TCN model employs a 3D CNN
component that is fed into the 3D data to mine the spatio-
temporal characteristics, as well as a temporal convolutional
networks (TCN) component that captures the temporal
characteristics of railway operation data.

The proposed model can provide a novel approach to
improving accuracy and convergence performance. The
main contributions of this work are summarized as follows:

(1) Considering the complexity of characteristic factors in
railway systems, we sort the influencing factors into
spatiotemporal categories and time series categories.
Then, we build the real-world train data into 3D data
as the spatiotemporal category.

(2) A TCN component is structured to reflect the complex
dynamic characteristics of railway system operation
and is applicable to time series data in railway systems.
In addition, this TCN component can improve the
convergence of the hybrid model.

(3) The proposed deep learning framework includes one
TCN component and one 3D CNN component to
address the problem of correspondence between the

TABLE 1: Disadvantages of state prediction in some areas of real-world complex systems.

Prediction target Model Disadvantage Reference number

Building thermal load LSTM Weather data need to be processed separately [22]
Heating demand RNN Difficult to process long-term thermal load [24]
Thermal load of district heating networks DNN The attribute of characteristic should be considered [25]

Building energy consumption GRU
Only classify the building energy data into time
categories

[26]

Numerical weather prediction DNN
The spatial characteristic of the grid point should be
mined by the model

[27]

Storm surges CNN_LSTM No model is built for spatial characteristics [28]
PM2.5 concentration CNN_LSTM PM2.5 influencing factors need to be distinguished [29]

Temperature and wind speed 3D CNN_FNN
The time characteristics of dynamic systems should be
considered separately

[30]

Useful life of the complex system LSTM The efficiency of the model could be improved [31]
Thermal and cooling consumption of
building

1D CNN
The model’s ability to process time series data should
be improved

[4]

Train delay DNN External influence should be further analyzed [32]

Train delay LSTM
Spatial relationships among different stations should
be considered

[33]

Train delay LSTM
Time sequence characteristics mining of train
influencing factors should be improved

[34]
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model and the characteristic factors in railway sys-
tems, which can promote the predictive performance
of the model.

The article’s remainder is organized as follows: In Section 2,
the previous studies are reviewed. In Section 3, the research first
introduces 3D CNN and builds 3D data containing the spatio-
temporal characteristics of real-world train data. Then, the
research structures a TCN component that is applicable to
railway systems. Furthermore, the architecture of the proposed
model, named the CNN+TCN model, is introduced. In
Section 4, we describe the railway data for two lines in the
United Kingdom and select the characteristic variables. In
addition, a numerical investigation of train delay prediction
is carried out to validate the effectiveness of the proposed
method. Finally, our work in Section 5 is concluded.

2. Related Work

Deep learning is an effective technology for dealing with
large amounts of data, extracting inherent features, and
modeling nonlinear phenomena [20]. Nowadays, some deep
learning approaches have been applied in the state prediction
area of complex systems, such as the deep neural network
(DNN) [21], the LSTM [22], the gated recurrent unit
(GRU) [23], the RNN [5], and the CNN [4]. However, the
internal and external features of complex systems cannot be
ignored. Table 1 shows the disadvantages of state prediction
in some areas of real-world complex systems. In some fields,
predicting the state of complex systems may be regarded as
merely ordinary deep learning prediction problems that do
not consider the inherent features and correlations of influ-
encing factors. More importantly, it can be seen that some
research has considered the dynamic characteristics of com-
plex systems and structured models for mining temporal
characteristics. However, all influencing factors of the com-
plex system are only classified in the time series category
without considering its other intrinsic properties. For exam-
ple, the prediction for energy consumption of buildings did
not consider the impact of visitor flowrate (as shown in
Table 1). These temporal-characteristic mining models also
have low accuracy and convergence performance. Some
research has used hybrid deep learning methods to minemul-
tiple intrinsic attributes of influencing factors. The prediction

performance of these hybrid models has improved compared
with individual deep learning models. However, the corre-
sponding models for the influencing factors of different attri-
butes that affect the further improvement of prediction
accuracy have seldom been considered.

As shown in Table 1, the disadvantages of some research
in the prediction field of train delay have been found due to
ignoring the spatial characteristics of railway systems. In
addition, Sun et al. [35] utilized a radial basis function net-
work to predict the delay time at technical stations. This
method is only applicable to large-scale technical stations
with longer historical data delays. Oneto et al. [36] designed
a train delay prediction system (TDPS), which used big data
technology and the deep learning machine algorithm. How-
ever, TDPS cannot effectively mine the temporal features of
real-world train data. Zhang et al. [37] proposed a method to
predict train-associated delay that used the Morlet mother
wavelet basis function as an excitation function. Through the
analysis of previous research, we find that the existing meth-
ods ignore the relationships between stations and the depen-
dencies of railway events between trains and stations. In
addition, existing research has the disadvantage of mining
the temporal relationship between adjacent trains. As a
result, this study decides to use a 3D CNN component to
capture the operation interactions in railway systems. The
superiorities of this study are as follows:

(1) The proposed method focuses on the internal char-
acteristics of influencing factors in train delay with
different categories, which can improve the percep-
tion of comprehensiveness.

(2) The study employs a more advanced time-series data
processing architecture, TCN, which can better min-
imize the time relationship between adjacent trains
and reduce the data processing time.

(3) The proposed method can process time data and
spatiotemporal data from the railway system simul-
taneously, which enhances predictability.

2.1. The Delay Prediction Model. According to [38–41], the
operation’s interactions in the railway system can be repre-
sented by the spatiotemporal relationship between stations
and the dependencies of events between trains and stations.
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FIGURE 1: Schematic diagram of input data of 3D CNN (width= 5, height= 3, and length= 4).
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A model capable of capturing spatiotemporal relationships is
required to extract the interdependencies between time and
space events in the railway system. Furthermore, previous
research indicates that the influencing factors for train delays
exhibit time-series properties. As a result, this study sorts the
influencing factors into spatiotemporal categories and time
series categories. In this section, we first introduce 3D CNN,
which has the ability to process spatiotemporal data. Next,
we construct 3D data incorporating the spatiotemporal attri-
butes of the railway system. Then, we structure a TCN com-
ponent to mine temporal features from railway data. Finally,
the CNN+TCN model is introduced.

2.2. CNN. 2D CNN can better extract spatial features from
image data by processing multiple pixels simultaneously with
convolution filters [42]. 2D image data in a 2DCNN is converted
into 3D data. The real-world train data have obvious
spatial–temporal characteristics [40], whereas 2D CNN could
not mine spatial characteristics from the data with such charac-
teristics. On the other hand, 3D CNN can effectively process
image data with temporal sequence information, such as video
data [43]. 3D CNN data, including video duration, has a time
characteristic, which is the third dimension in its convolutional
filters. In contrast to 2D CNN, the convolutional filters of 3D
CNN are 3D. The third dimension in the convolutional filters of

3D CNN is the time depth [44, 45]. This allows for constant
temporal characteristics, enabling 3D CNN to extract spatiotem-
poral coupling relationships from input data [46]. As a result, this
study utilizes 3DCNN for time–space characteristic learning and
video analysis in railway systems, focusing on the spatiotemporal
coupling characteristic to extract real-world train data properties.

Moreover, pooling layers are added after 3D CNN filters,
and they calculate the averaged or maximum value of output
maps [46]. The number of parameters required for training
the 3D CNN can be significantly decreased by using the
pooling layers to obtain the crucial values that identify the
characteristics. The pooling layer significantly reduces time
investment for CNN models while maintaining model accu-
racy. The CNN can be configured with either global or local
pooling layers. Smaller kernel sizes are employed in local
pooling (e.g., 2× 2× 2 for 3D CNN). Global pooling, on
the other hand, has an impact on all feature maps acquired
through the layers of convolution. In the paper, we choose
local and max pooling as these approaches are effective in
capturing vital characteristics.

This study puts real-world train data with spatiotemporal
characteristics into a 3D CNN. To mine spatial characteris-
tics utilizing 3D CNN, we convert real-world train data into
3D data. As illustrated in Figure 1, the width of the 3D data
represents the stations on the railway line, and there is a
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FIGURE 2: Schematic diagram of TCN architecture.

4 Advances in Civil Engineering



spatial relationship among them. The length indicates the
quantity of trains on a single rail track. The train’s departure
has a sequence and a spatiotemporal relationship. What is
more, the height of the 3D data represents the train’s state at
a station. As shown on the left side of Figure 1, the width is
set to 3 in the constructed 3D data. Thus, each 3D piece of
data contains information from three stations (S1–S3), which
have adjacent spatial locations. The length is set to 5, which
means that each 3D data set contains five trains (T1–T5),
which are arranged in order of departure. The height is set
to 4, which means that the train has four states (St1–St4) at
each station. The states mentioned are derived from the
recorded arrival and departure events at each station. There-
fore, the data shape of the input 3D CNN is (3, 5, 4). After
constructing the 3D data, the 3D CNN extracts the spatio-
temporal features of 3D data through 3D convolution filters.
The paper sets the depth of the input 3D CNN data to 1,
indicating the output, which is the train delay.

2.3. TCN. In 2017, Lea [47] pioneered a TCN that integrates
extended causal convolution and residual connection. TCN
has a back-propagation path, which avoids the “gradient
explosion” or “disappearance problem” that often occurs in
the RNN [47–49]. TCN is produced by stacking numerous
layers of TCN residual blocks, which results in the formation

of TCN. As shown in Figure 2, one TCN residual block
contains two 1D extended causal convolutions with an iden-
tical expansion coefficient [50]. The extended causal convo-
lution enables TCN to quickly capture causal relationships
between longer temporal series. The expansion causal con-
volution layer of each TCN residual block has a different
expansion coefficient bn−1, where b denotes the expansion
basis of the TCN residual block, and n denotes the layer’s
number in the TCN residual block. In addition, k is the size
of the 1D convolution filter.

As shown on the lower side of Figure 2, a weight nor-
malization layer is added to each layer to counteract the
gradient explosion problem of the network. The above layer
normalizes the input of the hidden layer. To make the mod-
ule nonlinear, a rectified linear unit (ReLU) activation func-
tion is inserted into the 1D convolution layer. Additionally,
the ReLU activation function also ensures that the output can
have a negative value. Besides, the drop-out layer prevents
overfitting. Finally, the introduction of 1× 1 convolution
residual connections directly maps the input to solve the
degradation of the deep network [51]. The number n of
TCN residual blocks is obtained as follows:

n ≥ logb
p − 1ð Þ b − 1ð Þ
2 k − 1ð Þ þ 1
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FIGURE 3: Structure diagram of the CNN+TCN model.
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where b is the expansion basis, k is the size of a 1D convolu-
tion filter, and p denotes the length of the temporal series.
Combined with the characteristics of train delay prediction,
the temporal series length p is set to 5, and the expansion
base b is set to 2. Therefore, according to Equation (1), TCN
is set as a two-layer residual block.

2.4. The CNN + TCN Model. In this research, a model for
predicting train delays named CNN+TCN is proposed. In
the proposed model, a CNN component provides features
related to spatial correlation, and a TCN component pro-
vides features related to temporal series. The structure dia-
gram of the CNN+TCN model is shown in Figure 3.
Spatiotemporal data from train operations is transmitted to
the CNN component, and temporal series data from train
operations is transmitted to the TCN component. The CNN
component first includes a 3D convolution layer. Behind the
3D convolution layer, a maximum pooling layer decreases
the number of parameters while preserving the model’s
essential characteristics. To realize a fusion step, a flat layer
is added. Meanwhile, a TCN component with two layers of
remaining TCN blocks is set up on the right side of Figure 3.

Next, a fusion method is adopted to connect the output
data from two components side by side. If the output sizes of
the TCN component and CNN component are (Q, V) and
(Q, U), the combined data should be (Q, V+U), where Q is
the data amount of test or training. The merged data are
subsequently run through a fully connected neural network
(FCNN) layer to increase the weight of each unit. To deter-
mine the loss, a comparison is performed between the predic-
tion value and the actual delay data, employing an objective
function. The proposed model calculates the loss function by
leveraging the mean square error (MSE). In addition, the
activation functions of FCNN and 3D CNN use the paramet-
ric rectified linear unit (PReLU) function.

3. Results and Discussion

3.1. Description of Real-World Train Data. In this article,
train data from the United Kingdom were used to train
and calibrate the model. This study chose two lines, namely,
from London Euston station to Manchester Piccadilly station
(EUS–MAN) and from London King’s Cross to Darlington
(KGX–DAR). The EUS–MAN line is a railway line operated
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FIGURE 4: Station diagram of two railway lines: (a) from London Euston to Manchester Piccadilly; (b) from London King’s Cross to
Manchester Piccadilly.
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by Avanti West Coast. As shown in Figure 4(a), the
EUS–MAN line passes through 12 railway stations. The
KGX–DAR line belongs to the east coast lines operated by
the London North East Railway (LNER). As shown in
Figure 4(b), the KGX–DAR line passes through ten railway
stations.

Real-world train data were collected for 9 months, from
October 1, 2021, to June 30, 2022. The KGX–DAR line col-
lected 10,968 train operation records, and the EUS–MAN
line collected 9,810 train operation records. The database
collected includes planned/actual departure time, planned/
actual arrival time, planned/actual operation time, train
number, delay, dwell time, and date of each train at each
station. To improve the data’s quality, abnormal raw data
are processed as follows:

(1) Deleting the abnormal delay (generally larger than
120min) that may cancel the train due to a large
delay.

(2) Using the weighted average of adjacent records to
process the missing data.

Next, the data are categorized into spatiotemporal feature
data processed by 3D CNN and temporal series data pro-
cessed by TCN. Train delays can generally be categorized
into two types: self-delay and joint-delay [52]. Self-delay
refers to the initial delay of a train caused by factors such
as weather conditions, track equipment issues, or the railway
power system. On the other hand, the joint-delay occurs
when delays from preceding trains spread and affect subse-
quent trains [37]. Regardless of the type, the arrival delay
time and departure delay time, which depend on the location
and time of the train at each station, directly reflect the extent
of the train delay. Therefore, the spatiotemporal characteris-
tic parameters include (it is assumed that the delay of the k
station is to be predicted) arrival delay time Wa (from the
n–k station to the n− 1 station) and departure delay timeWd

(from the n–k station to the n− 1 station).
Furthermore, the train delay is directly related to the state

of its adjacent train. The tracking interval between two trains
represents the minimum time required for two adjacent trains
to remain undisturbed from each other [52]. When the preced-
ing train experiences a delay, the actual tracking interval
between the trains immediately reflects the impact of its delay
on the following train delay. The actual dwell time at the station
indicates the impact of the delay within the railway system on
each train. The system delay may result in increased actual
dwell time for each train. After the factors that cause the delay
in the railway system are eliminated, efforts to mitigate the
impact of delays may include shortening the actual stop dwell

time at certain stations. The train’s speed may decrease during
delays, resulting in longer travel times between adjacent sta-
tions [53]. Thus, the actual travel time between adjacent sta-
tions can serve as an indicator of the degree of train delay.
Additionally, the timetable has an impact on the train delay.
Different scheduled timetables contain variations in travel
times, dwell times, and tracking intervals, which affect the
recovery capabilities of the railway system following delays
[54]. Hence, based on the above analysis, the temporal charac-
teristic parameters include the following (it is assumed that the
delay of the k station is to be predicted):

(1) Scheduled travel time T between two stations (from
the n–k station and the n–k+ 1 station to the n− 1
station and the n station).

(2) Scheduled dwell time P (from the n–k station to the
n− 1 station).

(3) Scheduled tracking interval I between two trains
(from the n–k station to the n− 1 station).

(4) Actual travel time T’ between two stations (from the
n–k station and the n–k+ 1 station to the n− 1 sta-
tion and the n station).

(5) Actual dwell time P’ (from the n–k station to the n−
1 station).

(6) Actual tracking train interval time I’ between two
trains (from the n–k station to the n− 1 station).

After determining the above characteristic parameters,
the corresponding characteristic parameters are extracted
as the input data for the 3D CNN and TCN. Then, this study
randomly selects 75% of the real-world train data as the
training set. The residual 25% train data is selected as the
test set for subsequent verification.

3.2. Model Parameter Selection. We conducted a trial on
model parameters using KGX–DAR line data to enhance
prediction performance, highlighting the significant impact
of the depth and quantity of neurons, units, and filters in
each layer. We employ the parameter optimization strategy
that is often used in the literature (e.g., [55, 56]) as the two of
these parameters are interrelated. In this strategy, manually
figuring out the depth and the number of neurons, units, or
filters in each layer is used to create a suitable model. Previ-
ous research has demonstrated that each layer of a neural
network typically contains 32, 64, or 128 neurons/units/fil-
ters [46, 55, 56]. The model is initially trained using one TCN
and one 3D CNN layer. As validation loss decreases, the
layers are added. The first CNN layer has 64 neurons, while
each TCN layer has 64 units, considering the total number of
influencing factors.

TABLE 2: Validation results of CNN+TCN for the different number of 3D CNN layers.

Depth 3D CNN Loss TCN Loss

1st 3D CNN (32) 1.430 TCN (64) 1.012
2st 3D CNN (64) 1.461 TCN (64) 1.139
3st 3D CNN (64) 1.460 TCN (64) 1.139

Advances in Civil Engineering 7



The trial results are shown in Table 2. The findings
showed that the validation loss initially decreases as the
depth/number of layers of 3D CNNs and TCNs increases,
but it does not continue to decrease as the number of layers
increases to a certain number. Meanwhile, the results suggest
that data under-fits with fewer layers, well-fits with enough
layers, and over-fits with more complex model structures as
the structure becomes more complex. Figure 5 outlines the
regular architecture consisting of two 3D CNN layers with 32
filters and 64 filters and two TCN layers with 64 TCN units
to ensure a well-fitted model and prevent overfitting. A max-
pooling layer is added after each 3D CNN in order to capture

crucial characteristics. Furthermore, we manually adjust the
settings for those that do not significantly affect the accuracy
of the model based on guidelines gleaned from fruitful
research. For instance, in order to distinguish between tiny
and local characteristics, the filter size and pooling size have
been set to 2× 2× 2 [46]. To ensure that the output data of
the convolutional layers is the same size as the input data, the
padding parameter in the 3D CNN portion is set to the same
padding. The pooling kernel and convolutional filters have
stride values of 2× 2× 2 and 1× 1× 1, respectively. The
Adam optimizer was utilized, which is used to adjust the
local learning rate during training [57].
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FIGURE 5: Data flow and data form of CNN+TCN model.
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3.3. Verification Results. To verify the model’s performance,
CNN+TCN is compared with the following baseline models:

(1) DNN: DNN is a neural network with a large num-
ber of hidden layers [21].

(2) LSTM: LSTM is able to avoid gradient disappear-
ance and remember the dependence of long term,
which is an improvement kind of RNN.

(3) GRU: GRU and LSTM are very similar; both add a
gating mechanism in the RNN unit to selectively
add or forget historical information. GRU omits
the forgetting gate of LSTM and has a faster training
speed and fewer parameters.

(4) TCN: TCN has been introduced in Section 3.2.
(5) CNN: CNN has been introduced in Section 3.1.
(6) ConvLSTM: ConvLSTM is a peer-to-peer architec-

ture, designed by applying the convolution calcula-
tions of LSTM to mine multiple types of features
[56, 58].

(7) CNN_LSTM: CNN_LSTM first uses the CNN to
process data and then transmits the processed data
to LSTM [29].

(8) CNN+GRU: CNN+GRU is obtained by replacing
the TCN in the CNN+TCN model using GRU.

(9) CNN+ LSTM: CNN+ LSTM is obtained by repla-
cing the TCN in the CNN+TCN model using
LSTM.

(10) Random forest (RF): An RF maps predictor and
dependent variable vectors using an ensemble of
decision trees [59]. The average of the trees is the
outcome of a regression RF.

(11) Support vector machine (SVM): SVM is a class of
generalized linear classifiers that perform binary clas-
sification on data using supervised learning [60]. Its
decision boundary is the maximum margin hyper-
plane solved for the learning sample.

In addition, we choose mean average error (MAE) and
root mean square error (RMSE) as the performance crite-
rion.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i¼1
qi − bqið Þ2

s
ð2Þ

MAE ¼ 1
N

∑
N

i¼1
qi − bqij j; ð3Þ

where bqi denotes a predicted value, qi denotes an observed
value, and N is a sample size.

Figures 6 and 7 show the prediction errors of KGX–DAR
line data and EUS–MAN line data in each model, respec-
tively. The following results are obtained via a comparison of
the prediction errors:

(1) The RMSE and MAE of the DFN and CNN models
are higher than those of TCN, ConvLSTM, LSTM,
and GRU, which indicates that the train data have an
obvious time characteristic.

(2) TCN has the lowest overall prediction error compared
to all of the other individual models. The findings
suggest that the TCN model offers a number of clear
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FIGURE 6: Prediction error of train delay of each model on KGX–DAR line.
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benefits when it comes to mining the time-temporal
characteristics of data pertaining to real-world trains.

(3) The RMSE and MAE of the CNN_LSTM model
are lower than those of all individual models,

which shows the advantages of hybrid models
and the importance of spatial feature mining.
However, the CNN_LSTM prediction error is
higher than that of other hybrid models, which
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indicates the superiority of feature classification
processing.

(4) By comparing all models, the RMSE and MAE of the
CNN+TCN model are the smallest. The results
reveal that CNN+TCN has significant advantages
in data classification and processing time series data.

This research also verifies the convergence of the CNN+
TCN model. The process of training is depicted in Figures 8
and 9, respectively.

By observing the training error of each model, we can
obtain the following results:

(1) By comparing TCN, GRU, and LSTM, TCN con-
verges first. In the EUS–MAN line, TCN converges
after approximately 100 steps, whereas GRU and
LSTM converge after approximately 150 and 160
steps, respectively. In the KGX–DAR line, TCN con-
verges at about 110 steps, whereas GRU and LSTM
converge after approximately 140 and 145 steps,
respectively.

(2) CNN+ LSTM is later than the convergence of LSTM.
CNN+GRU is later than the convergence of GRU.
This means that the process of mining spatial char-
acteristics by CNN increases the number of training
steps. In the EUS-MAN line, CNN+ LSTM and
CNN+GRU increase by approximately 50 steps. In
the KGX–DAR line, CNN+ LSTM and CNN+GRU
increase by approximately 35 steps.

(3) CNN+TCN is later than the convergence of TCN. The
result shows that the spatial feature mining process of
CNN in CNN+TCN also increases the training steps.
But the CNN+TCN convergence happens before that
of CNN+LSTM and CNN+GRU. In the EUS–MAN
line, CNN+TCN is about 50 steps faster than CNN+
LSTM and about 40 steps faster than CNN+GRU,
respectively. In the KGX–DAR line, CNN+TCN is
about 25 steps faster than CNN+ LSTM and about
20 steps faster than CNN+GRU, respectively. This
shows that using TCN to mine data with temporal
characteristics helps speed up convergence.

4. Conclusions

In this study, a novel prediction model named CNN+TCN
is proposed. CNN+TCN divides the influencing factors of
the railway system into two categories: spatiotemporal cate-
gories and time series categories. Furthermore, using a 3D
CNN mines the spatiotemporal features from the real-world
train data, and utilizing a TCN captures the temporal fea-
tures. Finally, the research conducts comprehensive experi-
ments on two railway lines in the United Kingdom to test the
CNN+TCN model, where the delay prediction accuracy is
greatly improved, and the model convergence becomes bet-
ter. Numerical results mean that the CNN+TCN model is
suitable for predicting the states of complex systems.

However, the TCN+CNN model has only been applied
to the prediction of train delay in this paper. We can further
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FIGURE 9: Training process of EUS–MAN line data in each model.
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improve the model by validating other problems in complex
systems. In particular, the 3D CNN component, responsible
for processing spatiotemporal data, needs improvement in its
ability to distinguish temporal, spatial, and spatiotemporal
coupling features. In the future, we will improve the effec-
tiveness of the 3D component on train delay prediction or
other types of complex systems (e.g., electric vehicle charging
demand prediction and sustainable energy generation fore-
cast). Moreover, the CNN+TCN model lacks components
for feature recognition of influencing factors, potentially
impacting the model’s accuracy. Therefore, we will investi-
gate intelligent optimization algorithms, such as genetic
algorithms combined with deep learning models, and apply
them to address train delay issues.
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