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The current methods for detecting joints on tunnel face rely primarily on manual sketches, which are associated with issues of low
detection efficiency and subjectivity. To address these concerns, this paper presents an intelligent recognition and segmentation
algorithm based on Mask R-CNN (mask region-based convolutional neural network) for detecting joint targets on tunnel face
images and automatically segmenting them, thereby improving detection efficiency and objectivity of the results. Additionally, to
tackle the challenge of low detection accuracy in existing image processing methods, particularly for complex tunnel joint surfaces
in dark environments, the paper introduces a path aggregation network (PANet) to enhance the fusion capability of feature
information in Mask R-CNN, thereby improving the accuracy of the intelligent detection method. The algorithm was trained on a
dataset of 800 tunnel face images, and the research findings demonstrate that it can quickly detect the position of joints on tunnel
face images and assign masks to the joint pixel regions to achieve joint segmentation. The mean average precision (mAP) of the
detection boxes and segmentation in the 80 test set images were 58.0% and 49.2%, respectively, which outperforms the original
Mask R-CNN algorithm and other intelligent recognition and segmentation algorithms.

1. Introduction

Amid the rapid evolution of infrastructure construction, the field
of tunnel and underground engineering has witnessed substan-
tial growth opportunities. Tunnels, as subterranean engineering
structures, face intricate construction environments character-
ized by challenges such as fractured rock formations, elevated
temperatures, and the presence of underground water. These
factors collectively contribute to diminished construction effi-
ciency and heightened safety risks. Therefore, the accurate delin-
eation of the tunnel face holds paramount importance. The
description of the tunnel face represents a crucial yet intricate
undertaking. This process serves as the foundation for assessing
the quality of the surrounding rock within the tunnel. Such an
evaluation provides a robust basis formaking informeddecisions
during tunnel construction. The provision of an accurate and
efficient tunnel face description can significantly expedite the
progress of tunnel construction endeavors, while simultaneously
ensuring the safety of the entire operation. Tunnel face rock
joints are geological structural features, including fissures, cracks,

and faults, found on the rock surface exposed during tunnel
excavation. These joint characteristics serve as indicators of the
overall integrity of the rock mass at the tunnel face. Therefore, it
is of great significance to detect joints on the tunnel faces accu-
rately for tunnel construction.

The conventional approach to joint detection on tunnel
faces heavily relies on manual observations and descriptions,
which are notably inefficient. In the wake of rapid advance-
ments in science and technology, computer-based image
processing methods have emerged as valuable tools for iden-
tifying geological features in fractured rock masses. For
instance, Fam and Hu [1–4] have employed digital image
processing techniques, including edge detection, threshold
segmentation, and the Hough transform, to discern surface
cracks on rock masses. These methodologies have been pack-
aged into software solutions for the benefit of engineers.
However, a drawback of this method lies in its intricate
and nonintuitive processing procedures. Digital image pro-
cessing techniques have also found application in the realm
of joint identification within tunnel faces [3]. Ye et al. [4–6]
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effectively processed tunnel face images to extract distinct
joint profiles, effectively supplanting traditional geological
sketches. In a similar vein, Li et al. [7, 8] directly extracted
joint information from tunnel face images using structural
plane processing software such as SIR6.0 and the OpenCV
platform. Nevertheless, the challenging tunnel environment
often leads to image quality degradation due to dust and
other factors. To mitigate these challenges, Zhou et al. [9]
harnessed infrared photography technology to obtain clear
tunnel face images. Subsequent to image capture, digital
image processing technology was employed to filter, equal-
ize, and binarize these images, with joints represented as
straight lines in this approach. Wang et al. [10] ventured
into the combination of digital photogrammetry and image
processing technology to investigate the geometric properties
of rock mass structural planes, albeit acknowledging the need
for efficiency and accuracy improvements. Further enhanc-
ing the precision of tunnel face analysis, Yang et al. [11]
employed pixel-scale digital image technology, offering a
more accurate and flexible alternative to traditional sketch-
ing methods. In a different vein, Yang et al. [12] established
survey stations and markers at the tunnel site and harnessed
the ShapeMetrix3D imaging system to capture face images.
Zhuang et al. [13] introduced a method that combines digital
image processing and machine vision to obtain comprehen-
sive information on the rock mass in tunnel excavation faces.
Their technique involves generating a 3D model, which,
when analyzed in tandem with surface structure line
sketches, enables the quantitative characterization of rock
mass joint features. Leng et al. [14] delved into the utilization
of image processing technology for boundary extraction in
tunnel excavation faces, providing a foundation for catego-
rizing surrounding rock based on extracted parameters like
joint group numbers, average crack spacing, and occurrence.
While digital image processing technology has been instru-
mental in tunnel excavation face joint extraction, its applicabil-
ity is contingent upon stringent conditions, often necessitating
controlled lighting and clear joint targets. Furthermore, the
abundance of thresholding segmentation algorithms in digital
image processing technology can complicate field applications,
requiring frequent switching and adjustments to attain optimal
segmentation results. Additionally, the output of this technol-
ogy often requires complex postprocessing due to joint targets
being treated as integral wholes. As a result, there is an urgent
need for the development of more adaptable and robust tech-
nical solutions capable of thriving in complex lighting environ-
ments akin to those encountered in tunnels and achieving
pixel-level segmentation of joint targets [15–18].

The rapid advancement of artificial intelligence has ush-
ered in a wave of intelligent recognition algorithms [19–22],
which have been seamlessly integrated into the conventional
civil engineering sector. This integration has ushered in a
new era of intelligent development for engineering tasks.

The realm of computer vision comprises four fundamental
image processing tasks: image classification, semantic segmen-
tation, object detection, and instance segmentation [23]. Image
classification enables the categorization of images, yet it falls
short in pinpointing specific details related to tunnel excavating

face joints. Semantic segmentation excels at segmenting all
joints within an image but lacks the ability to differentiate
between individual joints since they are treated as a unified
entity. Object detection can identify joints pertaining to distinct
individuals but does not offer segmentation capabilities. In
contrast, instance segmentation, building upon object detec-
tion, provides the means to achieve segmentation of different
joint targets. In practical applications at tunnel sites, the detec-
tion results are instrumental in computing critical parameters
such as the count of joint groups and the spacing between
joints. Hence, for the intelligent detection task concerning tun-
nel excavating face joints, it is imperative to detect and segment
each joint target individually. Consequently, this study advo-
cates the utilization of an instance segmentation algorithm,
specifically Mask R-CNN, as opposed to a semantic segmenta-
tion algorithm, to efficiently detect and segment tunnel exca-
vating face joint targets.

The current digital image processing methods employed
for the identification of tunnel excavating face joints are
afflicted by the issue of intricate fine-tuning. While they
succeed in eliminating the subjective element associated
with manual depiction, they still necessitate manual inter-
vention and adjustment, resulting in a recognition and detec-
tion process that lacks true intelligence and is bound by
certain constraints [24]. In a bid to transcend the constraints
inherent in conventional digital image methods, this study
advocates the adoption of Mask R-CNN, an instance seg-
mentation algorithm. By doing so, it accomplishes the intel-
ligent detection and segmentation of tunnel excavating face
joints while simultaneously sidestepping the subjectivity of
manual depiction and the limitations of established digital
image processing methods [25, 26].

2. Intelligent Tunnel Face Recognition Method
Based on Mask R-CNN

Mask R-CNN, an extension of the Faster R-CNN framework,
seamlessly incorporates instance segmentation into the object
detection process [27]. Its framework is shown in Figure 1. It
operates through three pivotal steps: first, it extracts features
from the input image using a deep neural network; second, it
employs a region proposal network (RPN) to suggest candi-
date object regions; finally, it further refines these regions
through ROIAlign and generates precise binary masks for
each detected object. This approach not only enables Mask
R-CNN to identify objects in an image but also provides pixel-
level segmentation masks, rendering it a highly valuable
tool for tasks like joint recognition in tunnel excavating face
images.

2.1. Main Network. The main network comprises two crucial
components: Resnet101 and feature pyramid network (FPN).
Resnet101 is structured with Conv blocks and Identity
blocks, each serving distinct roles in the network. Conv
blocks are responsible for performing convolution opera-
tions, enhancing the depth of the network to extract critical
feature information from tunnel face images. This critical
feature information encompasses the vital characteristics of
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joints in tunnel face images, including pixel values, dimen-
sions, and shapes. Utilizing pixel data, multiple feature maps
of varying sizes are computed and generated. Multiple feature
maps of varying sizes refer to a set of distinct two-dimensional
arrays, each capturing different spatial resolutions and pat-
terns within an image. These feature map pixel points can be
viewed as secondary pixels, offering a representation of the
original image’s pixel characteristics. These feature maps are
denoted as C2–C5, with C1 being excluded from further
processing due to its limited receptive field and semantic
information, rendering it ineffective at capturing the object
structure and features within images. This approach facilitates
the detection of objects of various sizes. The study introduces a
targeted improvement in the design of feature map sizes, tai-
loring them to the dimensions of palm images, in order to
better align with the requirements of palm image joint recog-
nition tasks.

The FPN excels at amalgamating feature information
from various levels into a multiscale and multisemantics
feature pyramid, as depicted in Figure 2. The “latlayer” oper-
ation involves sampling the high-resolution feature map to
match the spatial scale of the low-resolution feature map and
subsequently adding them together to yield the fused feature

map. In the context of Mask R-CNN, FPN’s output consists
of characteristic maps denoted as P2, P3, P4, P5, and P6,
which are effective layers utilized in the detection of objects
of diverse scales.

2.2. Region Proposal Network. The region proposal network
(RPN), a lightweight neural network, employs a sliding win-
dow approach to systematically scan the input image and
pinpoint regions of interest (ROIs) that have the potential
to contain target objects [28]. These ROIs are often referred
to as “anchors” and are designed in various sizes. To extract
joint profiles from images of the tunnel excavating face, this
study leverages face label files to compute joint size informa-
tion within the existing facial images. It then analyzes the
dimensions and aspect ratios of joint label boxes, allowing for
specific adjustments to be made in the design of anchor sizes
and aspect ratios. These adjustments are geared towards
achieving a closer alignment with the shape of the facial joint,
thereby enhancing the accuracy of joint detection.

In the RPN training algorithm, the intersection-over-
union (IOU) ratio is calculated between each anchor and
the searching box (i.e., the ratio of the intersection area
between the two boxes to the union area) to determine the
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FIGURE 2: FPN network framework.
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FIGURE 1: The network framework of Mask R-CNN algorithm.
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anchor category. If the IOU is greater than the set threshold,
the anchor is considered positive; if it is less than the thresh-
old, the anchor is negative. The RPN training process involves
two critical tasks: anchor classification training and searching
box position regression training. The training error LR is
expressed as follows:

LR ¼ LRc þ LRr; ð1Þ

where LRc represents the error function of anchors when
conducting the classification training and LRr represents
the error function of anchors box when conducting regres-
sion training. They are expressed by the following formulas:

LRc ¼
1
NRc

∑
i
lrc pi; p∗ið Þ; ð2Þ

LRr ¼ λ
1
NRr

∑
i
p∗i lrr si; s

∗
ið Þ; ð3Þ

where i represents the number of anchors; pi represents the
probability that the anchor at number i is predicted to be a
positive class; p∗i represents the true label value of the anchor
at number i; when the anchor is a positive sample, p∗i ¼ 1,
and when the anchor is a negative sample, p∗i ¼ 0; si is a
vector containing four elements, which are the center coor-
dinate, width, and height of the anchor box at number i, and
s∗i represents a four-dimensional vector containing the cor-
responding elements of the label box. NRc and NR represent
the batch data volume of RPN stage classification and regres-
sion training, λ is the super parameter, LRc is the cross
entropy loss function, and the expression of the regression
loss function LRr is as follows:

lRr si; s∗ið Þ ¼ R si − s∗ið Þ; ð4Þ

where R expression is as follows:

R xð Þ ¼ 0:5x2

xj j − 0:5

xj j<1

xj j ≥ 1

(
: ð5Þ

The definitions of the four-dimensional vector si and s∗i
are as follows:

si ¼ sx; sy; sw; sh
À Á

; s∗i ¼ s∗x ; s∗y ; s∗w; s∗h
À Á

sx ¼ x − xað Þ=wa; sy ¼ y − yað Þ=ha
sw ¼ ln w=wað Þ; sh ¼ ln h=hað Þ
s∗x ¼ x∗ − xað Þ=wa; s∗y ¼ y∗ − yað Þ=ha
s∗w ¼ ln w∗=ωað Þ; s∗h ¼ ln h∗=hað Þ

8>>>>>>><
>>>>>>>:

; ð6Þ

where x; y;w; and h represent the center coordinates, width,
and height of the box, respectively; x; xa; and x∗ correspond
to the prediction box, anchor box, and real box, respectively.
This rules are also appliable to the y;w; and h.

After training, RPN can predict the type of anchor (posi-
tive or negative) and make preliminary adjustments to the
position of the box. The improved regional suggestion net-
work (RPN) attains the extraction of possible joint regions in
the face feature image and generates a suggestion box as the
input of the next stage.

2.3. ROIAlign Regulation. The region of interest is derived
from the RPN in the form of a proposed bounding box. The
anchor boxes initially generated by the RPN exhibit varia-
tions in size and are subsequently fine-tuned using a posi-
tional adjustment model. To ensure consistent sizing for
classification purposes, the study employs ROIAlign. In con-
trast to the ROIPool module utilized in the Faster R-CNN
algorithm [29], ROIAlign effectively addresses the issue of
pixel displacement by incorporating bilinear interpolation
values. This results in optimized box sizes and the preserva-
tion of a more comprehensive set of original information.
For a detailed depiction of ROIAlign, refer to Figure 3.

The ROIAlign module improves ROI size adjustment,
effectively preventing the loss of feature information and
facilitating accurate recognition and segmentation of joint
targets from images of tunnel excavating faces.

2.4. Result Prediction. The Mask R-CNN network further
processes the image information provided by the adjusted
ROI. The main tasks of the Mask R-CNN are briefly intro-
duced as follows: (1) classification: for the dataset of tunnel
excavating face, a specific label of ROI, namely “joint,” is
given, which differs from the two categories (positive and
negative) in the RPN stage. (2) Fine-tuning of the prediction
box position: based on the fine-tuning in the RPN stage, the
position, length, and width of the prediction box are further
adjusted to better fit the target. (3) Generate mask: the pixels
belonging to the target object in the prediction box are iden-
tified and marked to form a mask. This helps to obtain fine
recognition and segmentation of the joint targets from the
images of the tunnel excavating face.

ROI

ROIPool ROIAlign

Feature map

Misalignment Bilinear interpolation value fetching

FIGURE 3: Comparison of ROIAlign and ROIPool.
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The error function LROI set in the training process at this
stage is as follows:

LROI ¼ LROIc þ LROIr þ Lmask; ð7Þ

where Lmask is the mask loss function is the average binary
cross entropy loss function. The loss function LROIc of the
classification LROIc is expressed as follows:

lROIc ¼ −ln puð Þ; ð8Þ

where pu represents the probability that it is categorized to u.
In the above formula, LROIr is the loss function of the LROIr
classification. It is expressed as follows:

lROIr ¼ λ μ ≥ 1½ �lRr; ð9Þ

where ½u≥ 1� : means that when u≥ 1, the value is 1, otherwise
it is 0.

To sum up, five error functions are set in the RPN stage
and the result prediction stage, which are as follows:

L¼ LRc þ LRr þ LROIc þ LROIr þ Lmaskð Þ: ð10Þ

2.5. Intelligent Palm Recognition Method Based on Improved
Mask R-CNN. Although the FPN can enhance feature extrac-
tion ability through feature fusion, the long calculation path
from bottom to top, including a 101-layer network, is not
conducive to feature information transmission, especially for
diverse joint targets in complex tunnel environments. To
address this issue, this study proposes the path aggregation
network (PANet) [30].

The path aggregation network (PANet) enhances the
feature hierarchy within a neural network by introducing
an improved aggregation path. Unlike the original FPN,
where features are transmitted from bottom to top through
a multilayer network structure, potentially leading to lengthy
information paths and information loss, PANet shortens this
path. It achieves this by incorporating precise positional sig-
nals from lower levels, facilitating more effective integration
and aggregation of feature information. As a result, PANet
improves the network’s capability to handle diverse targets,
particularly in complex tunnel environments.

Figure 4 provides an overview of the path aggregation net-
work structure. The red dashed line corresponds to the original
FPN transmission path, where the bottom-up transmitted fea-
tures traverse a multilayer network structure. The enhanced
aggregation path method, depicted by the green dashed line,
incorporates precise positional signals at lower levels to bolster
the entirety of the feature hierarchy. This approach effectively
shortens the information pathway between lower and upper
level features, thereby mitigating information loss.

Building on the advantages of PANet, this study integrates
it into FPN and proposes a PA-FPN network to improve the
recognition and segmentation performance of the intelligent
tunnel excavating face joint recognition model.

3. Image Collections of Tunnel Excavating Face

3.1. Image Collections. Regarding data collection, the acqui-
sition of a more extensive dataset of original images proves
highly beneficial when training deep learning models. These
original images should authentically represent the diverse
spectrum of tunnel face types commonly encountered in
construction scenarios. This mandates that the data collec-
tion process spans tunnels characterized by varying rock
strata, a wide range of lighting conditions, distinct geological
compositions, and a multitude of construction conditions.

For this study, an extensive dataset of tunnel excavating
face images, obtained from various tunnel construction sites
in China, was meticulously compiled. After a rigorous selec-
tion process, a total of 400 original images were chosen, all
standardized to a uniform size of 2,048× 2,048 pixels. Figure 5
showcases some of the sample images from this dataset. Nota-
bly, these collected tunnel excavating face images exhibit a
wide range of environmental conditions, including diverse
angles, lighting scenarios, potential trolley interference, and
variations in shadowing, among other factors. This diversity
in environmental conditions substantially bolsters the robust-
ness of the intelligent joint recognition algorithm proposed in
this study.

In the realm of deep learning tasks, data augmentation
plays a pivotal role in enhancing model performance. This
technique involves various methods such as rotation, scaling,
flipping, and brightness adjustments to artificially increase
the diversity of the training dataset. By doing so, it enables
the model to generalize more effectively and mitigates the
risk of overfitting, as it learns from a broader spectrum of
image variations. In the specific case of tunnel face images,
where challenging working conditions and brief data capture
opportunities are prevalent, data augmentation becomes
even more crucial. It empowers the deep learning model to
recognize and adapt to a wider array of real-world scenarios,
ultimately bolstering its accuracy and resilience for tunnel
construction applications.

Hence, in order to enhance the diversity of the acquired
images from different tunnels, various image augmentation
techniques are employed, including flipping, cropping, and
brightness adjustments, as illustrated in Figure 6. Initially, we
subjected the collected pool of 400 original images to a pro-
cess of curation and elimination, resulting in the retention of
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FIGURE 4: The framework of path aggregation network.
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200 high-quality tunnel face images. It is noteworthy that, at
this stage, we refrained from immediately applying augmen-
tation techniques such as flipping and lightening. Instead, we
took a step-wise approach. The initial set of 200 images was
proportionally split into training, validation, and test sets at a
ratio of 7 : 2 : 1, yielding quantities of 140, 40, and 20 images,
respectively. Subsequently, each of these subsets underwent
augmentation processes, including flipping and lightening,
expanding them to 560, 160, and 80 images, respectively.
This strategic sequencing is aimed at fortifying the robust-
ness of the trained model. By deferring the augmentation
until after the initial partition, we mitigate the risk of the
model encountering familiar images during the validation
and testing phases, thus avoiding overfitting. Furthermore,
the dataset is currently undergoing continuous updates and
expansions, with a slight shortage noted in the quantity of
high-quality images. Consequently, the morphological fea-
tures of the joint targets in tunnel face images are not yet
fully comprehensive.

3.2. Labels for Datasets. Accomplishing high-quality object
annotation in tunnel face images is a formidable undertak-
ing, particularly when the inherent features of these objects

are not distinctly evident, thus augmenting the intricacy of
the annotation process. Nevertheless, the caliber of anno-
tated data holds paramount importance for the triumph of
deep learning models. As the term “artificial intelligence”
implies, this process essentially embodies the concept of
being “half human, half intelligent,” with exceptional human
annotation serving as the cornerstone for crafting excep-
tional models. Consequently, it is vital to underscore the
pivotal role of annotation quality. To ensure the attainment
of superior annotation outcomes, it is imperative to employ
stringent training and guidance, institute quality control and
periodic assessments, involve multiple annotators, contem-
plate the integration of automation-assisted tools, and insti-
tute a continuous feedback and enhancement mechanism.
These measures are instrumental in ensuring the precision,
uniformity, and dependability of annotations, thereby height-
ening the efficacy of deep learning models.

Recognizing joints in tunnel excavating face images devi-
ates from traditional image classification methods. Conven-
tional joint segmentation techniques necessitate manual
identification and marking of the target object in each image
to produce labels. This meticulous process can consume
approximately 10min per image, ensuring the creation of

FIGURE 5: Typical image of tunnel excavating face.
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high-quality joint information. To streamline this task, our
study leverages Labelme annotation software to annotate the
joints present in tunnel excavating face images, as depicted in
Figure 7(a). The annotated joints are depicted as polygonal
contours, constructed from dots and lines. Once the annota-
tion process for each image is complete, JSON files contain-
ing joint position and name details are generated.
Subsequently, these files are transformed into the Coco data-
set format utilizing built-in code, leading to the creation of
trainable binary label images, as illustrated in Figure 7(b).

4. Instance Segmentation Experiment of the
Tunnel Excavating Face Images

The process of intelligently recognizing and segmenting tun-
nel face joints can be broken down into two primary steps.

First, the model for intelligent recognition and segmentation
of tunnel excavating face joints is trained using sample data
from the training and validation sets. Following this training
phase, the performance of the model is assessed and evalu-
ated using data from the test set. The implementation of the
intelligent recognition and segmentation algorithm is carried
out using the Python programming language. The system
platform utilized is Windows, with Python version 1.8.0.
The computer system boasts 32GB of RAM and 24GB of
GPUmemory, ensuring efficient processing of the algorithm.

4.1. Evaluation Indicators. There are multiple evaluation
metrics that can be used to assess the performance of
machine learning tasks, such as instance segmentation. Con-
fusion matrix, precision, and other metrics can be employed
for this purpose.

ðaÞ ðbÞ
FIGURE 7: Image marked and labeling method. (a) Picture annotation process. (b) Generate picture labels.

Cut Flip Lighten

FIGURE 6: Data enhancement method.
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4.1.1. Confounding Matrix. When performing instance seg-
mentation tasks using the deep learning approach, the con-
fusion matrix is used to calculate the intersection over union
(IOU) of the prediction box and all real boxes provided by
the intelligent segmentation model for a single test image,
similar to the calculation in the RPN stage mentioned in
Section 1.2. The resulting matrix has the prediction boxes
in the column direction and the real boxes in the row direc-
tion [26]. Typically, the IOU threshold is set to 50%. If the
IOU is greater than 50%, the prediction box is considered to
have successfully detected the target. If the category pre-
dicted by the prediction box matches the real box, it indicates
a correct classification; otherwise, the classification is deemed
incorrect. The confusion matrix provides a visual represen-
tation of the detection performance of the intelligent seg-
mentation model.

4.1.2. Precision, Recall, and Average Precision. Precision ðPÞ:,
recall ðRÞ :, and average precision ðAPÞ: are commonly used
evaluation indicators in classification tasks. The expressions
are as follows:

P ¼ TP
TP þ FP

; ð11Þ

R¼ TP
TP þ FN

; ð12Þ

AR¼
Z

f Rð ÞdR; ð13Þ

where TP represents the number of prediction boxs when
both the prediction box and the real box of the test set image
are positive, that is, the effective number of detection; FP
indicates the number of prediction boxs when the prediction
box of the test set image is positive and the real box is nega-
tive, that is, the number of detection failures; FN refers to the
number of predicted boxs in the case that the real box of the
test set image is not detected, that is, the number of missed
detections; and f ðRÞ: represents the relationship function
between R and P obtained from the test data.

To evaluate the performance of the established intelligent
recognition segmentation model, a single test image is used
to calculate the IOU and generate the confusion matrix. The
prediction boxes in the column direction of the confusion
matrix are sorted based on their classification confidence
levels in descending order [26]. Each classification’s confi-
dence level is used as the classification threshold in turn to
calculate the corresponding precision rate P and recall rate R.
The calculation results are then used to draw the P−R curve
and calculate the AP value.

However, the AP value of a single test image does not
provide a precise evaluation of the performance of the intel-
ligent recognition and segmentation model. Therefore, the
mean average precision (mAP) value of the entire test set of
images is calculated as the comprehensive evaluation index.

Furthermore, in the context of the majority of semantic
segmentation tasks, the typical evaluation metrics employed

include mIOU (mean intersection over union) and the F1
score. These metrics are expressed as follows:

mIOU ¼ ∑ TP= TP þ FP þ FNð Þð Þ
N

; ð14Þ

F1¼
∑
N

1
2P × Rð Þ= P þ Rð Þð Þ

N
;

ð15Þ

where N represents the total number of classes.

4.2. Hyperparameter Setting. In deep learning algorithms, we
encounter two types of parameters: weight parameters and
hyperparameters. Weight parameters are subject to continu-
ous optimization throughout the training process, adapting
to the data. On the other hand, hyperparameters are prede-
termined settings used to fine-tune the training process.
Consequently, fine-tuning hyperparameters is essential to
achieve an optimal intelligent recognition and segmentation
model.

In this study, the learning rate was configured at 0.001,
playing a critical role in governing the step size for weight
updates during neural network training. Additionally, the
picture size hyperparameter, which determines the training
dimensions set within the deep learning network, signifi-
cantly impacts model performance and training speed. To
ensure network quality, the picture size was established at
1,024× 1,024 pixels. The model underwent training for a
total of 100 epochs, with each epoch signifying the complete
cycle of training all the samples within the training data-
set once.

5. Experimental Results and Analysis

5.1. Model Training Results. When training our intelligent
recognition segmentation algorithm, we generate a training
log file that records the training error and validation error
data, illustrated in Figure 8. After 100 training iterations, a
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FIGURE 8: Training error and validation error curves.
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noticeable trend emerges. The training error and validation
error gradually approach each other and stabilize. This sug-
gests that our training model has achieved a state of “con-
vergence.” In simpler terms, the model’s performance has
plateaued, signifying that it has acquired the most effective
approach to perform the task.

Ultimately, our training error registers at 0.17, while the
validation error stands at 0.21. These values are remarkably
close, indicating that our model delivers consistent perfor-
mance across various datasets. This is a noteworthy point, as
it demonstrates the model’s adaptability beyond the training
data, showcasing “robustness.” In other words, our model
remains stable and reliable in its performance.

In conclusion, our model exhibits both stability and
robustness throughout the training and validation processes.
This implies that it can consistently deliver strong perfor-
mance across diverse datasets, not merely confined to the
training data. These results underscore the effectiveness
and feasibility of our algorithm, providing a solid foundation
for further applications and research.

5.2. Model Test Results and Evaluation

5.2.1. Model Test Results. The performance assessment of the
intelligent recognition and segmentation model was meticu-
lously conducted using a carefully selected test dataset. As
illustrated in Figure 9(a)–9(c), this set of test images show-
cases a variety of real-world scenarios, reflecting the model’s
capability to operate under diverse environmental condi-
tions. In Figure 9(a)–9(c), the top row corresponds to the
detection samples, the middle row showcases the detection
results of the method proposed in this paper, and the bottom
row illustrates the detection results of the original Mask
R-CNN. Looking at the comparison of the detection results,
the algorithm proposed in this paper predicts more intricate
details, highlighting the enhanced effect of PANet.

Given the marked difference between the actual width of
joints and the predicted width, postidentification refinement
is essential. This refinement process includes skeleton extrac-
tion, as depicted in Figure 10(a)–10(c), which outlines the
workflow for skeletal processing of a typical image’s identifi-
cation result.

ðaÞ

ðbÞ

ðcÞ
FIGURE 9: Intelligent joint recognition of tunnel face pictures in each scenario. (a) Original images, (b) our method, and (c) Mask R-CNN.

ðaÞ ðbÞ ðcÞ
FIGURE 10: Skeletonization process of the detection result. (a) Original image, (b) detection result, and (c) skeletonization process.
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One of the notable strengths of the intelligent recognition
and segmentation model, designed for the specific task of
tunnel excavating face joints, is its consistent ability to detect
the majority of joint targets with remarkable accuracy. What
sets this model apart is its capacity to do so without the need
for manual adjustments or interventions, a testament to its
true intelligence. Regardless of whether it is a dimly lit envi-
ronment or a well-illuminated one, the model showcases its
versatility by delivering dependable results.

In light of the model’s commendable performance, there
are nuanced findings that warrant closer scrutiny. First,
although the model is generally highly accurate, it occasion-
ally misses visible joint targets, offering an opportunity for
fine-tuning to enhance its sensitivity and adaptability to
diverse target appearances.

Second, during the segmentation of joint targets, the masks
generated by themodel tend to be slightly wider than the actual
joints in some instances. While this does not significantly
impede the model’s functionality, addressing this detail could
contribute to further refining its performance.

Regarding the issues of missed detections and wider
masks, these concerns can be attributed to a combination
of factors that necessitate a thorough investigation. Complex
tunnel joint structures, variations in lighting conditions,
environmental interferences during construction, and incon-
sistencies in annotation quality are among the factors that
can impact algorithm performance. Complex joint structures
often present diversity and variations in images, making
some joints challenging to differentiate or containing subtle
feature changes. Additionally, fluctuating lighting conditions
can lead to changes in image brightness, contrast, and sha-
dows, posing challenges for algorithms to accurately capture
precise mask boundaries. Environmental factors such as
vibrations, dust, and occlusions during construction can further
complicate algorithm performance. Moreover, the inconsistency
in annotation quality, especially when multiple annotators are
involved in dataset creation, can lead to inaccurate annotations,
ultimately affecting algorithm performance. To address these
challenges, a multifaceted approach is necessary, encompassing
improvements in annotation quality, adjustments to algorithm
parameters, the selection of appropriate deep learning models,
and active diversification of the dataset to better cope with the
complexities of tunnel environments.

To overcome the limitations of the algorithm, it is vital to
both expand the dataset and elevate the quality of annota-
tions. Expanding the dataset can be achieved through diverse
data collection, data augmentation techniques, and the utili-
zation of transfer learning. Meanwhile, the improvement of
annotation quality can be realized by engaging domain
experts, adopting iterative refinement processes, and leverag-
ing crowdsourcing approaches. These measures promise
more accurate and resilient algorithms, broadening their
scope of applicability, mitigating the risk of overfitting, and
ultimately enhancing the research’s practicality and real-
world significance.

5.2.2. Model Evaluation. To thoroughly evaluate the perfor-
mance of our intelligent recognition and segmentation

model, we conducted a meticulous assessment using a care-
fully selected set of test images. The goal was to ensure
objectivity and comprehensiveness in our evaluation process.
This evaluation involved several critical steps.

First, each image in the test set underwent detection by
our intelligent recognition and segmentation model. Subse-
quently, we calculated the intersection-over-union (IOU)
value, representing the extent of overlap between the pre-
dicted bounding box and the ground-truth box for each
image. This analysis resulted in the creation of a confusion
matrix, as depicted in Figure 11. A scrutiny of the IOU values
unveiled key insights.

For instance, we observed that the IOU between the
fourth predicted bounding box and all the ground-truth
boxes consistently fell below 50%, indicating instances of
false detection. Similarly, the IOU values between the second
and tenth ground-truth boxes and the predicted boxes were
also below 50%, further emphasizing occurrences of false
detections. It is important to note that, despite these nuances,
the algorithm effectively detected the majority of joint
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targets, generally aligning with engineering requirements.
However, these findings underscore the significance of pay-
ing close attention to the specific intricacies of joint detection
in images.

Furthermore, the precision rate (P) and recall rate (R) were
calculated using the formula outlined in Section 3.1.2, resulting
in the creation of a P–R line chart, as presented in Figure 12.
The calculated average precision (AP) value was determined to
be 0.75. We extended this assessment by iteratively calculating
theAP value for 80 images within the test set. The averagemAP
value obtained from this set of 80 images was 0.58.

These findings indicate that the intelligent recognition
and segmentation model employed in this study effectively
fulfills its objective of intelligent detection. Notably, when
compared with other intelligent recognition and segmenta-
tion models, including the original Mask R-CNN model, our
proposed method demonstrates superior detection accuracy
advantages. For instance, the average detection value of the
Mask R-CNN model within the COCO dataset is only 0.43,
underscoring the strengths of our approach.

In conclusion, this performance evaluation has provided
valuable insights into our model’s strengths and areas for
improvement. We are committed to enhancing the model by
expanding our dataset to encompass a wider range of scenarios
and optimizing annotation quality. These steps will contribute
to improved detection accuracy and robustness. Our research
continues to strive for an efficient and effective intelligent
detection method, particularly in the realm of tunnel excavat-
ing face joints, to meet evolving application demands.

5.3. Comparative Test Results. To furnish more compelling
evidence of the effectiveness of the proposed algorithm, a series
of comparative experiments were conducted. These experi-
ments included evaluations of the original Mask R-CNN algo-
rithm, as well as other widely used instance segmentation
algorithms, in addition to the algorithmpresented in this study.

Table 1 presents the mean average precision (mAP)
values of each algorithm. The results show that the proposed
algorithm outperforms the traditional Mask R-CNN algo-
rithm, achieving higher detection box and segmentation

mAP values (58.0%, 49.2%), indicating that the introduced
PANet improves the performance of the original algorithm
and is more suitable for joint detection and segmentation
tasks on tunnel excavating face.

Furthermore, this study compares its algorithmwith three
popular instance segmentation algorithms, namely Cascade
R-CNN [31], Yolact [32], and Mask Scoring R-CNN [33],
as shown in Table 1. The detection box and segmentation
mAP values of Cascade R-CNN and Mask Scoring R-CNN
are (49.5%, 38.8%) and (50.2%, 41.1%), respectively, which
show an improvement compared to the traditional Mask
R-CNN algorithm but are still inferior to the proposed algo-
rithm. However, the Yolact algorithm has the lowest detection
box and segmentationmAP values and the worst performance
in tunnel excavating face joint detection, making it challeng-
ing to perform intelligent detection tasks in complex environ-
ments. It is worth mentioning that this algorithm has a fast
detection rate and broad application prospects in relatively
simple application scenarios and object detection tasks. In
summary, the proposed algorithm’s performance is superior
to that of the traditional Mask R-CNN algorithm and various
currently popular instance segmentation algorithms, demon-
strating its effectiveness and superiority in tunnel excavating
face joint detection and segmentation tasks.

In addition, commonly employed semantic segmentation
algorithms, including DeepLabV3+ and U-net, were incor-
porated into the comparison. The performance of each net-
work was assessed using two evaluation metrics, mIOU and
F1, and the results are presented in Table 2. It is clear that the
evaluation metrics for DeepLabV3+ and U-net are (68.3,
69.5) and (60.2, 61.1), respectively. In contrast to the evalua-
tion metrics of the algorithm introduced in this paper (71.6,
73.2), they still fall slightly short. This reaffirms the algo-
rithm’s competitive edge among common semantic segmen-
tation algorithms, as demonstrated in this study.

6. Conclusion

This study presents a deep learning-based intelligent recog-
nition and segmentation algorithm for tunnel excavating face

TABLE 1: The mAP (mean average precision) of different algorithms.

Algorithm mAP of detection box (%) mAP of segmentation (%)

The algorithm proposed in this paper 58.0 49.2
Mask R-CNN 47.3 38.1
Cascade R-CNN 49.5 38.8
Yolact 45.5 35.2
Mask Scoring R-CNN 50.2 41.1

Bold values represent the model evaluation metrics obtained using the algorithm proposed in this paper.

TABLE 2: The mIOU and F1 of different algorithms.

Algorithm mIOU F1

The algorithm proposed in this paper 71.6 73.2
DeepLabV3+ 68.3 69.5
U-net 60.2 61.1

Bold values represent the model evaluation metrics obtained using the algorithm proposed in this paper.
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joints using the Mask R-CNN algorithm and Resnet101 as
the main network for feature extraction. To improve the
fusion ability of FPN for feature information, the path aggre-
gation network is introduced. The proposed algorithm can
intelligently, quickly, and accurately detect multiple types of
tunnel excavating face joints in complex on-site environ-
ments. The main conclusions are summarized as follows:

(1) In this study, a database comprising 800 images of
tunnel excavating faces has been created. The joint
structures in the raw images are identified and
labeled using the polygon mapping method. The
labeled joint structures provide valuable information,
such as joint profiles and pixel features, for training
the learning network.

(2) Targeted improvements are made to the algorithm
based on the specificity of the palm joint recognition
and segmentation task, and the introduction of path
aggregation networks has improved the fusion ability
of FPN for feature information. The proposed algo-
rithm can detect joint information in tunnel excavat-
ing face photos, locate the position of joints through
detection boxes, and segment pixels belonging to
joints through masks. The algorithm has strong
anti-interference ability and can be applied to intelli-
gent detection and segmentation of tunnel excavating
face joints in complex tunnel environments.

(3) The performance of the proposed algorithm is eval-
uated on 80 sample images in the test set using indi-
cators such as confusion matrix, accuracy, and recall.
The calculated mean average precision (mAP) values
of the detection frame and segmentation were 58.0%
and 49.2%, respectively. Compared with the Mask
R-CNN algorithm and several current popular instance
segmentation algorithms, the performance was excel-
lent, demonstrating the effectiveness and superiority of
the proposed algorithm in the joint detection and seg-
mentation task of tunnel excavating face.

Moreover, the proposed intelligent recognition segmen-
tation model can be directly applied to joint detection tasks
of railway and highway tunnel excavating faces in complex
environments. Combined with hardware development, intel-
ligent recognition devices such as drones and robots can be
utilized to address the subjectivity and low efficiency issues of
traditional sketching methods, providing technical and the-
oretical support for the intelligent development of tunnel
construction.
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