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Urban railways have become a prominent mode of public transportation within cities owing to their connectivity with other modes
of transport and environmental friendliness. Various policies, such as the expansion of metropolitan areas and the development of
megacities, have further emphasized the pivotal role of urban railways. Consequently, more railway stations are expected to be
constructed in developed cities. However, the temporal variation in boarding and alighting patterns at each railway station is often
overlooked. Failing to account for this variation, specifically the differences in peak-hour concentration rates, in railway station
design may cause increased conflicts among users owing to concentrated demands during specific time periods, exacerbating
congestion and diminishing the appeal of the urban railway systems. Therefore, this study investigated the correlation between the
temporal variation in boarding and alighting patterns and the attributes (location) of railway stations in Seoul, South Korea, and
analyzed the spatial heterogeneity of this correlation. Initially, the factors influencing the peak-hour concentration rates in railway
stations were identified using a linear regression model. Peak hours were defined as morning and afternoon peaks and boarding
and alighting were differentiated to account for the directional aspects of temporal variations in boarding and alighting patterns.
The correlation between boarding and alighting patterns and the attributes of railway station influence zones was determined, and
a geographically weighted regression model was estimated to analyze the spatial heterogeneity of this correlation based on railway
station location. The analysis results revealed that railway stations in the southeastern and downtown areas of Seoul exhibited
varying impacts of station attributes on boarding and alighting patterns even when the station attribute influence zones were
identical. The contribution of this study is to evaluate the priorities of railway projects and its corresponding transportation
policies. Regarding the policy goal recently announced by the Korean government, “Achieving Commute Times in 30-min range,”
our finding will provide a good measure of accessibility whether it succeeds or not.

1. Introduction

Urban railways are a primary mode of public transportation
for local and regional trips within cities andmetropolitan areas
and play a central role in the public transportation network. In
addition, their environmental friendliness has led to the intro-
duction and expansion of urban rail systems inmany countries
in accordance with the global focus on reducing carbon emis-
sions. In Seoul, South Korea, approximately four million peo-
ple use the urban railway system daily. With integration with

other modes of transportation, such as buses, personal mobil-
ity (PM), and bike-sharing, the demand for urban railways is
projected to continuously increase over time.

Moreover, the emergence of concepts, such as metropoli-
tan regions and megacities, may impact the growing demand
for urban railways. These conceptswere proposed as alternatives
for initial regionally balanced development, aimed at enhancing
the competitiveness of surrounding cities and improving the
efficiency of various urban projects through collective resource
mobilization. These concepts are exemplified by initiatives in
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Germany, France, and the United Kingdom. However, a grow-
ing concern has emerged in that developing these metropolitan
regions and megacities may lead to unintended consequences,
such as the “straw effect,” where population and investment
concentrate in major cities, causing a decline in surrounding
cities. Paradoxically, this trendmay further strain transportation
infrastructure in major cities owing to increased transportation
demands.

Adding new urban railway stations to already developed
cities is necessary to address this problem. In this process, the
boarding and alighting demands at each railway station are
predicted using origin–destination (O/D) and road/rail net-
work data. Typically, station size is estimated based on daily
boarding and alighting demands, which may lead to over- or
undersizing of railway stations owing to the lack of consid-
eration of the temporal variation in boarding and alighting
demands, particularly the peak-hour concentration rates. For
example, determining the appropriate station size based solely
on daily boarding and alighting demands and constructing
the station without accounting for temporal variations in
these demands may increase congestion within the railway
station, resulting in user discomfort and potential safety
hazards. In the Seoul metropolitan area, the Seoul Subway
Line 9, currently in operation, has failed to adequately con-
sider the traffic demand concentrated during the morning
and afternoon peak hours in its design process. As a result,
during these time periods, almost all sections of the line
experienced severe congestion, leading to significant discom-
fort for citizens, including safety concerns. Furthermore, the
Gimpo Gold Line, which connects Seoul and Gimpo (city
adjacent to western Seoul), has also been designed and con-
structed without sufficient consideration for peak-hour traffic
demand. As a result, frequent safety incidents occur among
passengers waiting inside the stations. In addition, consider-
ing the directional nature of the temporal variation in demand
is crucial. For example, in areas with concentrated business
facilities, alighting demandmay peak in themorning, whereas
boarding demandmay peak in the afternoon. Failing to account
for this may exacerbate conflicts within railway stations. In
other words, failure to consider the concentration of peak-
hour traffic demand not only deteriorates the level of service
of public transportation services but also increases the risk of
safety accidents.

When establishing new railway stations in relatively less-
developed cities, the demand characteristics can be observed,
and strategies can be continually formulated according to
land-use changes around the railway station. However, in
fully developed areas, the characteristics of boarding and
alighting patterns must be considered when determining
the appropriate station size.

Therefore, this study aims to identify the factors influ-
encing the temporal variation in boarding and alighting pat-
terns at urban railway stations in South Korea, focusing on
Seoul, and analyze the spatial heterogeneity of these influ-
ences. Factors, including station location and the attributes
of station influence zones, were selected. Statistical models
were estimated using the data collected to explain these attri-
butes. Initially, a linear regression model was applied to

Seoul’s urban railway stations to ascertain the factors influ-
encing boarding and alighting patterns. In addition, a geo-
graphically weighted regression (GWR) model, a widely used
spatial regression tool, was employed to analyze the size and
directionality of the influencing factors based on station loca-
tion and influence zone attributes. One-week public trans-
portation card data were used to ensure the reliability of the
research results and account for daily variations in boarding
and alighting patterns. To the best of our knowledge, research
on the analysis of boarding and alighting patterns at urban
railway stations considering station locations and influence
zone attributes for the purpose of informing safety planning
has been limited.

The remainder of this paper is organized as follows: Section 2
reviews previous related studies. Section 3 introduces the
study area, details of the data collection methods, and basic
statistics of the collected data. Section 4 introduces the method-
ology used in the study. Section 5 presents the results of model
estimation. Finally, Section 6 concludes the paper and offers
recommendations.

2. Literature Review

Previous studies on congestion within urban railway stations
analyzed congestion levels using various data and methodol-
ogies. Analyses of the factors influencing pedestrian flow
within railway stations and studies on pedestrian simulations
have been prominent. Ahn et al. [1] performed a simulation
based on a gravity model using survey data on pedestrian
routes to analyze pedestrian flows for railway station plan-
ning and management. Yang and Tang [2] analyzed the
effects of adjusting departure times for urban railway pas-
sengers based on fare discounts to alleviate peak-hour pas-
senger concentrations. Teng et al. [3] conducted SP/RP
surveys to analyze the psychological factors influencing pas-
sengers in crowded and conflicting pedestrian environments
within railway stations. They quantitatively analyzed the
impact using regression models. Li et al. [4] focused on the
correlation between bike-sharing and urban railways and
analyzed the correlation between land use and railway sta-
tion usage patterns using bike-sharing usage data. Li et al. [5]
developed a method based on rail network data for analyzing
congestion patterns in an urban railway network resulting
from train delays. Wang et al. [6] analyzed the characteristics
of unexpected passenger concentrations in an intelligent
urban rail transit network and proposed methods to manage
this congestion. Jiao et al. [7] analyzed the correlation
between land use and boarding and alighting patterns based
on the spatiotemporal similarity of the patterns. The related
prior studies mentioned above are summarized in Table 1.

Liang et al. [8] calculated an appropriate fare through a
bilevel model using train operation data to establish a fair
adjustment strategy for alleviating peak-hour congestion. Yu
et al. [9] utilized smart card data (SCD) and clustering algo-
rithms to categorize the heterogeneity in peak-hour travel
patterns at railway stations, assuming that the occurrence
times of peak-hour travel patterns vary per station. Huang
et al. [10] estimated a weighted linear regression model using
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socioeconomic indicators and land-use data to develop an
accessibility-based method for estimating peak-hour light
rail transit ridership. Li et al. [11] used SCD to estimate
hybrid and ARIMA models for short- to medium-term pre-
diction of urban railway boarding and alighting demands.
Wang et al. [12] derived optimal train operation plans using
an optimization method to develop a coordinated operation
strategy for individually operated railway stations to minimize
passenger delays. Gulhan et al. [13] employed a timetable-
based assignment methodology to develop accessibility indi-
cators for urban public transit (UPT) during the planning
stage. Gutiérrez et al. [14] estimated a distance-decay-weighted
regression model to develop a station-level boarding estima-
tion model integrated with a geographic information system
(GIS) system. The related prior studies mentioned above are
summarized in Table 2.

The above literature review indicates that studies simul-
taneously considering the spatial heterogeneity resulting
from the locational characteristics of railway stations and
the different urban railway boarding and alighting patterns
on a daily and hourly basis are limited. In addition, studies
simultaneously estimating models while considering socio-
economic indicators, boarding and alighting patterns, and
land-use characteristics and providing causal relationships
between the estimated results and characteristics of the study
area are also scarce. Therefore, this study makes a distinctive
contribution compared with existing studies.

3. Methodology

3.1. Methodological Framework. This study identified the
factors influencing the temporal variation in boarding and
alighting patterns at urban railway stations. Public transpor-
tation card data and statistical models were used to analyze
the spatial heterogeneity of these influences. First, SCD were
processed to calculate the morning and afternoon peak-hour
concentration rates of boarding and alighting demands at
each urban railway station. Using the station-specific peak-
hour concentration rates as the dependent variable and the
locational attributes of the station as independent variables, a
linear regression model was estimated to determine the fac-
tors influencing the peak-hour concentration rates of board-
ing and alighting demands at each station. In addition, a
GWR model was estimated to elucidate spatial heterogeneity
based on the locational attributes of each station. The results
of the model estimation (estimated regression coefficients)
were visualized using GIS tools. The methodological frame-
work of this study is illustrated in Figure 1.

3.2. GWR Model. This study employed a GWR model to
analyze the factors influencing the temporal variability of
urban railway station usage demand and the spatial hetero-
geneity of these influences. GWR is a regression analysis
model that can be used to analyze data collected in a spatial
unit. It has been applied in various fields, such as transpor-
tation and geography [15–24].

Considering spatial autocorrelation (the property in which
spatially adjacent samples have a high correlation), the GWR
model enables the analysis of ripple effects that occur due to

data aggregation and spatial proximity in the study area.
Owing to these spatial characteristics, estimating data with
spatial dependency and heterogeneity using the commonly
used ordinary least squares regression analysis model violates
the assumption of linearity and results in errors, reducing the
efficiency of parameter estimation. To address the heterosce-
dasticity arising from spatial heterogeneity, the GWR model
utilizes a weighting function and considers regression coeffi-
cients as functions of location, allowing for an analysis in
which coefficients vary depending on spatial position. This
can be expressed mathematically as follows:

yi μð Þ ¼ β0i μð Þ þ β1i μð Þx1 þ β2i μð Þx2 þ⋯þ βmi μð Þxm þ εi μð Þ;
ð1Þ

where yi= dependent variable (i= 1,2,…,n), n is the number
of observations, xmi=mth independent variable of observa-
tion i, βmi=mth regression coefficient of observation i, εi=
error term, μ= spatial coordinates.

What distinguishes GWR from conventional regression
models is the inclusion of μ in each term, indicating that
parameter estimation is performed for a given μ and is rele-
vant only for that specific location. The regression coefficients
according to location were estimated using the weighted least
squares estimation method, expressed as follows:

bβ ¼ XTW uð ÞX½ �−1XTW uð ÞY : ð2Þ

In this equation, each element of the geographical weight
matrix W (u) is calculated based on the weighting function
determined by the kernel function. Although the kernel
function can take various forms, this study employs the
most common Gaussian function, expressed as follows:

Wi uð Þ ¼ exp −0:5 di uð Þð Þ=hf g2; ð3Þ

whereWi (u)=weight of observation i in spatial coordinates,
di (u)= distance between observation i and spatial coordi-
nates μ, h= bandwidth.

4. Data Collection

4.1. Study Area. This study focused on subway stations in
Seoul, South Korea, home to ∼10million residents. As the
largest city in South Korea, Seoul exhibits heterogeneous land
use and demographic composition within its urban area. Not
only the Seoul metropolitan area but also most major metro-
politan cities have several distinct regions with varying attri-
butes due to the different connectivity and relevance to an
entire metropolitan area. To address this issue, this study
divided Seoul into five regions and interpreted the results by
considering the characteristics of each region. First, the south-
eastern region, themost developed area in Seoul, encompasses
a high proportion of commercial facilities and a relatively
large residential population. Moreover, due to the relatively
high proportion of business facilities in this region, there is a
significant population commuting to and from the cities in

4 Advances in Civil Engineering
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Smart card data (7 days)

Trip chain data (7 days)

Calculating concentration rate
during AM peak and PM peak

(only for initial boarding and final alighting)

Setting catchment areas for each stations

Collecting data representing
attributes of catchment area

Data collection

Model estimation

LR (linear regression) model GWR (geographically weighted regression) model

Identifying attributes of catchment area that
affect the concentration rate of 

boarding/alighting demand during AM peak 
and PM peak at each railway station

Analyzing spatial heterogeneity of impacts 
identified through estimation of LR model

Visualization

(1) Sociodemographic attributes
(2) Land use attributes
(3) Multiday boarding/alighting patterns

FIGURE 1: Methodological framework.

Southeastern region
(Gangnam region)

Southwestern region

Downtown
region

Northwestern
region

Northeastern
region

FIGURE 2: Classification of regions in Seoul, South Korea.
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FIGURE 3: Railway stations used in this study.

1 km

Spatial unit A
(population: 10,000 persons)

Spatial unit B
(population: 5,000 persons)

Spatial unit C
(population: 15,000 persons)

Area: 10% of
spatial unit B

Area: 40% of
spatial unit A

Area: 30% of
spatial unit B

Population of catchment area= (10,000 × 0.4) + (5,000 × 0.1) + (15,000 × 0.3) = 9,000

FIGURE 4: Estimation of sociodemographic attributes in the catchment areas of railway stations.
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TABLE 3: Dependent/independent variables.

Group Variables

Dependent variables

(i) BOAMR: concentration rate of boarding during AM peak (%)
(ii) BOPMR: concentration rate of boarding during PM peak (%)
(iii) ALAMR: concentration rate of alighting during AM peak (%)
(iv) ALPMR: concentration rate of alighting during PM peak (%)

Independent variables

Multiday boarding/alighting attributes

(i) BOWDR: weekday concentration rate of boarding (%)
(ii) ALWDR: weekday concentration rate of alighting (%)
(iii) BOWER: weekend concentration rate of boarding (%)
(iv) ALWER: weekend concentration rate of alighting (%)

Infra attributes (v) NOLINE: number of transfer lines (lines)

Land-use attributes

(vi) SALEAREA: area of sale facilities (1,000m2)
(vii) CBAREA: area of business facilities (1,000m2)
(viii) NOSHOP: number of hospitals (places)
(ix) NOGHOSP: number of general hospitals (places)
(x) NOBED: number of beds in hospitals (places)

Sociodemographic attributes

(xi) POP10–POP70: population by age (1,000 person)
(a) 10, 20, 30, 40, 50, 60, over 70s

(xii) TPOP, MPOP, FPOP: population by gender (1,000 persons)
(b) Total, male, female

(xiii) NOEMP: number of employees (1,000 persons)
(xiv) NOHH: number of households (1,000 households)

TABLE 4: Statistical analysis results for the collected data.

Group Mean Std. dev Max Min

Dependent variables

BOAMR 1.61 0.27 2.25 0.70
BOPMR 1.11 0.16 1.94 0.81
ALAMR 1.72 0.16 2.17 1.22
ALPMR 1.11 0.16 1.94 0.81

Independent variables

NOLINE 1.23 0.49 4.00 1.00
NOHH 29.07 10.95 63.94 4.45
TPOP 66.31 24.46 133.35 9.74
MPOP 32.18 11.91 65.01 4.92
FPOP 34.12 12.59 68.35 4.82

NOEMP 45.15 38.83 220.76 4.21
SALEAREA 45.26 63.75 384.90 0.37
CBAREA 213.53 301.59 2,228.35 0.86
NOHOSP 139.51 84.40 541.94 8.44
NOGHOSP 0.44 0.55 2.95 0.00
NOHBED 625.44 430.44 2,162.96 14.10
POP10 5.44 2.45 15.03 0.57
POP20 10.47 4.38 28.72 1.39
POP30 10.69 4.24 24.44 1.73
POP40 10.63 4.03 20.72 1.48
POP50 10.45 4.17 22.85 1.50
POP60 7.78 3.12 17.55 1.21
POP70 6.42 2.54 12.94 0.97
BOWDR 79.19 3.92 89.16 64.28
ALWDR 79.24 3.94 89.07 65.38
BOWER 20.81 3.92 35.72 10.84
ALWER 20.76 3.94 34.62 10.93

8 Advances in Civil Engineering



TABLE 5: Estimation results of the linear regression model (BOAMR).

Variable Est SE T-stat p-Value

Intercept 20:059813∗∗∗ 1.957122 10.250 ≤0.00001
Area of sales facilities −0:036284∗∗∗ 0.008352 −4.344 0.00002
Number of households 0:581989∗∗∗ 0.045974 12.659 ≤0.00001
Number of hospitals −0:053876∗∗∗ 0.005917 −9.106 ≤0.00001
Number of transfer lines −3:637749∗∗∗ 1.049986 −3.465 0.00062

−Number of observations: 267. −Adjusted R2: 0.5462. ※ Significance code: ∗∗∗ðp≤ 0:001Þ.

TABLE 6: Estimation results of linear regression model (BOPMR).

Variable Est SE T-stat p-Value

Intercept 27:28373∗∗∗ 1.618062 16.862 ≤0.00001
Area of business facilities 0:004742∗∗∗ 0.001404 3.377 0.00084
Number of households −0:47414∗∗∗ 0.037326 −12.703 ≤0.00001
Number of hospitals 0:046304∗∗∗ 0.00488 9.489 ≤0.00001
Number of transfer lines 2:023987∗ 0.851589 2.377 0.01818

−Number of observations: 267. −Adjusted R2: 0.5074. ※ Significance code: ∗∗∗ðp≤ 0:001Þ:, ∗ðp≤ 0:05Þ.

TABLE 7: Estimation results of linear regression model (ALAMR).

Variable Est SE T-stat p-Value

Intercept 32:18867∗∗∗ 1.712945 18.791 ≤0.00001
Area of business facilities 0:006701∗∗∗ 0.001863 3.597 0.00038
Number of households −0:97772∗∗∗ 0.238769 −4.095 0.00005
Number of general hospitals 2:769963∗∗ 1.022812 2.708 0.00721
Population of 20 and 30s 0:707859∗ 0.313516 2.258 0.02478

−Number of observations: 267. −Adjusted R2: 0.3006. ※ Significance code: ∗∗∗ðp≤ 0:001Þ:, ∗∗ðp≤ 0:01Þ:, ∗ðp≤ 0:05Þ.

TABLE 8: Estimation results of the linear regression model (ALPMR).

Variable Est SE T-stat p-Value

Intercept 13:3878∗∗∗ 1.788965 7.484 ≤0.00001
Area of sales facilities −0:03093∗∗∗ 0.004588 −6.741 ≤0.00001
Number of households 0:329395∗∗∗ 0.02637 12.491 ≤0.00001
Number of hospitals −0:02204∗∗∗ 0.003447 −6.393 ≤0.00001
Concentration rate of alighting during
weekends

0:311175∗∗∗ 0.071765 4.336 ≤0.00001

−Number of observations: 267. −Adjusted R2: 0.5330. ※ Significance code: ∗∗∗ðp≤ 0:001Þ.

TABLE 9: Comparison of goodness of fit.

Models Linear regression model GWR model

BOAMR Adjusted R2= 0.5462 Adjusted R2= 0.7668
BOPMR Adjusted R2= 0.5074 Adjusted R2= 0.7797
ALAMR Adjusted R2= 0.3006 Adjusted R2= 0.7469
ALPMR Adjusted R2= 0.5330 Adjusted R2= 0.8716
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TABLE 10: Estimation results of the GWR model (BOAMR).

Variable Min 1st Qu Median 3rd Qu Max Global

Intercept 0.404451 11.24496 16.77398 24.668 50.66738 20.0598
Area of sales facilities −0.17327 −0.07272 −0.03163 −0.01523 0.095999 −0.0363
Number of households −0.12268 0.546268 0.643507 0.772032 1.326634 0.582
Number of hospitals −0.29164 −0.08486 −0.05048 −0.03045 0.022822 −0.0539
Number of transfer lines −16.2668 −6.15996 −3.94211 −1.60716 0.642216 −3.6377
−Number of observations: 267. −Adjusted R2: 0.7668.
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the Seoul metropolitan area, and it attracts a high level of
floating population within the area at all time periods. Fur-
thermore, from an urban planning perspective, this area has
the highest connectivity in terms of railway and public trans-
portation with cities within the Seoul metropolitan area. There-
fore, changes in land use and public transit infrastructure
within this area are likely to have significant spatial ripple
effects. Seoul City Hall is located in the downtown region
and serves as Seoul’s cultural center. Although it has a smaller
residential population, it concentrates on a significant num-
ber of business facilities, similar to Gangnam. Since this area
served as the central hub of Seoul before large-scale urban
development occurred in the southeastern region, similar to
the southeastern region, it experiences high floating popula-
tion traffic compared to other regions. However, it is the area

where policies to restrict car traffic are most heavily enforced
to preserve cultural heritage sites and alleviate congestion. As
a result, travel demand from/to this area heavily relies on
public transportation infrastructure. Moreover, geographi-
cally situated at the center of Seoul, it shares high connectivity
with other cities within the Seoul metropolitan area, like the
southeastern region. The northeastern and southwestern
regions are characterized by a lower proportion of commer-
cial and business facilities than other areas, with a primary
focus on residential areas. While these areas also have several
downtowns within them, they have a relatively higher pro-
portion of the population commuting to and fromother areas.
Consequently, public transportation services in this area tend
to prioritize connectivity to the major downtowns in Seoul
rather than to other cities within the Seoul metropolitan area.
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FIGURE 6: BOAMR—NOHH.
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Finally, the northwestern regions, such as the downtown
region, are not dominated by specific facilities. Rather, com-
mercial and residential facilities are evenly distributed in this
area. Figure 2 shows the categorization of each region.

4.2. SCD. This study used SCD to analyze the temporal vari-
ability of subway station boarding and alighting patterns.
Using these data, trip-chain information was constructed,
focusing on the initial boarding and final alighting stations
for analyzing the boarding and alighting patterns by subway
station. SCD covering a 1-week period, from November 11,
2019 to November 17, 2019, was used to account for the daily
variability of boarding and alighting patterns. The analysis

was conducted at 267 subway stations in Seoul, South Korea,
which were within a 1 km radius from the central point of
each station, encompassing the entire influence zone within
Seoul. Figure 3 shows the locations of the subway stations.

This study used the concentration ratio of boarding
and alighting demands by time period as dependent vari-
ables to analyze the temporal variability of boarding and
alighting patterns by subway station. The time periods
were categorized into morning peak hours, nonpeak after-
noon hours, and evening peak hours. The morning and
evening peak hours covered 7:00 AM to 10:00 AM and
5:00 PM to 8:00 PM, respectively. The boarding and alight-
ing demands were calculated based on the number of users
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who boarded and alighted at each subway station during
their respective time periods. The concentration ratio of
boarding and alighting demands is defined as the propor-
tion of boarding and alighting demands during a specific
time period compared with the total demand. In addition,

variables, such as the total boarding and alighting demands
by the subway station, weekday concentration ratio, weekend
concentration ratio, and operational characteristics of the sub-
way system, including transfer routes, were calculated and
used as independent variables for correlation analysis with
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TABLE 11: Estimation results of the GWR model (BOPMR).

Variable Min 1st Qu Median 3rd Qu Max Global

Intercept 6.598517 22.5504 29.03194 35.4985 46.96715 27.2837
Area of business facilities −0.02232 0.003302 0.006481 0.009922 0.032487 0.0047
Number of households −1.79778 −0.63481 −0.49031 −0.35087 0.075294 −0.4741
Number of hospitals −0.02748 0.015701 0.038332 0.061451 0.460137 0.0463
Number of transfer lines −3.44601 0.437954 2.018026 3.439513 6.922237 2.024

−Number of observations: 267. −Adjusted R2: 0.7797.
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the concentration ratio of boarding and alighting demand by
time period.

4.3. Land Use and Catchment Area Attributes. The attributes
of the influence zone of each subway station were broadly
categorized into land use and sociodemographic attributes.
For land-use attributes, the analysis dataset was constructed
by aggregating the number and area of facilities by facility
type within the influence zone of the subway station, based
on point of interest (POI) data. Regarding sociodemographic
attributes, estimates of the sociodemographic attributes of
the influence zone were made based on data for the smallest
spatial unit (administrative district) where sociodemographic
attribute data were available, using the overlap ratio between
the influence zone and the area of each spatial unit as the

basis. When the entire influence zone of a subway station
was included within one spatial unit, the sociodemographic
attributes of the influence zone were estimated based on the
ratio of the area of the influence zone to that of the spatial
unit. When the influence zone of a subway station overlapped
with two or more spatial units, the sociodemographic attri-
butes of the influence zone were estimated based on the over-
lap ratio of each spatial unit. Figure 4 illustrates the method
for estimating the sociodemographic attributes of the influ-
ence zone, and Table 3 lists the final constructed independent
variables.

4.4. Review of Collected Data. Table 3 lists the independent
and dependent variables based on the data collected in this
study. The boarding and alighting patterns at the stations
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were collected based on the sociodemographic character-
istics and land-use attributes of the surrounding areas.
Table 4 lists the basic statistical analysis results for the
collected data.

5. Model Estimation Results

This study aimed to elucidate the heterogeneity of the factors
influencing boarding and alighting patterns based on the
locational characteristics of railway stations. The results of
a linear regression model that did not consider spatial het-
erogeneity were compared with those of a GWR model. Ini-
tially, the statistically significant variables were analyzed
using a linear regression model. Subsequently, the identified
variables were used to estimate the GWR model.

5.1. Linear Regression Model. The results of the linear regres-
sion analysis indicated that land use and socioeconomic indi-
cators within the vicinity of the station most significantly
influenced the peak boarding and alighting rates. Specifically,
a wider area of retail facilities and a higher number of hos-
pitals within the influence zone led to lower boarding rates
during the morning peak hours. In addition, higher boarding
rates during the morning peak hours were associated with
more households within the influence zone, whereas stations
with more transfer routes had lower boarding rates during
this time. Regarding the afternoon peak boarding rate, sta-
tions with larger office facility areas and more hospitals in the
influence zone had higher boarding rates. Moreover, higher
boarding rates during the afternoon peak were associated
with more households within the influence zone, and
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stations with more transfer routes had higher morning
boarding rates. Regarding the morning peak alighting rate,
stations with larger office facility areas and more compre-
hensive hospitals within the influence zone exhibited higher
alighting rates. In addition, lower morning alighting rates
were associated with more households within the influence
zone. Stations with a higher population of individuals in their
20 and 30s within the influence zone exhibited higher morn-
ing alighting rates. Finally, for the afternoon peak alighting
rate, stations with larger retail facility areas and more hospi-
tals in the influence zone had lower alighting rates. More-
over, higher alighting rates during afternoon peaks were
associated with more households within the influence zone.
Stations with more passengers alighting on weekends than
on weekdays showed higher alighting rates during the after-
noon peak. The estimation results for BOAMR are presented

in Table 5, for BOPMR in Table 6, for ALAMR in Table 7,
and for ALPMR in Table 8.

The analysis of factors influencing the boarding and
alighting concentration rates during AM peak and PM
peak hours revealed that the attributes affecting the peak-
hour travel demand concentration rates vary depending on
the time of day and boarding/alighting status. Furthermore,
it was observed that even when the variables affecting the
AM peak and PM peak boarding/alighting patterns are the
same, their directional impact is opposite. The estimation
results of the linear model presented in this study figure
out factors that are not considered in existing transportation
demand forecasting and optimal station scale estimation
procedures. Therefore, it is deemed that including these fac-
tors in the analysis process could enhance the accuracy and
reliability of the estimating and forecasting results.
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5.2. GWR Model. The same variables as in the linear regres-
sion model were used to estimate the GWR model. The
estimation results indicated that the GWR model exhibited
an overall better model fit than the linear regression model.

In particular, for the model analyzing the afternoon peak-
hour alighting concentration rate, the model fit significantly
improved when the GWR model was used compared with
the linear regression model. To ensure visual clarity in the
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FIGURE 12: BOPMR—NOLINE.

TABLE 12: Estimation results of the GWR model (ALAMR).

Variable Min 1st Qu Median 3rd Qu Max Global

Intercept 11.98035 22.83279 30.82313 38.78014 60.24013 32.1887
Area of business facilities −0.04742 0.000725 0.007168 0.013903 0.04432 0.0067
Number of households −9.4728 −1.44427 −0.77413 −0.20575 2.292747 −0.9777
Number of general hospitals −5.08556 0.614635 2.038598 4.183085 20.47491 2.77
Population of 20 and 30s −2.98885 −0.11203 0.473943 1.448976 12.26711 0.7079

−Number of observations: 267. −Adjusted R2: 0.7469.
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diagrams, railway stations where the respective variables had
a positive influence are marked in red, whereas those with a
negative influence are marked in blue. The comparison
results of goodness-of-fit between the linear regression
model and the GWR model are presented in Table 9.

5.2.1. BOAMR. The estimation results of the GWR model for
the morning peak hour boarding concentration rate revealed
that the magnitude and direction of the impact of the inde-
pendent variables on this rate varied significantly across rail-
way stations. Specifically, in terms of the commercial facility
area within the influence zone, certain railway stations in the
southeastern and northeastern regions of Seoul with larger
sales facility areas within the influence zone exhibited a sig-
nificant reduction in the morning peak-hour boarding

concentration rate compared with other stations Moreover,
for stations located in the northeastern region of Seoul, an
increase in the number of households within the influence
zone resulted in the opposite trend, reducing the morning
boarding concentration rate. For railway stations along the
western boundary of Seoul, an increase in the number of
hospitals within the influence zone resulted in a more sub-
stantial decrease in the morning peak-hour boarding con-
centration rate compared with those in other stations.
Furthermore, for railway stations located along the western
boundary of Seoul and the Gangnam area, stations with a
higher number of transfer routes experienced a more signifi-
cant decrease in the morning peak-hour concentration. The
model estimation results can be found in Table 10, and the
estimates for each station are presented in Figures 5–8.
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The analysis of spatial heterogeneity of factors influenc-
ing AM peak boarding concentration rate revealed that while
the magnitude of impact varied across factors, the direction-
ality of influence did not significantly differ based on station
location. This suggests that during the morning peak hours,
boarding primarily comprises commuters heading to work,
which is mandatory, hence the consistent directionality of
influence across stations. Moreover, it was observed that
most stations in the southeastern and central regions exhibited
distinct tendencies compared to other areas. In cases where
commercial area coverage was influenced, stations in the
southeastern region appeared to be more affected compared
to others, while for the influence of hospital density, stations in
the central region showed differing directionality compared to
stations in other areas. This differentiation is likely due to the
demographic structure and land use characteristics mentioned

earlier in the study area description, indicating distinctive fea-
tures of these regions compared to others.

5.2.2. BOPMR. The afternoon peak-hour alighting concen-
tration rate exhibited a relatively distinct pattern based on
the location of railway stations compared with the morning
peak-hour boarding concentration rate. Some stations in the
southeastern region showed an inverse relationship, where
an increase in the business facility area within the influence
zone reduced the afternoon peak-hour alighting concentra-
tion rate. In addition, stations along the western boundary of
Seoul demonstrated a trend in which an increase in the
number of households within the influence zone significantly
reduced the afternoon peak-hour alighting concentration
rate. Moreover, some stations in the downtown and north-
eastern regions of Seoul exhibited a contrasting trend
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compared with most stations, where an increase in the num-
ber of hospitals within the influence zone reduced the after-
noon peak-hour alighting concentration rate. Stations along
the western boundary exhibited a trend in which an increase
in the number of hospitals within the influence zone substan-
tially increased the afternoon peak-hour alighting concentra-
tion rate compared with those in other stations. Furthermore,
stations in downtown Seoul demonstrated a contrasting trend
with other stations, in which more transfer routes reduced the
afternoon peak-hour concentration rate. Stations around the
southeastern region of Seoul, forming a clock-like pattern,
exhibited a trend in which more transfer routes significantly
increased the afternoon peak-hour alighting concentration
rate. The model estimation results can be found in Table 11,

and the estimates for each station are presented in
Figures 9–12.

In the case of afternoon peak-hour boarding concentra-
tion, it was found that the directionality and magnitude of
factors influencing boarding concentration differed depend-
ing on the station location, compared to the morning peak-
hour boarding concentration. While the area of office facili-
ties generally exhibited relatively homogeneous influence
across station locations, the impact of factors such as the
number of hospitals within the catchment area and the num-
ber of transfer routes varied significantly based on station
location. Concerning the number of hospitals within the
catchment area, it was observed that the influence on several
stations located in the southwest of Seoul exhibited patterns
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markedly different from the influence on other stations, par-
ticularly those in the central and northeastern regions, show-
ing contrasting patterns compared to stations in other areas.
In Seoul, hospitals tend to be located in areas where a certain

level of floating population is secured, leading to the cluster-
ing of hospitals around stations. However, considering the
distinct patterns exhibited by stations in the mentioned
regions compared to others, it can be speculated that the
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TABLE 13: Estimation results of the GWR model (ALPMR).

Variable Min 1st Qu Median 3rd Qu Max Global

Intercept −26.4325 5.845377 13.39001 20.37492 47.38807 13.3878
Area of sales facilities −0.33038 −0.05704 −0.02755 −0.01082 0.131516 −0.0309
Number of households −0.34061 0.186216 0.316496 0.448695 2.176658 0.3294
Number of hospitals −0.35329 −0.04516 −0.01152 0.007872 0.117845 −0.022
Concentration rate of alighting during
weekends

−0.75961 −0.00368 0.308296 0.572221 1.843474 0.3112

−Number of observations: 267. −Adjusted R2: 0.8716.
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criteria for hospital location might differ in these areas com-
pared to others.

5.2.3. ALAMR. The model estimation results revealed that
the influence of the business facility area within the impact
zone on the morning peak-hour alighting concentration rate
varied significantly depending on the railway station loca-
tion. In addition, some railway stations in the central part of
Seoul exhibited the opposite trend, in which more house-
holds within the influence zone increased the morning
peak-hour alighting concentration rate, in contrast to other
stations. Stations in the southeast and along the western
boundary demonstrated that more comprehensive hospitals
within the influence zone substantially increased the morn-
ing peak-hour alighting concentration rate. Furthermore,

stations in the southeastern region exhibited a trend in which
a higher concentration of young people within the influence
zone significantly increased the morning peak-hour alighting
concentration rate. Themodel estimation results can be found
in Table 12, and the estimates for each station are presented in
Figures 13–16.

The morning peak-hour alighting concentration also
revealed a wide range of influences in terms of magnitude
and directionality of various factors depending on the station
location. Most alighting during the morning peak hours is
related to commuting, and stations located in areas with a
relatively high proportion of residential areas tend to exhibit
negative effects due to the higher number of households within
the catchment area. Conversely, stations located in areas with a
low proportion of residential areas tend to show positive effects.
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Additionally, it was found that the morning alighting concen-
tration at stations in the southeastern region is significantly
influenced by the young population, particularly as this region
tends to have relatively more office facilities even within the
southeastern region. This suggests that the high proportion of
residential facilities for single households in this area may have
contributed to this influence.

5.2.4. ALPMR. A larger retail facility area reduced the after-
noon peak-hour concentration rate. However, some stations
exhibited the opposite pattern. Moreover, the influence of
the number of households and hospitals within the impact
zone generally exhibited homogeneous patterns; however, cer-
tain exhibited contrasting trends. In addition, stations in the
southeastern and downtown areas of Seoul demonstrated that
stations with higher weekend alighting ratios than weekdays
had lower afternoon peak-hour alighting concentration rates.

Themodel estimation results can be found in Table 13, and the
estimates for each station are presented in Figures 17–20.

The trips involving alighting during the afternoon peak
hours mostly occur for commuting purposes, so the propor-
tion of commercial facility area tends to have predominantly
negative effects, while the influence of household numbers
within the catchment area tends to have positive effects,
which aligns with common sense. However, in some sta-
tions where there is a positive correlation between the pro-
portion of retail facility area within the catchment area and
the afternoon alighting concentration, they are deemed to
be adjacent to major downtown areas within Seoul. More-
over, considering that stations with low weekend alighting
concentrations are generally located in areas with relatively
fewer recreational facilities, it is reasonable to conclude that
stations located in the outskirts of Seoul, especially in the
northern outskirts, are negatively influenced by weekend
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alighting concentrations. In this context, stations located in
the southeastern region, having relatively more recreational
facilities, exhibit a relatively greater impact of weekend
alighting concentrations on afternoon peak-hour alighting
concentrations compared to stations in other areas.

6. Conclusion

The expansion of metropolitan areas and the development
of megacities are prominent global urban planning directions.
Initially proposed as an alternative to balanced regional devel-
opment, a growing negative perception of this outlook has
emerged. One of the anticipated side effects of nurturing
megacities is increased investment and population concentra-
tion in major cities, which can further strain urban infrastruc-
ture. This may result in user inconvenience and potentially

lead to safety incidents. Developing additional urban railways
is necessary to address this problem. However, failing to
consider the temporal variations in boarding and alighting
patterns according to the location of railway stations in
estimating the optimal station size can lead to user incon-
venience and increased congestion. The factors influencing
the patterns of boarding and alighting showed regional dif-
ferences in broad terms, but within the same region, certain
stations exhibited distinct patterns compared to other sta-
tions within that region. Moreover, the concentration of
boarding and alighting at urban railway stations was
observed to vary in direction depending on the time of
day, even when influenced by the same variables.

Therefore, this study aimed to elucidate the influence of
railway station location and impact zone characteristics on
the temporal variability of boarding and alighting patterns in
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railway stations. This study focused on 276 urban railway
stations in Seoul, South Korea, and individually estimated
linear regression and GWR models to analyze the spatial
heterogeneity of these impacts. The results revealed that sta-
tions in the southeast, downtown, and western boundaries of
Seoul often exhibited different patterns compared with those
in other regions. This was attributed to the distinct charac-
teristics of each region.

These findings emphasized that even with similar attri-
butes of the surrounding potential railway station construction
sites, boarding, and alighting patternsmay differ depending on
the characteristics of travelers and travel patterns. Therefore,
incorporating this spatial heterogeneity due to railway station
location in estimating railway station size, training/station
operation plans, and other design/operation activities before

the actual construction is crucial. This should be done through
quantitative and qualitative analyses, considering the growth
process of the city and its identity.

There are various factors that affect the optimal scale of
urban railway stations. For example, urban railways opera-
tional attributes such as timetable, headway during peak and
nonpeak hours, land use attributes around urban railway sta-
tions, including the number and floor area of facilities by land
use type, and socioeconomic attributes of residents within the
catchment area or stations, such as age, gender, and income
level, can affect the optimal railway stations. This study
focused on peak and nonpeak boarding/alighting concentra-
tion rates among the various factors and designated them as
the dependent variables. In this context, this work examined
the temporal variability and spatial heterogeneity of the
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impact of several demographic and land use-related attributes
surrounding railway stations on-boarding/alighting concen-
tration rates. The findings of this study are expected to con-
tribute to estimating the optimal scale of railway stations.
Moreover, it is anticipated to collaborate with the expansion
of railway in South Korea, as a part of ongoing transport
policy such as “Achieving Commute Times in 30-min range,”
contributing to congestion alleviation and reduction in wait-
ing times.

However, as mentioned earlier, owing to limitations in
data collection, this study utilized only the demographic char-
acteristics, some land-use-related attributes of the surround-
ing areas, and some infrastructure-related characteristics as
independent variables. In this context, it seems that this study
has limitations in that it did not consider a wider range of
variables that could influence the boarding/alighting patterns
of urban railway stations. These limitations stem primarily
from the nature of the data primarily utilized in this study.
The public transportation SCD, which was central to this
study, is distributed after encrypting the personal information
of actual travelers due to personal information protection
issues. Therefore, it is not possible to consider the character-
istics of actual travelers at each station. Additionally, there
were many obstacles to obtaining more diverse and granular
land use data within the catchment area of the urban railway
that led to the exclusion of such data from the study, which
can be considered one of the limitations. In the future, if SCD
data, POI data, and similar datasets are more widely utilized
and issues such as encryption of personal information are
resolved, applying such data to the methodology presented
in this study could significantly enhance the explanatory
power of the model. If we could consider the characteristics
of actual travelers, we could analyze how the travel patterns
vary depending on the stations where actual travelers with
similar attributes board and alight. This analysis would be
highly beneficial for establishing appropriate station sizes.
Moreover, if we could classify land use around stations into
more detailed categories and build datasets containing attri-
butes of buildings and floor areas by land use type, we could
expect to observe more pronounced temporal variability and
spatial heterogeneity than the macroscopic research results
presented in this study.
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