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For managers of road infrastructure, culvert deterioration is a major concern since culvert failures can cause serious risks to the
traveling public. The efficiency of the cost- and labor-intensive culvert inspection and maintenance process can be improved by
properly identifying the key impact factors on culvert condition deterioration. Although the use of machine learning (ML)
techniques to predict culvert conditions has been proven to be a promising tool for enhancing culvert management and enabling
proactive scheduling of maintenance tasks, the information provided by the developed ML models has been given little attention
for further use and analysis. By utilizing the predictor importance results of an evaluated decision tree (DT) culvert condition
prediction model and the Mann–Whitney U test, this study provided insights to the identification of the key variables influencing
culvert deterioration. According to the findings, five impact factors, including culvert span, pH, age, rise, and cover height, often
have significant impact on the condition ratings of culverts made of various materials. In addition, such a statistical test-assisted
factor identification process offered a way of identifying and enhancing the input variable selection for predictive ML model
development.

1. Introduction

Water can flow beneath roads, railroads, and other infrastruc-
ture through culverts. Millions of culverts have been con-
structed beneath highways in the United States, in Ohio
alone, there are nearly 100,000 culverts installed [1, 2]. If cul-
verts are not properly managed and maintained, they might
obstruct the necessary and intended passage of storm water
runoff [3–5]. Thus, it is necessary to have culverts well man-
aged andmaintained. Driver’s safety as well as the environment
can both suffer significantly from culvert failures. Water can
overflow from a culvert that is blocked or broken, which can
then cause flooding or road failures and endanger neighboring
properties or pose risks to motorists [6], because water that
rushes onto a road can erode the subbase and pavement; lead-
ing to sinkholes, potholes, and other damage that can be expen-
sive to fix. Thus, effective culvert management is critical for
ensuring the safety and integrity of these structures [7].

As part of current culvert management procedures, state
departments of transportation (DOTs) dispatch trained peo-
ple to inspect the culverts according to a predetermined
schedule. Given the enormous number of culverts that must
be maintained, this operation frequently takes a lot of time
and effort. By facilitating improved predictive maintenance,
anomaly detection, and decision-making, machine learning
(ML) has emerged as a promising technique for enhancing
culvert management [8–12]. However, most existing studies
did not pay enough attention to the information provided by
the models other than the prediction results and the different
impact levels of the culverts’ physical and environmental fac-
tors on specific culvert damage or deterioration types.

This research examines the influencing factors of culvert
conditions through statistical test on the predictor impor-
tance results of an evaluated decision tree (DT) culvert con-
dition prediction model, because the predictor importance
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results alone only offer limited information for comprehend-
ing the complex interactions between various factors [13].

This study takes into account culverts composed of the
four most widely used materials: concrete, corrugated metal,
corrugated plastic, and vitrified clay. Additionally, four prev-
alent culvert deterioration types are chosen, including mate-
rial condition, culvert alignment, seams of joint, and scour,
which are represented by MC, CA, SOJ, and SC, respectively,
in the remainder of this paper. The Ohio Department of
Transportation’s (ODOT) Transportation Information Map-
ping System (TIMS) culvert inventory database was used to
collect the data for this study.

2. Literature Review

An extensive literature review was conducted to achieve the
research objectives of this study. The covered areas include:
(1) culvert inspection routine; (2) ML models for culvert
condition prediction; (3) culvert deterioration types and con-
dition impact factors; and (4) Mann–Whitney U test.

2.1. Fixed Time Interval Culvert Inspection Routine. Consid-
ering the large number of culverts installed, it often takes a
substantial amount of resources to conduct all necessary inspec-
tions. The current routine that is used for arranging culvert
inspections is often based on a fixed time period. The “Culvert
Inspection Manual” of the Federal Highway Administration
(FHWA) in the US mandates that culverts to be inspected every
2 years [14]. At the state level, state DOTs have also created
related manuals and guidelines to offer suggestions for how
frequently to conduct culvert inspections [15]. The National
Cooperative Highway Research Program (NCHRP) conducted
a survey on culvert-inspection policies and practices nationwide,
and the findings showed that there is no uniform inspection
cycle used by state transportation agencies; instead, many
states have developed their own standards for allocating time
for culvert inspections [16]. The main shortcoming of such
fixed-schedule inspection is that it lacks focus and neglects the
fact that culverts made of different materials may deteriorate at
different rates, resulting in overlook culverts in bad conditions
during two inspections.

The frequency of culvert inspections utilized by different
transportation authorities is given in Table 1.

2.2. ML Models for Culvert Condition Prediction. In earlier
studies, the application of ML approaches to forecast culvert
status had been effectively established. Three ML algorithms,
including artificial neural network (ANN), support vector

machine (SVM), and DT, were frequently employed. These
models were developed for many applications, such as culverts’
remaining service life estimation [9, 10, 17], predicting specific
culvert failure or deterioration types [8, 11, 12, 18–20], coupling
with digital image correlation (DIC) techniques to identify and
analyze structural defects [21, 22], and predicting the condition
of other types of transportation assets [23–26]. For model evalu-
ation, commonly used metrics are accuracy, recall, precision,
F-score, and receiver operating characteristic (ROC) curve for
classification. The results of existing studies usingML algorithms
to predict the condition of culverts and other infrastructure
proved the effectiveness and reliability of such applications.
However, there is a lack of further utilization of the information
provided by the ML models, for example, the predictor impor-
tance results, which were often mentioned but rarely analyzed.

2.3. Culvert Deterioration Types and Condition Impact
Factors. Culvert can deteriorate in multiple ways. The most
commonly seen ones include partly structural defects or fail-
ure, material aging, joint dislocate, and disalignment [27–30].
To represent the extent and specific types of culvert deterio-
ration, several DOTs have developed culvert rating systems.
For example, the ODOT rates culverts on a scale of 0–9, where
0 represents culvert’s total failure, and 9 represents culverts in
new or like-new conditions for 16 different culvert ratings as
shown in Table 2 [31].

This provided the basis for the output variable selection
of this study, including MC, CA, SOJ, and SC. Figure 1 pro-
vides images from previous studies as examples of the four
forms of culvert failure and deterioration [28–30].

In terms of impact factors, both the culverts’ physical and
environmental properties, such as its material, length, shape,
and pH level of the water inside it, are commonly used in
existing studies [8, 9, 32, 33]. The actual selection of these
factors is frequently constrained by the data availability situ-
ation. In the ODOT TIMS culvert database, most of the
commonly used culvert physical and environmental factors
are available, so based on combined consideration of existing
studies and data availability, 13 variables were used by the
authors to develop the DT model as well as to determine the
culvert condition impact factors.

2.4. Mann–Whitney U Test. Existing studies that used ML
models to forecast culvert conditions paid little attention to the
subsequent study of predictor importance outcomes, particularly
using statistical test procedures. Statistical analysis is a scientific
way to discover the insights or underlying pattern of data and
convert the data into a meaningful way. In this study, the
Mann–Whitney U test was selected for further statistical testing
and analysis of the predictor importance results. As an illustra-
tion, the Mann–Whitney U test, sometimes referred to as the
Wilcoxon rank sum test, examines differences between two
groups based on a single ordinal variable that lacks a defined
distribution [34, 35]. The Mann–Whitney U test is intended to
determine if two groups (e.g., samples “a” and “b”) come from
the same population, which is a null hypothesis significance test
stipulating that both samples are subsets from the same popula-
tion [36, 37]. For instance, although culvert age was identified to
be an important input variable for predicting culvert conditions

TABLE 1: Culvert inspection frequencies.

Factor considered Frequency

FWHA — Every 2 years
ODOT Span and condition 3-tiered
NYDOT Overall condition 3-tiered
MnDOT Span and overall condition 12–24 months
IDOT Span and overall condition Every 5 years
MDOT Overall condition Every 2 years or 4 years
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[1, 33, 38], this does not necessarily mean that culverts in differ-
ent conditions had significantly different age distributions.

3. Methodology

Figure 2 displays an overview of the study’s approach. In order to
provide background data for the examination of the most signif-
icant effect factors, the input variables’ predictor importance

results of the ML model were retrieved first. The significance
levels are then calculated by statistically testing the ML model’s
output variables along with impact factors. The results are then
examined, and commensurate deductions are made.

3.1. Overview of Used Data. The TIMS of the ODOT pro-
vided the information used in this study. TIMS stores inven-
tories of transportation assets, road data, traffic counts,

Joint
separation 

Abrasion Misalignment

Erosion

FIGURE 1: Pictures of culvert failures and deteriorations.

TABLE 2: Definitions of culvert ratings in Ohio.

Name of rating Definition

Material condition rating Rates the general material condition of the structure, like deterioration to barrel material and crack
Culvert alignment rating Accounts for irregularities longitudinally to the barrel or imbalanced settlement of barrel segments

Shape rating
Accounts for barrel flattening, buckling, bulging, out-of-roundness, and other signs that the shape is
not equal to original design

Seams or joints rating Rates the extent of backfill infiltration and water exfiltration from open joint or seepage at the joints
Slab rating Slab top culverts only. Accounts for leakage, deterioration, and structural adequacy of the slab

Abutments rating
Slab top culverts only. Accounts for movement, material defects, and scour of the foundation of the
abutments

Headwall rating Accounts for scour or undermining around footings and at the inlet and outlet of the culvert
End structure rating Rates structural condition of catch basins, inlets, manholes, junction chambers or other end structures
Channel alignment rating Accounts for channel or flow shift caused by changes in the drainage channel
Channel protection rating Rates condition of any used channel protection structure
Waterway blockage rating Accounts for the amount of sediment builds up that blocks the waterway of the culvert
Scour rating Accounts for existence and size of scour holes
Pavement rating Rates the condition of the approach pavement
Guardrail rating Accounts for sag, rotation, or misalignment of the guardrail
Embankment Accounts for settlement, bulging or erosion of the approach embankment
General appraisal The lowest rating of the 15 others
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transportation construction projects, and environmental
data. The public can easily obtain TIMS data to help them
make better judgments [2]. Considering that a sizable num-
ber of values are missing in the original data, data preproces-
sing was performed, and 12,400 culverts were left to be used
in this work to create the culvert condition prediction mod-
els. Such amount of data are sufficient for the study, consid-
ering the data used in existing studies as well as the minimal
requirements for most ML algorithms [39].

3.2. ML Culvert Prediction Models. The highly unbalanced
data in the culvert inventory database were handled by the
ML prediction models using a DT method and the synthetic
minority over-sampling technique. Gao and Elzarka [8] went
into great depth about the creation of the models. Accuracy
and ROC curve were utilized to assess the performance of the
MLmodels, demonstrated that the developed DTmodels can
make dependable and comprehensive predictions about

culvert condition states. The models had satisfactory areas
under the curve of 0.8, with accuracy rates of more than 80%
for the training set and 75% for the testing set. Images of the
ROC curves are shown in Figure 3.

3.3. Influential Factor and Culvert Condition Selection. The
input and output variables employed in the DT model cre-
ated by Gao and Elzarka [8] were chosen for further investi-
gation in this research, as was previously stated. Thirteen
culvert physical and environmental features were chosen as
the input variables, as indicated in Table 3. These 13 vari-
ables’ prediction importance values from the DT model were
sorted in order to determine the most significant impactors
for culvert conditions. Four culvert condition-related ratings
were chosen for the output variables: MC, CA, SOJ, and SC.

3.4. Statistical Test for Culvert Condition Factors’ Correlation
and Their Impact. The most influential elements were statisti-
cally assessed alongside the culvert conditions because the

Decision tree culvert condition
prediction model 

Decision tree culvert condition
prediction model 

Predictor importance results (input
variables) 

Determining most influential
impact factors  

Culvert deterioration types (output
variables) 

Significance level test

Analysis of impact factors influence on 
specific culvert deterioration types  

FIGURE 2: Flowchart of the methodology used.
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FIGURE 3: ROC curves of the developed ML models. In ROC curves, classifiers that give curves closer to the top-left corner indicate better
performance. The red line is the baseline, which represents a random classifier that is expected to give points lying along the diagonal. The
blue line represents the performance of the developed classifier.
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predictor importance results alone only offer a limited amount
of information to suit the objective of studying the impact
factors of culvert conditions. The Mann–Whitney U test is
employed in this study with a significance threshold of 0.01
to reduce Type I error, which leads to the rejection of a null
hypothesis that is in fact true [40]. This signifies that the test’s
H0 will be approved if the p value returned by the test is more
than 0.01, and it will be refused otherwise. In this study, the H0

is that the distributions of culverts in various condition states
for the tested variable are the same. So, if the p value is less than
or equal to 0.01, it means culverts in the two condition states
have different distributions for the tested variable.

At last, detailed observations and analysis of the statisti-
cal test results were carried out primarily for three purposes:
(1) understanding which physical or environmental charac-
teristics (factors) have more significant influence on culvert
conditions; (2) determining whether culverts in different
conditions have significantly different distributions in these
variables; and (3) determining which culvert conditions
impact each identified factor the most.

4. Results

According to Louppe et al. [41], the predictor importance results
from the ML models show how crucial each variable is for
classifying the input data into various groups for the output
variable. In order to determine the impact factors that have a
significant impact on culvert conditions, the predictor impor-
tance results generated by the createdMLmodels are compared
and assessed in this section. Figures 4–7 show the outcomes of
the suggested research’s prediction of predictor importance.

In these figures, the X-axis shows the input variables used in
the ML model’s development process, while the Y-axis uses a
number between 0 and 1 to represent the importance of each
variable from the least important to the most important, respec-
tively. The four lines in each figure are the predictor importance
results obtained in this study for the selected ratings.

For concrete culverts, the five most important variables
are culvert span, pH, cover height, age, and rise, with average
importance values of 0.24, 0.19, 0.15, 0.13, and 0.1,
respectively.
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FIGURE 4: Predictor importance of comparison for concrete culverts.

TABLE 3: Definitions of input variables.

Variable name Definition

Age Age of the culvert
Number of cells The number of culvert cells
Broken back Whether the culvert has broken back
Culvert shape Shape of the culvert
Span Distance between inside faces of the culvert
Rise The maximum rise of the culvert
Slope The slope of the culvert
Length Length of the culvert
Closed system Whether the system is closed
Abrasive conditions The presence of granular material
pH The pH of the water in the culvert
ADT Average daily traffic counts
Cover height Height of cover above the culvert
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FIGURE 5: Predictor importance of corrugated metal culverts.
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FIGURE 6: Predictor importance of corrugated plastic culverts.
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FIGURE 7: Predictor importance of vitrified clay culverts.
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The five most important variables for corrugated metal
culverts are culvert age, span, rise, pH, and cover height, with
average importance values of 0.21, 0.14, 0.13, 0.12, and 0.10,
respectively.

For corrugated plastic culverts, the five most important
variables are culvert cover height, age, rise, length, and aver-
age daily traffic (ADT) with average importance values of
0.32, 0.18, 0.10, 0.08, and 0.08, respectively.

The five most important variables for vitrified clay cul-
verts are culvert cover height, slope, span, age, and ADT,
with average importance values of 0.22, 0.13, 0.13, 0.12,
and 0.11, respectively.

From the observationsmade from the presented figures, the
five variables with the highest averaged predictor importance
for culverts in different materials are summarized in Table 4.

It is found that condition ratings of culverts made from
different materials are often highly influenced by the same
five variables including span, pH, age, rise, and cover height.
So, these five variables are determined to be the most influ-
ential variables in this step.

Then, the Mann–Whitney U test is used to determine
whether the distributions of these variables are significantly

different among culverts in the four ratings. If a statistically
significant distributional difference is discovered for a certain
variable, it can be used to distinguish between different culvert
conditions. Table 5 displays the p values for the tests that
were run.

The information provided in Table 5 was analyzed from
two aspects as follows:

(1) From the culvert material aspect: (a) For concrete cul-
verts, culvert age, span, pH, and rise have significant
test results for all ratings; (b) for corrugated metal
culverts, culvert age and pH values have significant
test results for all ratings; (c) for corrugated plastic
culverts, only culvert age has significant test results
for all ratings; and (d) for vitrified clay culverts, only
pH value has significant test results for all ratings. This
indicates that the impact of the same variable on cul-
vert conditions can vary for different culvert materials.

(2) From the condition rating aspect, the test results for
the same variable can vary for different condition
ratings. For example, for concrete culverts, the test
results of culvert cover height are significant for MC

TABLE 4: Summary of variables with high predictor importance.

Culvert material Condition impact factors

Concrete Span pH Cover height Age Rise
Corrugated metal Age Span Rise pH Cover height
Corrugated plastic Cover height Age Rise Length ADT
Vitrified clay Cover height Slope Span Age ADT

TABLE 5: Summary of p Values from the Mann–Whitney U test.

Material Variable
Condition rating

MC CA SOJ SC

Concrete

Age 0.001 0.001 0.001 0.001
Span 0.001 0.001 0.001 0.001
Rise 0.001 0.001 0.001 0.001

Cover height 0.001 0.131 0.213 0.003
pH 0.001 0.001 0.001 0.001

Corrugated metal

Age 0.001 0.001 0.001 0.009
Span 0.007 0.885 0.001 0.002
Rise 0.085 0.99 0.002 0.001

Cover height 0.117 0.002 0.001 0.001
pH 0.001 0.001 0.001 0.001

Corrugated plastic

Age 0.001 0.001 0.001 0.001
Span 0.883 0.001 0.109 0.001
Rise 0.788 0.001 0.127 0.001

Cover height 0.072 0.37 0.001 0.001
pH 0.445 0.294 0.213 0.001

Vitrified clay

Age 0.75 0.245 0.249 0.597
Span 0.194 0.083 0.114 0.142
Rise 0.217 0.096 0.12 0.128

Cover height 0.006 0.043 0.822 0.001
pH 0.002 0.008 0.001 0.001
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and SC, but insignificant for CA and SOJ. This indi-
cates that the impact of the same variable on different
condition ratings can also vary.

5. Discussion

Based on testing results and the conducted analysis, the fol-
lowing discussions are made.

Different condition states of culverts result in statistically
distinct distributions in terms of the selected input variables
including culvert age, span, rise, cover height, and pH. This
suggests that there is room for improvement in the fix sched-
ule inspection criteria currently in use to a more sophisti-
cated multifactored inspection scheduling system.

The criteria for scheduling culvert inspections should
also take into consideration the age and pH of the culvert,
since they have significant test results for all four ratings of
culverts made from all materials, which indicates that they
both have a more general and substantial impact on the
condition of most culverts.

6. Conclusions

Understanding not only the extent to which culverts’ physi-
cal and environmental qualities have an impact, but also how
each attribute affects a culvert’s precise condition is made
much easier by the proposed approach of calculating and
assessing culvert condition impact factors. The findings
revealed that culverts composed of various materials had
statistically distinct distributions in both physical and envi-
ronmental features such as culvert age, span, and pH value.
For culverts made of the same material but in different con-
dition states, the case still stands. This mainly contributed to
the practical and the research sectors in two ways: (1) The
current culvert inspection routine that utilizes a fixed fre-
quency can be improved into a more sophisticated process
by taking more factors into consideration to reduce the
chance of missing the inspection of culverts in bad condi-
tions. This will contribute to more efficient culvert inspection
and management, and eventually contribute to travel safety
and (2) as using ML prediction models to assist the infra-
structure management process by predicting their conditions
continues to draw attention from researchers, this study
offered a way of identifying and enhancing the input variable
selection process. This will have a significant impact on
future studies as the input variable selection is crucially
important for the development of ML models, and the selec-
tions in existing studies are often varied.
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