Research Article

A Wooden Pin Reinforcement of Ancient Chinese Wooden Temple: A Case of Daxiong Hall

Hua Zhang,1 Wuping Gao,2 and Yanling Wang1

1Architectural Art Teaching and Research Section, College of Architecture and Art Design, Hebei Academy of Fine Arts, Shijiazhuang 050700, China
2Tianjin Earthquake Agency, Tianjin 300201, China

Correspondence should be addressed to Wuping Gao; gwp2023@126.com

Received 21 March 2023; Revised 24 September 2023; Accepted 19 January 2024; Published 28 February 2024

Post and lintel frame is a prominent architectural structure in Chinese temple architecture, characterized by its wooden construction. Mortise–tenon joints (MTJs) serve as the primary connection method for these wooden structures, employing straight mortise nodes (SMNs) and through-mortise joints (TMNs). This study presents a method that utilizes wooden pins to reinforce MTJs, enhancing the seismic performance of timber frame structures. Finite element (FE) simulation verifies the effectiveness of wooden pins in reinforcing both SMNs and TMNs, leading to improved load-bearing capacity and ductility of the MTJs. Additionally, the study confirms that reinforced nodes help to restrict the displacement changes within the wooden frame. The paper also investigates the optimal distribution of MTJs reinforced by the wooden pins throughout the structure, with the aim of enhancing the wood frame’s seismic performance. The results show the bearing capacity of MJT reinforced with wooden pins is approximately 11.3% higher compared to that of MTJ without reinforcement. The reinforcement of wood pins effectively controls the horizontal displacement of the overall structure of the wooden frame, which is reduced by about 50%–62% compared with the unreinforced wooden frame. The locating the wooden pin-reinforced MTJs in the outer columns and middle layer columns reduces the structural displacement, which is 31.53% in X direction, 5% in Y direction, and 25.86% in Z direction.

1. Introduction

The ancient wooden structure has had a profound impact on the architectural culture of China and Southeast Asia, making it a unique system in the history of world architecture. Mortise–tenon joints (MTJs) are the characteristic construction technique used in traditional wooden structures. These joints allow the wooden components to form an integrated structure capable of meeting various requirements and withstanding different loads [1]. The first usage of MTJs can be traced back to the wooden structures at the Neolithic Hemudu site [2]. However, MTJs are considered weak points in the timber structures [3]. In their study on the damage to the Shuanghe Confucius Temple during the 2019 Changning earthquake, Bai et al. [4] identified lateral residual displacement of the columns and beams as the main seismic damage to wood structures. Similarly, Liu et al. [5] reported damage to wooden structures primarily caused by MTJ failure during the 2008 Wenchuan earthquake and the 2015 Nepal earthquake. The damaged condition of wood structures often reveals deformation and damage to the key force transmission connections provided by MTJs [1]. In severe cases, MTJ damage can even lead to the structural collapse during strong earthquakes [6–8]. Therefore, understanding the mechanical properties of MTJs is crucial for the reinforcement of ancient wooden structures.

At present, the reinforcement materials for MTJ are fiber-reinforced polymers [9–13], steel components [14], damper [15, 16], shape memory alloy [17], bolt and screw [18–21], etc. Kim et al. [22] reinforced the MJT with GFRP and FRP. The result shows the bearing capacity of the tensile area of the MJT was significantly improved. The application of steel plate [23], steel strip [24], and angle steel [25] improves the stiffness and energy dissipation capacity of MJT. In terms of the cyclic behavior and energy dissipation of the reinforced MJT, the reinforcement effect of the damper [17] on the MJT is significantly better than that of the other methods. Xie et al. [26] have
demonstrated that shape memory alloy can limit the withdrawal of the tenon from the mortise. Tests done by Branco et al. [27] showed that the use of bolts and screws did not increase the in-plane load-bearing capacity (only 1.1 times), and the dissipated energy of the wood-framed walls did not increase. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied. The use of internal bolts (steel bars) to strengthen the connection of timber frame walls is another technique studied.

2. Case Study

2.1. Basic Information of the Daxiong Hall. Xingguo Temple, situated in Lushi County, Henan Province, was originally constructed during the Southern Liang dynasty around 536 AD. The temple comprises various buildings, including the mountain gate, Daxiong Hall, and Tianwang Hall. Over time, Xingguo Temple has undergone several demolitions and reconstructions. The two-story Daxiong Hall of Xingguo Temple exhibits Qing-style architecture (Figure 1(a)). During the investigation of the temple, it was observed that the columns and beams were connected using MTJ (Figure 1(b)). These components were prefabricated in a factory and then assembled on-site. The investigation revealed varying degrees and types of damage in some of the MTJ connections (Figures 1(d) and 1(e)). To reinforce the MTJ, wooden pins were used (Figures 2 and 3). Numerical analysis was conducted on the MTJ to establish the performance of the Yipin framework (Figure 1(c)) and expand the numerical analysis. To adhere to the precise construction requirements of the MTJ, the width of the tenon’s opposite top was made “half of the thickness of the column.” Wooden pins were used to reinforce the original tenon and tenon nodes, and their placement followed the principles of “Ancient Chinese building wood construction technology” [39]. The wooden pins were located the center position on both sides of the mortising head (Figures 2 and 3).

2.2. Basic Assumptions of the FE Model. To establish the FE model of the Daxiong Hall with maximum possible accuracy, the following assumptions were adopted. According to the Qinggong Ministry’s “Code of Engineering Practice” [36] on the relevant requirements for wooden buildings, the effect of the wall on the structure is not considered in the FE model because the walls in the building do not bear the load.

The roof and top surface loads are transmitted to the beams, and finally to the columns through the MTJ [40]. The interaction between the columns and beams is analyzed in the FE model. The connection between the column and the ground foundation is hinged connection. There are 16 pillars in the Daxiong Hall, which is erected on the ground foundation buried at a certain depth in the ground. The foundation only provides the upward support and horizontal friction for the column. There is no corresponding rotational constraint between the columns.

The MTJ connection is considered a nonlinear rotating spring. The connection between the MTJs is simulated using variable stiffness rod elements with rotating springs [41, 42]. Considering the energy dissipation capacity of the MTJ, the nonlinear rotating spring at the beam is used to simulate the MTJ of the semirigid connection [43–46]. Only the deformation under the action of the bending moment is considered without considering the influence of axial force and establishment on the connection deformation.
2.3. Material Property Assumptions of the FE Model.

The wood fibers inside the wood are arranged in the direction of the trunk. Wood has strong resistance in the axial direction of the trunk. Pride Obara [47] applied orthogonal symmetry theory to wood in 1928. As shown in Figure 4, \(L \) represents the longitudinal direction of the wood, \(R \) represents the radial direction of the wood, and \(T \) represents the chordal direction of the wood. TS is transverse section. RF is radial facets. CC is chord cutouts. Wood can be regarded as an orthogonal material.

The wood is considered to be a nondeformable material. The properties of wood are affected by various factors, such as...
The wood is considered as material elastic symmetry [48]. The performance equation of wood is simplified (Equation (1)).

\[
\begin{bmatrix}
\sigma_{XX} \\
\sigma_{YY} \\
\sigma_{ZZ} \\
\sigma_{XY} \\
\sigma_{XZ} \\
\sigma_{YZ}
\end{bmatrix} =
\begin{bmatrix}
E_{XXXX} & E_{XYXY} & E_{ZZZZ} & 0 & 0 & 0 \\
E_{YYXY} & E_{YYYY} & E_{YZZZ} & 0 & 0 & 0 \\
E_{ZZZX} & E_{YYYZ} & E_{ZZZZ} & 0 & 0 & 0 \\
0 & 0 & 0 & E_{XXZX} & 0 & 0 \\
0 & 0 & 0 & 0 & E_{XXZZ} & 0 \\
0 & 0 & 0 & 0 & 0 & E_{YZZZ}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{XX} \\
\varepsilon_{YY} \\
\varepsilon_{ZZ} \\
\varepsilon_{XY} \\
\varepsilon_{XZ} \\
\varepsilon_{YZ}
\end{bmatrix},
\]

(1)

where \(\sigma_{ij} \) and \(\varepsilon_{ij} \) are the stress in all directions of the wood and the strain component in the corresponding direction.

The wood of the elastic modulus constant in each direction are calculated (Equations (2) and (3)).

\[
\begin{aligned}
E_{XXXX} &= E_L (1 - v_{RT} v_{RL}) \\
E_{YYXY} &= E_R (1 - v_{LT} v_{RL}) \\
E_{ZZZZ} &= E_T (1 - v_{LR} v_{RL}) \\
E_{XYXY} &= E_L (v_{RL} + v_{LT} v_{RT}) \\
E_{ZYZZ} &= E_T (v_{LT} + v_{LR} v_{RT}) \\
E_{YZZZ} &= E_R (v_{TR} + v_{LR} v_{LT}) \\
E_{XXZX} &= 2G_{XY} \\
E_{XXZZ} &= 2G_{XZ} \\
E_{YZZZ} &= 2G_{YZ}
\end{aligned}
\]

(2)

\[
\begin{aligned}
\varepsilon_{XY} &= \frac{v_{LR}}{2} \\
\varepsilon_{XZ} &= \frac{v_{LT}}{2} \\
\varepsilon_{YZ} &= \frac{v_{RT}}{2} \\
\gamma &= \left(1 - v_{LR} v_{RL} - v_{RT} v_{RL} - v_{LT} v_{RT} - 2 v_{RL} v_{RT} v_{LT}\right)
\end{aligned}
\]

(3)

where \(E_L \), \(E_R \), and \(E_T \) are the modulus of elasticity in the \(L \), \(R \), and \(T \) directions of wood, and \(G_{XY} \), \(G_{XZ} \), and \(G_{YZ} \) represent the shear modulus of the \(LR \), \(LT \), and \(RT \) surface, respectively; \(v_{ij} \) is the Poisson’s ratio in the corresponding surface direction.

3. FE Simulation Analysis of MTJ

3.1. Constitutive Relations of the Wood

3.1.1. Elastic Constitutive Relations of the Wood. The wood is considered as material elastic symmetry [48]. The performance equation of wood is simplified (Equation (1)).

3.1.2. Plastic Constitutive Relations of the Wood. Most of the FE simulation of wooden components adopts the Hill yield criterion, which can reflect the regional distribution of wood stress. The relevant parameters in the elastic constitutive equation are defined using the properties of each isotropic material orthotropic of wood. The values of each parameter involved are experimentally measured. To accurately express the properties of each orthotropic of wood, herein, the generalized Hill plastic yield criterion is used to simulate the changes in the plastic stage of wood. Under ideal conditions, the wood is considered to be an elastoplastic material (Equations (4) and (5)).

\[
\sigma^2 = a_1 (\sigma_{22} - \sigma_{33})^2 + a_2 (\sigma_{33} - \sigma_{11})^2 + a_3 (\sigma_{11} - \sigma_{22})^2 + 2a_4 \sigma_{23}^2 + 2a_5 \sigma_{13}^2 + 2a_6 \sigma_{12}^2,
\]

(4)

\[
\begin{aligned}
a_1 &= \frac{1}{2} \left(\frac{1}{R_{22}^2} + \frac{1}{R_{33}^2} - \frac{1}{R_{11}^2} \right) \\
a_2 &= \frac{1}{2} \left(\frac{1}{R_{11}^2} + \frac{1}{R_{33}^2} - \frac{1}{R_{22}^2} \right) \\
a_3 &= \frac{1}{2} \left(\frac{1}{R_{11}^2} + \frac{1}{R_{22}^2} - \frac{1}{R_{33}^2} \right) \\
a_4 &= \frac{3}{2R_{13}^2} \\
a_5 &= \frac{3}{2R_{12}^2} \\
a_6 &= \frac{3}{2R_{23}^2}
\end{aligned}
\]

(5)
where σ is the equivalent force. R_{ij} is the strength ratio in the direction of the main axis of the material. The specific expression for the strength ratio of R_{ij} in the direction of the material spindle is Equation (6).

$$
\begin{align*}
R_{11} &= \frac{f_{11}}{f_0} \\
R_{22} &= \frac{f_{22}}{f_0} \\
R_{33} &= \frac{f_{33}}{f_0} \\
R_{13} &= \sqrt{3}\frac{f_{13}}{f_0} \\
R_{23} &= \sqrt{3}\frac{f_{23}}{f_0} \\
R_{12} &= \sqrt{3}\frac{f_{12}}{f_0}
\end{align*}
$$

where f_{11}, f_{22}, and f_{33} are the compressive tensile yield strength of wood in the longitudinal, radial, and tangential directions, respectively. f_{12}, f_{13}, and f_{23} are the shear yield strength of wood. The value of f_0 is the same as f_{11}.

3.2. Establishment of FE Model of the MTJ

3.2.1. Geometric Parameters of MTJ

The reinforced and unreinforced models of SMNs and TMNs were established by the ABAQUS. The individual parts of the wooden member are modeled separately according to the plane size of the specimen (Figures 5–8).

The FE model dimensions of the SMN and TMN were created based on the dimensions of the test specimen (Table 1).

The wooden components such as square, tenon, and post were assembled by the Assembly module of ABAQUS.

3.2.2. Material Property of MTJ

The mechanical properties of wood in three directions, axial, radial, and chord, are naturally different. Twenty-one independent elastic parameters involved in orthotropic materials are simplified. Nine elastic values involved in the three directions of the material are defined, which are E_L, E_R, E_T, G_{LT}, G_{LT}, G_{LT}, V_{LR}, V_{LT}, and
Material properties such as the yield stress ratio in all directions of the wood, respectively.

The Hill yield criterion is based on the von Mises criterion by combining the definition of distortion energy to simulate the yield phase of wood. Considering the difference in performance of wood with different orientations, it is more suitable for wood, which is the orthotropic material. This is defined in ABAQUS using the potential function. The input parameter is the yield stress ratio in all directions of the material. Its parameters are calculated as Equation (7):

$$\begin{align*}
R_{LL} &= \frac{\sigma_{LL}}{\sigma^0}; R_{RR} = \frac{\sigma_{RR}}{\sigma^0}; R_{TT} = \frac{\sigma_{TT}}{\sigma^0}, \\
R_{LR} &= \frac{\sigma_{LR}}{\tau^0}; R_{LT} = \frac{\sigma_{LT}}{\tau^0}; R_{RT} = \frac{\sigma_{RT}}{\tau^0},
\end{align*}$$

(7)

where σ_{ij} is the strength of the wood in the corresponding L, R, and T directions. σ^0 and τ^0 are the yield stress values referenced when plastic is defined. τ^0 should satisfy the following relationship (Equation 8):

$$\tau^0 = \sqrt{3}\sigma^0.$$

(8)

In the material assignment stage, wood sections are created by selecting “solid” and “homogenous” materials. The wood is an orthogonal and anisotropic material. It is necessary to set the material direction inside the wood by setting the local cylindrical coordinate system (Figure 9).

3.2.3. Loading Setup of the FE Model. The loading process includes two steps: (1) The boundary conditions are applied to both ends of the wooden column to control. (2) The displacement control is applied to the loading point. The length of time is set to 1 by the loading situation. The parameters such as the maximum number of incremental steps required in the simulation need to be set according to the actual test situation of the wooden component. Other parameters are set by default. Simultaneously, the facility outputs data, such as components, stress, strain, and displacement contact for postprocessing and analysis.

The connection between the wooden pin and the MTJ adopts mutual contact connection. The outer surface of the wooden pin is defined as the main surface. The inner surface of the wooden pin connection reserved by the mortise and the tenon is defined as the secondary surface. The main parameters considered are tangential behavior and normal behavior. For tangential contact, the contact and sliding friction behavior between the wood is usually simulated using a penalty function, with the friction coefficient set to 0.4. For tangential contact, the Penalty function is usually used to simulate the contact and sliding friction behavior between the wood, and the coefficient of friction is set to 0.4. The normal contact is set as hard contact, which does not allow penetration between the contact surfaces. When the pressure between the contact surfaces is 0 or negative, it is determined that the two contact surfaces are in contact with each other. When the pressure between the contact surfaces is 0 or negative, it is determined that the separation between the two contact surfaces occurs. It is also consistent with the fact that the mortise and tenon node will be dislodged when the actual loading is too large.

The FE simulation situation is consistent with the state of the experiment, the end of the column is completely fixed. The other end is hinged boundary adjustment setting. The line displacement and angular displacement in the X, Y, and Z directions are constrained at one end of the column. The line displacement is constrained at the other end.

3.2.4. Model Mesh Segmentation. The FE model is meshed according to the structural characteristics to guarantee the accuracy of the calculation. Different grid cells have different calculation accuracy and speed. Therefore, considering the time needed for calculation and the accuracy of calculation, this paper uses C3D8R cells for the wooden components involved in the FE simulation, such as wooden beam, wooden column, mortise and tenon, pin. There are two reasons for choosing the C3D8R unit. The first reason is that can ensure the accuracy of the results in the FE simulation, and maximize the calculation of the required displacement results. The second reason is that the distortion deformation occurs locally due to the extrusion and the shear self-locking phenomenon will not occur.

The geometric of the wooden square, wooden columns, and other major wooden components are divided before meshing the model for ensuring the accuracy of mesh...
division. Considering, the different areas of the wooden square, wooden columns, mortise and tenon, pin used the different sizes of the mesh for increasing the accuracy of the FE simulation and decline the time required for the calculation. By numbers of debugging and calculations, the final determination of the grid size of the wooden column is set to 25 mm (Figure 10(c)); the grid size of the wooden square is set to 30 mm (Figure 10(b)); mortise and tenon as the focus of the calculation, the grid size is set to 20 mm; part of the wooden components mesh division is shown in Figure 10.

3.3. Results and Discussion

3.3.1. The Deformation of the MTJ. The areas with the greatest stress of the MTJ occurs at the junction of mortise and tenon (Figures 11 and 12). The stress distribution is consistent with the typical failure modes of the MTJ. The stress concentration phenomenon of the column occurs in the part, where the tenon is extruded by the upward displacement on the column. The stress concentration of the beam now appears in the part where the mortise is extruded. However, most of the area of the beam and column is in the elastic working state.

The maximum axial tensile stress of the beam and column exceeded the yield strength of the wood, indicating that plastic failure occurred in the key area of the MTJ. The certain detachment has occurred between the mortise and the mouth. The stress of unreinforced SMN on the mortise and mortise joints is significantly greater than that of unreinforced TMN.

Figures 13 and 14 show the deformation of the MTJs in a low-cycle reciprocating load test on the MTJ model [50]. Comparing experimental phenomenon, the stress and deformation of the numerical analysis are close to the typical failure mode of the MTJ in practice. It is consistent with the theoretical analysis that indicate the FE model of the MTJ is reasonable.

The stress of the reinforced MTJ is greater than that of the unreinforced MTJ. Compared to other places, the stress at the wooden pin is larger (Figures 15 and 16). MTJ was reinforced by wood pins and did not produce large cracks. The stress of TMN reinforced by wooden pins is stronger than the SMN reinforced. The reinforcement of the wooden pin reduces the deformation of the MTJ. The effect of wooden pins on SMN is better than that of TMN. The wooden pin will be broken in the actual loading. However, the FE simulation cannot be accurately the crack of the wooden pin.

3.3.2. The Skeleton Curve of the MTJ. The skeleton curve obtained through FE simulation is compared (Figure 17). The skeleton curve of unreinforced specimens obtained through FE simulation is in agreement with the experiment [50]. Integrated the comparison of typical failure modes in 3.3.1, the FE model is reasonable.

The bending moment of the unreinforced TMN gradually flattens when the rotation angle reaches ±0.05 rad and decreases slightly when the angle reaches −0.12 rad. The bending moment of the reinforced MTJ is larger than the unreinforced MTJ. The bending moment of the unreinforced SMN are larger than TMN. Compared to the other three types of MTJ, the reinforced SMN has the largest bending moment.

4. FE Simulation of the Timber Frame

4.1. The Simplify FE Model of the Timber Frame. MTJ is considered to the semi-rigid characteristic. The bending moment, axial force, and torque of the timber frame can be transmitted via the MTJ. The deformation of MTJ under
FIGURE 10: The mashing of the FE models. (a) SMN and TMN without wood pins, (b) beam, (c) column, (d) SMN and TMN with wood pins, and (e) wood pins.

FIGURE 11: The stress cloud of unreinforced TMN.

FIGURE 12: The stress cloud of unreinforced SMN.
the action of bending moment is much larger than that produced by axial force, shear force, and torque. The influence of the rotational deformation on the structure is concerned. The mechanical properties of the MTJ are described by the bending moment-angle curve [51]. Therefore, the mechanical properties of the single wooden truss are simulated to reflect the mechanical properties of the post and lintel frame wooden structure in the FE simulation. The structure of the Daxiong Hall is simplified to the force model (Figure 18).

In the investigation of the Daxiong Hall, the Daxiong Hall is 17 m long and 10 m wide, which is composed of four wooden trusses connected by MTJ. The hall uses camphor pine as the building material. Referring to the practice of the wooden frame in the “Ying zao Fa shi Construction Method” [37] and the Qinggong Ministry “Code of Engineering Practice” [36], the size of the single wooden truss is shown in Table 3.

4.2. Modes of the Timber Frame

4.2.1. The Theory of Model Analysis. Vibration mode is the intrinsic, integral property of structures. Modes refer to the intrinsic vibration characteristics of the mechanical structures, each of which has a specific natural frequency, damping ratio, and modal shape. The main modal characteristics of the structure in a certain vulnerable frequency range by modal analysis method. The actual vibration response of the wooden frame under the action of various external or internal vibration sources can be predicted. The natural frequency and damping ratio information cover can be obtained through
modal analysis. The vibration performance of the wooden frame can be obtained. The general dynamic differential equation of motion for multi-degree-of-freedom architectures is shown in Equation (9):

\[
\begin{bmatrix}
[M]x(t) + [C]x(t) + [K]x(t) = F(t)
\end{bmatrix},
\]

where \([M]\) is the mass matrix; \([C]\) is the damping matrix; \([K]\) is the structural stiffness matrix; \(x(t)\) is the displacement vector; \(F(t)\) is the load vector of the structure under external action.

The damping of the wood is small. If the external load is not considered, the damping matrix of the structure and the load vector can be omitted from Equation (9). The equation of free vibration motion of the structural system in the assumed undamped Equation (10) is obtained as follows:

\[
[M] \ddot{x}(t) + [K]x(t) = 0. \tag{10}
\]

Assuming that the free vibration in the multi-degree-of-freedom system is a simple harmonic motion. The equation can be rewritten as Equation (11):

\[
x(t) = \{X\}(t)\sin(\omega t + \theta), \tag{11}
\]

where \([X]\) is the change in the amplitude of the system, \(\omega\) is the self-resonating circumferential frequency of the structure, and \(\theta\) is the phase angle corresponding to the structure.

Substituting Equation (11) into Equation (10) yields Equation (12):

\[
-\omega^2[M]\{X\}\sin(\omega t + \theta) + [K]\{X\}\sin(\omega t + \theta) = 0. \tag{12}
\]

Then, the above equation can be rewritten as Equation (13):

\[
\{K\} - \omega^2[M]\{X\}\sin(\omega t + \theta) = 0. \tag{13}
\]

Considering the amplitude vector \([X]\)≠0 of the structural system, the prerequisite for a nonzero solution of the Equation (14) is given as follows:

\[
[K] - \omega^2[M] = 0, \tag{14}
\]

where \(\omega^2\) is the eigenvalue, the range of \(i\) is from 1 to the number of degrees of freedom; \(x_i\) is the eigenvector; \(\omega_i\) is the square root of the eigenvalue, which can be obtained that the natural frequency of the structure at the corresponding degrees of freedom \(f_i = \omega_i/2\pi\).

4.2.2. The Result and Discussion of Model Analysis. To calculate the 10 mode shape of the wooden frame, this paper mainly uses the Block Lanczos method. The frequency period and participation quality of the structure are analyzed. \(U_x, U_y,\) and \(U_z\) mark the degree of freedom participation coefficient of the structure in the three translational directions of \(X, Y,\) and \(Z.\)

It can be seen from that the self-vibration period of the single wooden truss without wood pin is about 1.65 s (Tables 4 and 5). The long-term vibration characteristics of the wood structure is 3.6 times of the site that is 0.45 s, which can effectively avoid the resonance of the wooden structure in the earthquake. The frequency change is large at the 4th and 5th steps, which indicating the 5th mode shape is easier to be excited under the action of the earthquake. The self-vibration period of the wooden truss reinforced by the wood pin is 1.62 s, which is 3.6 times the excellent cycle of the site. Its change is also mainly in the 4th and 5th order.

For the first mode shape, the quality \(U_x\) of the structural mode shapes (Figures 19(a) and 20(a)) is much larger than that of \(U_y\) and \(U_z\), indicating that the structure has the largest degree of translational freedom in the \(X\) direction. The longitudinal stiffness of the surface structure of the first mode shape is the weakest. The overall ability of the structure to cope with longitudinal earthquakes is the worst.

For the second mode shape, the quality \(U_x\) and \(U_z\) of the structural mode shapes (Figures 19(b) and 20(b)) is close to 0. The value of \(U_y\) is 0.2. The translational freedom of the structure in \(Y\) direction is the largest, which indicates that the second mode shape is based on horizontal vibration in the \(Y\) direction. The lateral stiffness of the structure is greater than the longitudinal lateral stiffness. This is because the structure has a tighter arrangement of components in the transverse aspect and a larger span.

For the third mode shape, the quality \(U_x\) and \(U_z\) of the structural mode shapes (Figures 19(c) and 20(c)) is close to 0. The \(U_y\) is 1.45, which indicates the main vibration type of the structure in \(X\) direction of the third mode shape. The period is 0.28 compared to the basic period \((T_3/T_1 = 0.28)\), which

<table>
<thead>
<tr>
<th>Table 3: Size chart of the single wooden frame.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
</tr>
<tr>
<td>Diameter (mm)</td>
</tr>
<tr>
<td>Length (mm)</td>
</tr>
<tr>
<td>Beam</td>
</tr>
<tr>
<td>Length (mm)</td>
</tr>
<tr>
<td>Width (mm)</td>
</tr>
<tr>
<td>Height (mm)</td>
</tr>
</tbody>
</table>
TABLE 5: Participation coefficients of different degrees of freedom of structures with wood pins.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency (Hz)</th>
<th>Period(s)</th>
<th>U_x (mm)</th>
<th>U_y (mm)</th>
<th>U_z (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6028</td>
<td>1.6590</td>
<td>2.0224</td>
<td>−0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>1.9482</td>
<td>0.5133</td>
<td>0.0053</td>
<td>0.0230</td>
<td>−0.0001</td>
</tr>
<tr>
<td>3</td>
<td>2.1245</td>
<td>0.4707</td>
<td>−1.4542</td>
<td>−0.0140</td>
<td>0.0016</td>
</tr>
<tr>
<td>4</td>
<td>2.3470</td>
<td>0.4261</td>
<td>−0.0026</td>
<td>1.2544</td>
<td>0.0002</td>
</tr>
<tr>
<td>5</td>
<td>6.3182</td>
<td>0.1583</td>
<td>0.7013</td>
<td>0.0012</td>
<td>0.0008</td>
</tr>
<tr>
<td>6</td>
<td>6.8223</td>
<td>0.1466</td>
<td>0.0063</td>
<td>0.0196</td>
<td>0.1270</td>
</tr>
<tr>
<td>7</td>
<td>6.8599</td>
<td>0.1458</td>
<td>0.0005</td>
<td>0.0388</td>
<td>0.0017</td>
</tr>
<tr>
<td>8</td>
<td>7.0330</td>
<td>0.1422</td>
<td>−0.0010</td>
<td>0.6115</td>
<td>−0.0042</td>
</tr>
<tr>
<td>9</td>
<td>9.1690</td>
<td>0.1091</td>
<td>−0.0006</td>
<td>0.0000</td>
<td>1.2759</td>
</tr>
<tr>
<td>10</td>
<td>9.8617</td>
<td>0.1014</td>
<td>0.0015</td>
<td>0.1784</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

FIGURE 19: The three-order mode shape of the single wooden truss wood truss without reinforced. (a) First-order bending mode, (b) second-order bending mode, and (c) third-order bending mode.

FIGURE 20: The three-order mode shape of the single wooden truss wood truss with reinforced. (a) First-order bending mode, (b) second-order bending mode, and (c) third-order bending mode.
meets the requirements of the specification that the cycle ratio is less than 0.9, which indicates that the structural layout is relatively reasonable.

The structural properties, vibration types, and modal participation quality of the wood truss reinforced by wood pins are like the wooden truss without wood pin reinforcement. The frequency of the wooden truss is increased after reinforcement that is about 3%. Moreover, the wooden truss reinforced has changed in the 4th-order mode shape compared with the single wooden truss without reinforcement, which shows the reinforcement of wooden pins can significantly reduce the probability of deformation of the structure and reduces the adverse impact of earthquakes on the structure and increase the stiffness of the structure to a certain extent.

4.3. Seismic Response of Timber Frame

4.3.1. Selection of Seismic Response Spectra. The response spectrum analysis is the analysis method based on the modal analysis for calculating the deformation and internal forces. Spectral analysis is calculated by the modal superposition method. The displacements and stresses of the model in conjunction with acceleration, velocity, or displacement response spectra are calculated. According to the Chinese seismic design code [52], the area analyzed is seismic fortification intensity of 6°. The basic seismic acceleration value is 0.05 g. The site category is Class II. The site characteristic period is 0.40 s. The final seismic acceleration spectrum is shown in Table 6.

4.3.2. Response Spectrum Analysis and Results. The acceleration response spectrum is applied in the direction of positive loading. The result is shown in Figures 21 and 22. The maximum displacement of the timber frame without wood pins is 14.71 mm. The maximum displacement of the timber frame with wood pins is 14.68 mm. The larger displacement of the structure is concentrated on the second-layer beams and third-layer beams. Moreover, the lateral displacement of the MJT with wood pins are smaller than the MJT without wood pins. The result indicates the MTJ reinforced by the wooden pins that located on the upper layer of the structure has the better reinforcement effect on the timber frame.

4.4. Dynamical Time-Course Analysis of the Timber Frame

4.4.1. Selection of the Earthquake Wave. This study refer to the requirements of “Code for Seismic Design of Buildings” (GB50011-2010) for the selection of seismic waves for fully estimate and simulate the maximum response of the structure under the action of the earthquake. The result show influence curve on the structure should be statistically consistent with the response spectrum curve. The average impact curve under the action of each seismic wave in the elastic range should not be greater than 20% compared with the response spectrum analysis impact curve. Combined with the seismic fortification intensity of buildings in the region and related parameters, the selected natural seismic waves are shown in Table 7. The artificial waves are randomly generated by Yingjianke software according to the regional conditions (Figures 23 and 24).

4.4.2. Displacement Response of the Timber Frame. The reaction characteristics of the post and lintel frame wooden structure with MTJ as the main connection mode under the action of seismic waves were studied. The seismic waves applied to the wooden structure are simulated. The displacement response of the structure under the action of seismic waves is studied to evaluate the seismic performance. Seismic waves are applied to the single wooden truss from the bottom of the column base in the X direction, Y direction, and bidirectional horizontal direction combined by 1 (horizontal X direction) and 0.85 (horizontal Y direction). The results are listed in Tables 8–10. The response results of the structure to seismic waves are related to the selected seismic waves and the duration of seismic waves. Therefore, the seismic response analysis of the structure can be considered to be 5–10 times the duration of the period of the structure.

To facilitate the comparative analysis, the maximum displacements of the eaves column, lower gold column, upper

Table 6: Seismic acceleration spectral values.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>0.17</th>
<th>0.20</th>
<th>0.25</th>
<th>0.33</th>
<th>0.48</th>
<th>0.58</th>
<th>0.75</th>
<th>1.03</th>
<th>1.32</th>
<th>1.61</th>
<th>2.22</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration (m/s²)</td>
<td>0.063</td>
<td>0.071</td>
<td>0.078</td>
<td>0.086</td>
<td>0.098</td>
<td>0.117</td>
<td>0.147</td>
<td>0.196</td>
<td>0.245</td>
<td>0.294</td>
<td>0.392</td>
<td>0.392</td>
</tr>
</tbody>
</table>

Figure 21: Unreinforced member under response spectrum.
Figure 22: Reinforcement members under the response spectrum.
TABLE 7: Seismic waves.

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Seismic recording station</th>
<th>Magnitude</th>
<th>Vs (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkfield</td>
<td>1966</td>
<td>Cholame—Shandon Array #12</td>
<td>6.19</td>
<td>408.93</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>1968</td>
<td>San Onofre—So Cal Edison</td>
<td>6.63</td>
<td>442.88</td>
</tr>
</tbody>
</table>

Figure 23: Parkfield seismic wave.

Figure 24: Borrego Mtn seismic wave.

TABLE 8: Maximum displacement of the structure under the action of seismic waves in the X direction.

<table>
<thead>
<tr>
<th>Seismic wave</th>
<th>The wooden frame is not reinforced with wooden pins (mm)</th>
<th>The wooden frame is reinforced with wooden pins (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Parkfield</td>
<td>5.160</td>
<td>0.474</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>5.557</td>
<td>0.459</td>
</tr>
<tr>
<td>Artificial waves</td>
<td>10.05</td>
<td>0.822</td>
</tr>
</tbody>
</table>

TABLE 9: Maximum displacement of the structure under the action of seismic waves in the Y direction.

<table>
<thead>
<tr>
<th>Seismic wave</th>
<th>The wooden frame is not reinforced with wooden pins (mm)</th>
<th>The wooden frame is reinforced with wooden pins (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Parkfield</td>
<td>10.05</td>
<td>0.822</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>0.03825</td>
<td>5.120</td>
</tr>
<tr>
<td>Artificial waves</td>
<td>10.05</td>
<td>0.8222</td>
</tr>
</tbody>
</table>
gold Zhu, and Melon pillar top are extracted for analysis (Tables 11–13).

The displacement at the outer column is largest than in the other places. The displacement of the inner column is less than the middle layer column. The displacement of the top column is different in different types of seismic waves. The deformation between the different parts of structures is not coordinated under the action of earthquakes, which leads to torsional deformation. The reinforced inner column and middle layer column by wood pins are better than the top column. The stability of the inner column can be increased by the reinforcement of the penetration beam and first layer beam.

The displacement response of the vertices of each column is different under different seismic waves. However, the changing trend remains consistent. The displacement of the outer column and the inner column of the structure is quite different. Under the action of the same seismic wave. It can be judged that the main weak part of the seismic performance of the wood structure is located on the outer column. The displacement of the outer column and the inner column reinforced by the wooden pin is decreased compared to the outer column and the inner column without reinforcement, indicating that the reinforcement of the wooden pin enhances the seismic performance of the wood structure.

Table 10: Maximum displacement of the structure under the action of bidirectional horizontal seismic waves.

<table>
<thead>
<tr>
<th>Seismic wave</th>
<th>The wooden frame is not reinforced with wooden pins (mm)</th>
<th>The wooden frame is reinforced with wooden pins (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Parkfield</td>
<td>5.160</td>
<td>4.386</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>5.552</td>
<td>3.966</td>
</tr>
<tr>
<td>Artificial</td>
<td>10.13</td>
<td>7.930</td>
</tr>
</tbody>
</table>

Table 11: Structural displacement under seismic waves in the X direction.

<table>
<thead>
<tr>
<th>Seismic wave</th>
<th>The wooden frame is not reinforced with wooden pins (mm)</th>
<th>The wooden frame is reinforced with wooden pins (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outer column</td>
<td>Inner column</td>
</tr>
<tr>
<td>Parkfield</td>
<td>-3.710</td>
<td>-1.286</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>5.556</td>
<td>-1.119</td>
</tr>
<tr>
<td>Artificial</td>
<td>9.307</td>
<td>-1.719</td>
</tr>
</tbody>
</table>

Where the “-” sign represents the opposite direction to the assumed.

Table 12: Structural displacement under seismic waves in the Y direction.

<table>
<thead>
<tr>
<th>Seismic wave</th>
<th>The wooden frame is not reinforced with wooden pins (mm)</th>
<th>The wooden frame is reinforced with wooden pins (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outer column</td>
<td>Inner column</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>4.033</td>
<td>-0.430</td>
</tr>
</tbody>
</table>

Where the “-” sign represents the opposite direction to the assumed.

Table 13: Structural displacement under the bidirectional horizontal seismic waves.

<table>
<thead>
<tr>
<th>Seismic wave</th>
<th>The wooden frame is not reinforced with wooden pins (mm)</th>
<th>The wooden frame is reinforced with wooden pins (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outer column</td>
<td>Inner column</td>
</tr>
<tr>
<td>Borrego Mtn</td>
<td>5.525</td>
<td>-1.121</td>
</tr>
<tr>
<td>Artificial</td>
<td>9.242</td>
<td>1.736</td>
</tr>
</tbody>
</table>

Where the “-” sign represents the opposite direction to the assumed.
5. Conclusions

To better promote and inherit seismic reinforcement for the wooden structure, this paper is conducting large number of field research, consulting relevant technical personnel, and consulting relevant materials to learn more about the form of MTJ and structural characteristics of the wooden structure. Combined with the experimental data, it is found that ABAQUS can accurately simulate different forms of failure, such as wood fiber tearing and MTJ breaking. The bearing capacity of MTJ reinforced with wooden pins is approximately 11.3% higher compared to that of MTJ without reinforcement. The displacement response of the single timber frame is mainly concentrated at the top of the structure by modes analysis. The frequency of the wooden truss is increased after reinforcement that is about 3%. Moreover, the wooden truss reinforced has changed in the 4th-order mode shape compared with the single wooden truss without reinforcement, which shows the reinforcement of wooden pins can significantly reduce the probability of deformation of the structure and increase the stiffness of the structure.

The reinforcement of wood pins effectively controls the horizontal displacement of the overall structure of the wooden frame, which is reduced by about 50%–62% compared with the unreinforced wooden frame. The larger displacement of the structure is concentrated on the second-layer beams and third-layer beams. Moreover, the result indicates the MTJ reinforced by the wooden pins that located on the upper layer of the structure has the better reinforcement effect on the timber frame. The reinforced inner column and middle layer column by wood pins are better than the top column. The stability of the inner column can be increased by the reinforcement of the penetration beam and first layer beam.

The optimal distribution of MTJ reinforced by wooden pins in the single wooden frame can improve the seismic performs of the single wooden frame. However, the optimal location of the MTJ reinforced by wooden pins in the whole wood frame still needs to be further investigated for improve the seismic performs of the traditional ancient wooden buildings.

Data Availability

The (DATA TYPE) data used to support the findings of this study are included within the article.

Disclosure

The authors alone are responsible for the content and writing of this article.

Conflicts of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled. The authors report no conflicts of interest.

Authors’ Contributions

Hua Zhang and Wuping Gao contributed in the methodology. Wuping Gao contributed in the idea, supervision, and writing–original draft. Hua Zhang and Yanling Wang contributed in the writing–review and editing, discussion, and validation. The authors writing and review the manuscript revision and the final draft for important intellectual content.

Acknowledgments

This work was financially supported by the China Science and Nature Foundation (41772123), Spark Program of Earthquake Sciences (XH23004YA), and Technical Innovation, Inheritance and Promotion of Reed Painting Art in Xiongan New Area (HB20-YB111).

References

J. Li, Yingzao Fashi Construction Method, Royal Press, Kaifeng, China, (in ancient Chinese), 1103.

[50] Y. L. Gao, “Experimental study and theoretical analysis of typical mortise and tenon joints of traditional wood structures based on wood friction mechanism and embedded pressing characteristics,” Kunming University of Science and Technology, Kunming, China, 2017.
