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The burgeoning urbanization of major cities has precipitated a critical examination of deep foundation pit projects, with escalating
costs, protracted construction phases, complex site conditions, and specialized technical requirements. Selecting the optimal design
scheme from multiple alternatives in a multiattribute decision-making environment poses a significant challenge. This study
presents a novel model tailored for the design of deep foundation pits in design-build (DB) contracting projects. The model
combines multiattribute ideal point theory with the analytic hierarchy process to evaluate 22 key factors and their uncertainties. It
computes the deviations of potential design schemes from ideal benchmarks across all considered attributes. By employing the
lexicographic hierarchy aggregation operator, the model aggregates group-level deviations and linguistically weighted evaluations
to calculate a comprehensive score for each design scheme. This approach aids in identifying the most suitable design to meet the
deep foundation requirements of DB projects. The effectiveness of the model is demonstrated through its application in the
decision-making process for a commercial hotel’s deep foundation pit design scheme. The empirical findings affirm the model’s
ability to identify critical factors and accurately assess their impact on engineering design decisions in DB contracting projects.
Among the four evaluated designs, the continuous retaining wall scheme achieved the lowest group deviation score, marking it as
the preferred option. Consequently, this research offers a robust framework for making informed decisions in the design of deep
foundation pits within DB contracting projects, effectively handling the complexities of uncertain linguistic evaluations and the
collaboration of multiple attributes.

1. Introduction

The burgeoning urbanization of China’s major cities has
precipitated a critical examination of housing supply strate-
gies and has caused the densification of living spaces to
emerge as a pivotal element in contemporary urban planning
discourse [1]. This trend has necessitated the advancement of
deep foundation pit support engineering, a sector that has
burgeoned in response to the escalating demands of urban
infrastructure development. The inherent complexities of
these projects, characterized by substantial investment, intri-
cate designs, and formidable technical challenges, are com-
pounded by protracted construction timelines and a plethora
of operational uncertainties.

In the realm of execution, deep foundation pit support
endeavors are susceptible to a myriad of factors that can
precipitate systemic failures and catastrophic events, casting
a shadow over the safety and fiscal viability of such projects
[2]. The Chinese construction sector, marked by its compart-
mentalized professional structure and labor division, further
exacerbates these challenges through restricted coordination
and information exchange between the design and construc-
tion phases, thereby hindering effective communication and
collaboration. Against this backdrop, our study advocates for
the integration of the design-build (DB) contract model, a
paradigm that amalgamates design and construction respon-
sibilities within a single entity, thereby fostering a more agile
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and responsive approach to on-site construction challenges
and dynamic project landscapes.

Our inquiry delves into emblematic case studies to eluci-
date the synergistic interplay between design and construc-
tion efficacy in deep foundation pit projects under the
auspices of the DB contract model. This exploration endea-
vors to furnish a novel framework and methodology for the
adjudication of holistic, proficient, and cost-effective design
paradigms for deep foundation pit undertakings, thereby
propelling the urban deep foundation pit engineering indus-
try forward and enriching the corpus of knowledge and prac-
tical wisdom in this domain.

The crux of this article is the formulation of an optimal
decision-making paradigm for the design and supportmechan-
isms of deep foundation pit engineering within DB contract
ventures. This model synergizes the multiattribute decision-
making (MADM) theory predicated on positive ideal points
with the analytic hierarchy process (AHP), accommodating the
inherent uncertainties of the myriad factors influencing design
and support decisions. A compendium of 22 pivotal factors is
distilled, informing the decision-making process under the DB
framework. By pinpointing the positive ideal points for each
determinant, the model quantifies the divergence of potential
solutions from these ideals.

Subsequently, the lexicographic hierarchy aggregation
(LHA) operator is employed to synthesize group deviations
and weighted linguistic assessments for each design support
scenario, culminating in the ascertainment of the quintessen-
tial support strategy for the deep foundation pit project
under DB contractual governance. The main contributions
of this paper are twofold:

(1) The paper pioneers a decision-making model that
integrates positive ideal points with the AHP, tai-
lored to the design and support dynamics of deep
foundation pit engineering within DB contracts.
This model adeptly navigates the inherent uncertain-
ties in such projects, pinpointing the most advanta-
geous design support strategy.

(2) Our approach innovatively augments the uncertain
MADM methodology with an objective analysis
weight phase, which mitigates decision-maker biases.
This enhancement diversifies the repertoire of fuzzy
MADM techniques and paves the way for future
explorations into alternative uncertain multiattribute
linguistic aggregation operators.

2. Literature Review

2.1. Deep Foundation Support. The exploration of support
schemes for deep foundations is a significant research area in
geotechnical engineering. Advancements have been made in
understanding the intricate interactions between support
systems and the geomechanical behaviors of surrounding
rock masses. For instance, Zhang et al. [3, 4] employed geo-
logical mechanics model experiments, offering insights into
the collaborative load-bearing capacities of rock-support sys-
tems in deep-buried tunnels across challenging geological

settings. Their findings are pivotal for refining construction
methodologies and support design paradigms.

Rock mechanics has become a fundamental discipline for
ensuring the structural integrity of hydraulic engineering
projects. Significant works, such as those by Feng et al. [5],
have synthesized the contributions of rock mechanics in
advancing hydraulic engineering by assessing in-situ stress
profiles and designing deep excavation strategies. Ou et al.
[6] examined deformations in foundation support systems
near high embankment railways, proposing novel support
schemes to enhance stability during excavation. Further-
more, Zhang et al. [7] addressed squeezing deformations in
the Jinping deep-soft rock tunnel, integrating numerical
simulations and field observations to suggest supplemental
support strategies. Similarly, Gao et al. [8] presented innova-
tive approaches for modeling spatiotemporal rock damage
characteristics, which are crucial for optimizing support sys-
tems in tunnel environments.

Case studies like those of the Men Keqing coal mine by
Ma et al. [9] and the Shandong Anju coal mine by Zhang et al.
[10] serve as benchmarks, contributing to the development of
effective excavation and support strategies under diverse geo-
logical conditions. Additionally, studies on foundation pile-
anchor systems and the behavior of deep soft rock, such as
those conducted by Li et al. [11] and Xuyang et al. [12], have
provided valuable preventive strategies and insights into sup-
port design for urban construction and mining applications.

These studies have contributed to advancing the under-
standing of support schemes for deep foundations, addres-
sing challenges in various geological settings. However, there
are still limitations and areas for further improvement. Some
potential disadvantages or limitations include the complexity
of geological conditions, the accuracy of numerical simula-
tions and modeling techniques, and the need for more com-
prehensive field data and case studies. Continuous research
and collaboration between academia and industry are neces-
sary to overcome these challenges and develop more robust
and efficient support systems for deep foundations.

2.2. Uncertainty in Multiattribute Theory. Decision-making
within complex engineering projects like deep foundation
pits necessitates navigating a labyrinth of variables replete
with uncertainties. The crux of MADM is the simplification
of these intricate variables into decipherable metrics, allow-
ing for guided selections among various options. In the realm
of MADM, innovative strides have been made, particularly
in augmenting the robustness of decision-making under
uncertain conditions.

Zhang et al. [13] enriched the corpus of MADM by inte-
grating evidence theory with J-divergence in a fuzzy group
setting, thereby enhancing model adaptability in diverse
decision landscapes. Additionally, handling the uncertainties
prevalent in investment decisions, Liu et al. [14] introduced a
hesitation fuzzy method aligned with regret theory to address
stakeholder-bounded rationality and decision complexities
faced by risk-averse investors.

Attribute weighting and manipulation, a focal research
consideration, have seen distinctive advancements. Darko
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and Liang [15] refined weights using the best–worst method,
while others like Ji et al. [16] and Jin et al. [17] employed uncer-
tainty and robust optimization theories, respectively, to tailor
strategic weight adjustments, considering cost uncertainties. Fur-
ther advancing weights management under uncertainty, Garg
et al. [18] presented interval-valued picture uncertain linguistic
sets to tackle the gradations of indecision in attributes.

Moreover, to confront the challenges of complex decision
matrices, Liu and Zhang [19] brought forth the MABAC
method, using borderline approximation area comparisons
for nuanced differentiation between options. Huang et al.
[20] enhanced MAGDM via triangular fuzzy numbers, and
Su et al. [21] integrated prospect theory into their evaluation
model, emphasizing the management of probabilistic and
uncertain linguistic assessments.

Conclusively, the diversification of clustering methods to
categorize uncertain data, exemplified by Uddin et al. [22]
applying rough set and information theories and Wen [23]
utilizing weighted hesitant fuzzy soft sets in group contexts,
underscores the progress in aggregating disparate decision
agents to forge communal resolutions.

This body of research reaffirms the exponential growth of
MADM methods in addressing the omnipresent uncertain-
ties in robust engineering projects like deep foundation pits,
with key implications for improving decision confidence and
project outcomes.

2.3. AHP. AHP continues to play a vital role in resolving the
multifaceted challenges encountered in construction man-
agement, offering an established path to assess conflicting crite-
ria inMADM scenarios. Its application, spanning over a decade,
has beenmeticulously examined byDarko et al. [24], uncovering
prevalent application areas like riskmanagement and sustainable
construction. The evolution of AHP is marked by Chan et al.’s
[25] compelling introduction of D-AHP, which enriches AHP’s
traditional model with D numbers, enhancing the reliability of
weight derivations and alternative rankings in multiple criteria
decision-making (MCDM) processes.

Focusing on the efficacy of information credibility, Deng
and Deng [26] further illuminate the impact of D-AHP on
MCDM outcomes, asserting the criticality of trustworthy
data. Simplification and methodological refinement in AHP
are also noteworthy, as evidenced by Leal’s [27] streamlined
approach that scales down the number of comparative judg-
ments required, thereby expediting the prioritization process.
Liu et al. [28], on the other hand, underscore the burgeoning
research on the employment of fuzzy comparison matrices
within AHP while signaling a need for a comprehensive dis-
course on the relative merits of such approaches.

Breaking new ground, Kutlu Gündoğdu and Kahraman
[29] explore the territory of generalized fuzzy set theory,
extending it to spherical fuzzy sets and adapting the AHP
framework into spherical fuzzy AHP. This innovative expan-
sion demonstrates its success in applied scenarios like renew-
able energy location selection, showcasing its potential
against other fuzzy methodologies like neutrosophic AHP.

In summary, AHP’s invaluable contribution to weight
determination in the uncertain domain of deep foundation

pit design scheme decision-making remains unrivaled. Its
systematic approach to deconstructing and evaluating mul-
tiple objectives addresses the subjective nuances and fuzzi-
ness inherent in judgment, thereby underpinning a sound
and transparent decision-making framework.

2.4. Decision Application of Deep Foundation Support
Schemes. The arena of deep foundation support schemes
has witnessed a surge in research, covering crucial areas
such as design theory, construction management, and tech-
nological breakthroughs. Distilling substantial contributions
from a wide array of studies reveals a multifaceted approach
toward tackling the overarching challenges in this field.

A strand of research has concentrated on decision-making
tools that employ fuzzy logic to refine choice selection in devel-
opment scenarios. Król-Korczak and Brzychczy [30] introduced
the fuzzy system decision rule to navigate postexploitation
phases of open gravel and sand aggregate mines, significantly
augmenting decision-making accuracy in such contexts.

Another focus has been on the predictive analysis of
deformations in support structures. Gao et al. [31] utilized
monitoring data to profile deformation characteristics in
foundation pit excavations and circular walls, thereby shed-
ding light on underlying support structure deformation pat-
terns. This aligns with the work of Sun et al. [32], who
provided a comprehensive model for the establishment pro-
cess, emphasizing the importance of recognizing building
and support structure deformations. Tackling a similar chal-
lenge from a geological perspective, Lei and Gong [33] tai-
lored the mobilizable strength design theory specific to
Jinan’s geological features, while Zhao et al. [34] offered
nuanced insights into the varied, complex deep foundation
pits excavated in distinct sections, contributing toward a
repository of knowledge for similar engineering endeavors.

Explorations on optimizing deep foundation pit support
schemes have been pivotal as well. Liu et al. [35] devised a novel
method based on fuzzy logic and gray relational analysis, tar-
geting the enhancement of support scheme selection. Chen
et al. [36] adopted an improved AHP tailored for railway sta-
tion foundation pits, facilitating practical decision-making in
support type selection. On a technological front, Ding [37]
introduced a deformation detection model grounded in neural
networks and wireless communication, pushing the envelope
of real-time monitoring of high-rise building foundation pit
support structures. Complementing these advances, Yang
et al. [38], by leveraging finite element analysis and on-site
monitoring data, offered a thorough examination of deforma-
tion patterns in large deep foundation pits located in soft soil
regions, laying a solid groundwork for subsequent designs.

Collectively, these scholarly endeavors serve not only to
expand the decision-making corpus in the realm of deep
foundation pit support schemes but also to impart empirical
wisdom and forward-thinking strategies to the construction
industry at large.

2.5. Research Gaps. Based on a comprehensive review of inter-
national research in the field of deep foundation pit design
schemes, the following research gaps can be identified:
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(1) In the field of deep foundation pit design schemes, there
is limited integration of decision-making research.

(2) Most researchers primarily analyze deep foundation
pit design schemes from the perspective of real estate
or construction companies, with limited exploration
of decision applications under the DB contract mode.

(3) Early research in deep foundation pit design relied
heavily on environmental and soil condition factors,
using the AHP for decision-making and factor selec-
tion. However, the AHP method is now considered
insufficient to meet the complex and evolving deci-
sion requirements.

(4) Achieving a balance between safety and cost-
effectiveness in design schemes remains a significant
challenge, leading to limited precision in decision-
making.

In summary, based on the above research gaps, the article
proposes an optimal decision model for deep foundation pit
design schemes in DB contracting projects based on the ideal
point multiattribute decision theory and the AHP. This
model accurately addresses the evaluation of linguistic
uncertainty and the decision-making problem of multiple
schemes in a collaborative environment of multiple attribute
factors. It provides an effective approach for decision-
making regarding deep foundation pit design schemes in
DB contracting projects.

The rest of the paper is organized as follows: Section 3
introduces the proposed decision model. Section 4 outlines
the experimental results of the proposed method. Section 5
provides a comprehensive exploration of the deep founda-
tion pit design decision model through parameter sensitivity
analysis. The model’s innovativeness is validated through a
case study, and a thorough discussion on its limitations is
presented. Finally, Section 6 presents the conclusion of
this work.

3. Methodology

3.1. Determination of Decision Model Algorithm. In the pro-
cess of selecting a solution, the evaluation of deep excavation
support is complex and cannot be approached from a singu-
lar perspective. It necessitates a comprehensive consideration
of multiple characteristics in proposed solutions. This drives
deeper requirements for the decision model, demanding the
integration of evaluations for various characteristics to form
a quantifiable value, facilitating intuitive comparisons. In
different scenarios, decision-makers may not entirely focus
on the same aspects. Some situations prioritize attribute
weights, while others emphasize relationships between attri-
butes. Considering different forms of attribute values, such as
real numbers, interval numbers, intuitionistic fuzzy num-
bers, or even natural language, diverse integration methods
are needed to accommodate these distinct forms. Therefore,
achieving the selection of the optimal solution for deep exca-
vation support requires ranking various design solutions
using specific algorithms. Key steps in the decision process
involving fuzzy information [39] include the following:

Data Collection: This involves two types of data: attribute
weights and attribute values. Attribute weights come in three
scenarios: known, partially determined, and unknown. Attri-
bute values are categorized into linguistic, interval, and real
number types. Construct a decision matrix and normalize it,
obtaining the matrix as shown in Formula (1).

Rk rij hð ÞÀ Áen×em : ð1Þ

The formula represents a decision matrix of size ñ × m̃,
where rijðhÞ is the value of the element in the ith row and jth
column of the decision matrix under the hth attribute.

Compute Comprehensive Attribute Values: In MADM, it
is essential to consider the interaction of complex variables
and uncertain factors, emphasizing the degree of importance
in describing the objectives to ensure accurate assessment
reports. Due to differences and varying importance among
factors, estimating the relative importance of factors is neces-
sary, constructing a weighted combination. Weights serve as
indicators of the system’s goal aspects, reflecting the subjec-
tive and objective aspects of the environmental physical char-
acteristics. Attribute weights are calculated using the AHP.

Various operators are then employed to integrate and
compute different types of attribute values, resulting in com-
prehensive attribute values. Typical methods for calculating
comprehensive attribute values include the ordered weighted
averaging (OWA) operator, weighted average aggregation
operator, weighted geometric average aggregation (WGA)
operator, and LHA operator.

Among these, the LHA operator, by constructing positive
and negative ideal points and considering the relative rela-
tionships between schemes, enhances the rationality of the
scheme ranking results and strengthens the stability and reli-
ability of the computed results. Therefore, this study adopts
the LHA operator. By calculating the distance between posi-
tive and negative ideal points and normalizing it, more accu-
rate comprehensive attribute values are obtained, providing a
reliable basis for subsequent scheme ranking. The LHA oper-
ator excels in handling the uncertainty of attribute values and
is widely applied in decision-making for deep excavation
design schemes, which is considered an ideal tool.

Utilize Comprehensive Attribute Values to Prioritize and
Rank Various Schemes: In the design-construction general
contracting mode, where numerous uncertain and complex
influencing factors exist in deep excavation design schemes,
this study comprehensively considers the characteristics of
decision indicators. It constructs decision models and frame-
works to enable rapid, comprehensive ranking, and selection
of optimal design schemes when decision-makers possess a
thorough understanding of various decision indicators.

By combining the subjective weighting method with the
objective AHP to determine decision factors and weights,
and establishing an evaluation model based on the uncertain
MADM theory, positive ideal points, and the LHA operator,
quantitative analysis of deep excavation design schemes can
be effectively carried out. This approach aims to achieve the
optimization of decision-making in selecting schemes.
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3.2. Relevant Definitions of the Decision Model

Definition 1. Let n denote the number of judgment criteria.
The judgment matrix C is defined as follows:

C ¼

C11 C12 … C1n

C21 C22 … C2n

⋮ ⋮ ⋱ ⋮
Cn1 Cn2 … Cnn

2
66664

3
77775: ð2Þ

This is an n× n square matrix, where the element Cij
represents the importance of the ith criterion relative to the
jth criterion. To compare the relative importance of criteria,
experts conduct pairwise comparisons for each criterion and
provide scores indicating their relative importance. The ele-
ments Cij and Cji of the judgment matrix C are related and
satisfy the following conditions [40]:

(1) Nonnegativity: Cij ≥ 0, indicating that the values of
relative importance are nonnegative.

(2) Consistency: If Cij represents the importance value of
the ith criterion relative to the jth criterion as imp,
then Cji represents the importance of the jth criterion
relative to the ith criterion as 1=imp. This ensures
bidirectional comparison and considers directional-
ity. By constructing the judgment matrix C, experts
can provide a quantitative assessment of the relative
importance between criteria. These assessments can
be used for decision-making and problem analysis,
providing a reference for decision-makers.

Definition 2. Given a judgment matrix C, let ξmax be the
maximum eigenvalue of the matrix C. For each criterion,
define the weight vector β¼ðβ1; β2;…; βnÞ :, where βi repre-
sents the weight of the ith criterion. Then, the relative
weights can be expressed as follows [40]:

Dβ ¼ ξmax × β: ð3Þ

This implies that bymultiplying the maximum eigenvalue
of the judgment matrix with the weight vector, a vector Dβ is
obtained. This vector represents the relative weights of impor-
tance among the criteria.

Definition 3. The consistency ratio (CR) of a judgment
matrix is the ratio obtained by dividing the consistency index
(CI) by the random index (RI) [40] as follows:

CR ¼ CI
RI

: ð4Þ

Here,

CI¼ λmax − n
n − 1

: ð5Þ

Subsequently, one can refer to the RI table based on the
matrix dimension to find the corresponding RI. The numer-
ical value of CR indicates the degree of consistency in the
judgment matrix. Generally, if CR is less than or equal to 0.1,
the consistency of the judgment matrix is considered accept-
able; otherwise, further adjustments or corrections are
needed. Assuming the RI for a dimension of 9 is provided
in Table 1. If CI is equal to 0 or CR is less than or equal to 0.1,
it can be concluded that the consistency analysis of the judg-
ment matrix is acceptable.

Definition 4. Let the set of deep excavation support schemes
be denoted as X¼fx1; x2;…; xig:;  i2N, where xi represents
one scheme in the set of deep excavation support schemes. If
there exists 9xi 2X such that the scheme satisfies the evalu-
ation criterion “meets safety requirements while achieving
optimal economy,” then xi is referred to as the optimal solu-
tion, denoted as OptðxiÞ :.

Definition 5. Let S̄¼ ½s̄0; s̄1;…; s̄10� : ¼ {extremely poor, very
poor, relatively poor, slightly poor, moderate, slightly good,
relatively good, good, very good, extremely good} be the
fuzzy evaluation standard vector for the questionnaire, and
let S¼ ½s0; s1;…; s10� : ¼ {−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5} be
a vector with elements symmetrically arranged around zero.
For computational convenience, this paper designs a map-
ping function f : S̄ → S, such that for every 8s̄i 2 S, it satisfies
f ðs̄iÞ : ¼ si.

Definition 6. Let the set of decision attribute weights be
denoted as AW¼faw1; aw2;…; awnag:, where 8awj 2AW,
j2f1; 2;…; nag:, and awj represents one attribute weight in
the set of decision attributes for deep excavation support
schemes. Attribute weights signify the relative importance

TABLE 1: Judgment matrix consistency evaluation [40].

n RI

1 0
2 0
3 0.52
4 0.89
5 1.12
6 1.26
7 1.36
8 1.41
9 1.46
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of each attribute in the decision-making process. The values
of attribute weights range from 0 to 1, and they satisfy the
condition that the sum of attribute weights equals 1, i.e.,
∑na

j¼1awj ¼ 1. This set definition ensures the normativity of
attribute weights and consistency in the sum of weights,
facilitating the accurate consideration of the importance of
each attribute in the decision process for deep excavation
support schemes.

Definition 7. Let the set of decision-maker weights be
denoted as DW¼fdw1; dw2;…; dwndg:, where 8dwj 2DW,
j2f1; 2;…; ndg :, and dwj represents one decision-maker
weight in the set of decision-makers for deep excavation
support schemes. Decision-maker weights signify the relative
importance of each decision-maker in the decision-making
process. The values of decision-maker weights range from 0
to 1, and they satisfy the condition that the sum of weights
equals 1, i.e., ∑nd

j¼1dwj ¼ 1. This set definition ensures the
normativity of decision-maker weights and consistency in
the sum of weights, facilitating the accurate consideration
of the importance of each decision-maker in the decision
process for deep excavation support schemes.

Definition 8. LHA operator weights are denoted as the weight
proportion of deviation for each decision-maker. Let LW be
the set of LHA operator weights. The number of decision-
makers is j, and the upper limit for decision-maker partici-
pation is nl. The calculation formula for LHA operator
weights is as follows [41]:

LHA¼ Distance toNIS
Distance to PIS þ Distance toNIS

: ð6Þ

Here, the concepts are explained as follows:

(1) Negative ideal solution (NIS): The NIS refers to the
solution in multiobjective decision-making where,
for each target indicator, a smaller value is desired.
The NIS is the solution where, considering all target
indicators, each indicator takes its maximum value.

(2) Positive ideal solution (PIS): The PIS refers to the
solution in multiobjective decision-making where,
for each target indicator, a larger value is desired.
The PIS is the solution where, considering all target
indicators, each indicator takes its minimum value.

(3) Distance to NIS: Represents the distance from a solu-
tion to the NIS, i.e., the difference between the solu-
tion and the NIS on each target indicator.

(4) Distance to PIS: Represents the distance from a solu-
tion to the PIS, i.e., the difference between the solu-
tion and the PIS on each target indicator.

According to the literature [41], the set of LHA operator
weights is denoted as LW¼flw1; lw2;…; lwnlg:, where j can
be any positive integer, and it satisfies ∑nl

j¼1lwj ¼ 1.

Definition 9. Let R¼ðrijÞm̃×ñ be the fuzzy evaluation decision
matrix, and there must be a positive ideal point of the scheme
in the matrix, denoted as xþ ¼ ðr1þ; r2þ;…; rm̃þÞ :, represent-
ing the optimal evaluation of the influencing factors obtained
from the fuzzy evaluation decision matrix R. This has special
significance in decision evaluation because, based on the
positive ideal point, the optimal values of the influencing
factors can be inferred and speculated as the optimal solution
for all attribute schemes. Each element riþ of the new vector
corresponds to the value of the ith decision attribute in the
positive ideal point of the original decision matrix. The posi-
tive ideal point generated by the fuzzy evaluation decision
matrix will also naturally have fuzzy evaluation; that is, there
are fuzzy lower and upper limits, denoted as follows:

ν¼ riþL; rjþU
Â Ã

: ð7Þ

Here, riþL ¼maxi frijþLg: and rjþU ¼maxj frijþUg:, riþL,
and rjþU represent the lower and upper bounds of this posi-
tive ideal point, respectively.

Definition 10. To verify the extent of the deviation between
the actual decision variables and the positive ideal point of
the scheme, calculate the actual deviation of uncertain lin-
guistic variables. Let μ¼ ½sa; sb� : and υ¼ ½sc; sd� : be two fuzzy
evaluation variables, where c≥ a, d≥ b, ða; b; c; dÞ: 2 ½0; 10� :

and are integers. Define the deviation function as follows:

D μ; υð Þ ¼1
2 sc−a ⊕ sd−bð Þ: ð8Þ

Here, ⊕ denotes the deviation calculation between fuzzy
sets. This definition is used to quantify the differences
between two fuzzy evaluation variables on a given decision
attribute.

Definition 11. In order to manifest the collective deviation of
the entire decision-making group in this decision, the devia-
tions of each decision-maker’s influencing factors are,
respectively, aggregated with their corresponding attribute
weights. This aggregation is defined as the group deviation
Dðxþ; xlÞ : as follows [41]:

D xþ; xlð Þ ¼ aω1D μ; υð Þ 1ð Þ ⊕ aω2D μ; υð Þ 2ð Þ ⊕…

⊕ aωjD μ; υð Þ jð Þ:
ð9Þ

This enhancement incorporates the weight and deviation
of each decision-maker for each influencing factor into con-
sideration, providing a more comprehensive reflection of the
collective impact of the entire group on the scheme.

Definition 12. The decision model for deep excavation design

under the DB mode is represented as DP½LHAAW;DWðν̃ðkÞi Þ� :.
In this model, LHAAW;DW denotes the uncertain evaluation
value of the scheme by decision-makers based on the attri-
bute weight vector aω using the LHA function. The term

Dðxþ; xðkÞl Þ : signifies the group deviation between the scheme
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xi and its positive ideal point, and ν̃ðkÞi represents a set of
weighted linguistic variables in the form of [41]

tdw1Dxþ; x
1ð Þ
l ; tdw2Dxþ; x

2ð Þ
l ;…; tdwkDxþ; x

kð Þ
l

� �
;

ð10Þ

for the kth group, where k2N . The balancing factor t for
linguistic variables is equal to the number of decision-
makers. Each decision-maker needs to assign a fuzzy linguis-
tic variable for each attribute or criterion for use in the fuzzy
MADMmodel. The one-to-one correspondence between the
number of decision-makers and linguistic variables ensures
that each attribute is appropriately considered. In the process
of weight allocation and fuzzy resolution, each attribute has
corresponding parameters, ensuring proper weight and fuzzy
processing for each attribute or criterion, facilitating fuzzy
MADM. This balance contributes to improving the accuracy
of the model, aligning the final decision more closely with the
preferences and goals of decision-makers. Therefore [41],

LHAAW;DW eνi kð ÞÀ Á¼ lw1eν1 1ð Þ ⊕ lw2eν2 2ð Þ ⊕…⊕ lwpeνi kð Þ:

ð11Þ

This calculation is performed sequentially to compute the
decision model for deep foundation pit design under the DB
mode, The decision model is denoted as DP½LHAAW;DWðν̃ðkÞi Þ� :,
where DP stands for DB mode, LH stands for linguistic hesitant
(LH) method, AAW;DW represents the attribute weights based on
the AHP and the analytic hierarchy gray relational analysis, and
ðν̃iðkÞÞ : denotes the weighted linguistic variable of the ith attribute
of the kth scheme.

This method advances the field by introducing a multi-
attribute ideal point theory. Specifically, the method inte-
grates disparate decision-making processes into a singular,
coherent framework, effectively bridging the gap in inte-
grated decision-making research.

3.3. Decision Model Factors. For delineating the factors influ-
encing decision-making, the primary step involves a meticu-
lous analysis and consolidation of the characteristics
inherent in deep foundation pit projects. Cui [42] has already
conducted a detailed analysis and identification of the influ-
encing factors concerning the design schemes for supporting
deep foundation pits. This analysis encompasses various
aspects, including project owner requirements, contractor
conditions, technical specifications, project attributes, and
local policy conditions. A discernible pattern emerges, indi-
cating that within the traditional contracting model, design
schemes are exclusively developed by design units. Despite
potential input from contracting companies, design enter-
prises often fall short in fully incorporating considerations
for the contractor’s experience, construction capabilities,
equipment advantages, funds, and management capabilities.
Moreover, they may neglect predictions regarding on-site
environmental conditions, resident impacts, climate, and

hydrological changes. Notably, they are unlikely to address
the financial considerations of the contractor’s construction
project. Consequently, design decisions under this model
struggle to achieve a harmonious balance between safety
and economic viability. In contrast, under the DB model,
the design scheme is orchestrated by the general contracting
enterprise, striving to circumvent issues arising from on-site
factors, thereby yielding superior project benefits.

Drawing insights from pertinent literature on deep foun-
dation pit support schemes and synthesizing the distinctive
features of engineering general contracting models impact-
ing the design of foundation pit projects, the factors influ-
encing decision-making can be systematically classified into
five primary categories: overall project factors, construction
unit factors, general contracting enterprise factors, project
factors, and environmental factors. Adopting the target
design method during the preliminary identification of spe-
cific influencing factors involves correlating and implement-
ing the goals of different project stages, including safety,
quality, duration, cost, and social impact, across every typical
structure of the project. This comprehensive analysis facil-
itates the identification of decision-making factors for deep
foundation pit design schemes [43].

Finally, by referencing the logic of cost compilation clas-
sification and aligning with attribute features, these factors
can be systematically grouped into five major categories:
overall project factors, construction unit factors, general con-
tracting enterprise factors, project factors, and environmen-
tal factors. Following a holistic examination of contradictions
arising in the design schemes of deep foundation pits in
special regions, consulting on specialized issues related to
large-scale deep foundation pit design schemes in the region,
conducting interviews with industry experts, relying on their
theoretical analysis and practical experience, and considering
the objective conditions of regional project implementation,
a total of 22 decision-making factors for deep foundation pit
support design schemes under the DB general contracting
model were identified [44], representing specific aspects, as
shown in Table 2.

3.4. Model Assumptions

Assumption 1. Decision Environment: The deep foundation
pit project has been determined to adopt the DB contracting
mode.

Assumption 2. Identifying Decision Attributes: Conducting a
literature review and engaging experts in the fields of design
research, construction technology, and relevant academic
scholars from universities, the selected schemes possess a cer-
tain level of authority. Assuming four common deep founda-
tion pit design schemes based on the DB model [2] are as
follows:

(1) x1—Gravity Retaining Wall Scheme: Suitable for
shallow foundation pits with favorable geological con-
ditions, utilizing a flexible structural system for sup-
port. Its characteristics include lower environmental
requirements, making it suitable for situations where
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a certain horizontal displacement and ground settle-
ment are permissible at the top of the pit.

(2) x2—Soil Nailing and Shotcrete Support Scheme: This
is a commonly used technique for foundation pit
support, offering advantages of speed and economy.
However, its drawback is the tendency for a certain
amount of horizontal displacement and ground set-
tlement. Therefore, it requires a larger peripheral
area at the top of the pit and strict control over pit
deformation.

(3) x3—Sheet Pile Support Scheme: This belongs to a
rigid support scheme applicable to deep and geologi-
cally complex foundation pit projects. While it comes
with higher costs, it excels in specific geological con-
ditions, such as the presence of a thick layer of circu-
lar gravel, where the prevention of fine sand and
rounded gravel being squeezed out of the support
piles is necessary.

(4) x4—Underground Diaphragm Wall Support Scheme:
Also a rigid support scheme suitable for deep and geo-
logically complex foundation pit projects. This scheme
has a higher reinforcement content and excellent sealing
performance and is suitable for applications demanding
superior soil retention and water-stopping effects. Addi-
tionally, it can be used as an exterior wall for permanent
underground structures.

Assumption 3. Determination of Decision-Maker’s Weight
Vector: Utilizing the uncertainty algorithm based on the posi-
tive ideal point and LHA operator, it is necessary to first
determine the relative weight vector of decision-makers. The
fairest approach is to assume equal weights for decision-
makers, i.e., the weight vector is (0.3333, 0.3333, 0.3333).

Therefore, according to the definition: dw1 ¼ 0:3333;  dw2 ¼
0:3333;  dw3 ¼ 0:3333.

Assumption 4. Professor Jäger, in his research on operators,
indicated that the interval of decision-maker weights required by
operators varies systematically based on the number of decision
participants and the deviation among decision-makers. The larger
the base number of decision-makers or the deviation in decision
opinions, the larger the maximum value of the weight interval
range. It is generally divided into three types: (0.3, 0.8), (0.2, 0.7),
and (0, 0.5). In this study, three industry experts, all holding senior
positions, are assumed to be decision-makers. Therefore, the
decision-maker weight interval chosen is (0, 0.5) [45].

3.5. Model Establishment. Based on the aforementioned model
assumptions, establish the set of options, attribute set, and
language term set (specific settings refer to Section 2.2). The
priority relationship among attributes is represented as
x1>x2>x3>…>xi. The decision model derivation and calcu-
lation steps are as follows:

Step 1: Calculate the weight vector of decision attributes;
select nd experts in deep foundation engineering
for investigation. Through the distribution of elec-
tronic questionnaires and utilizing the received valid
responses, construct the judgment matrix C based
on the Saaty 1–9 scale method. Organize the
decision attributes at various levels of the deep foun-
dation project design, then, using Formula (3), nor-
malize the matrix data at higher levels and calculate
the maximum eigenvalue and relative weights.
Apply Formula (4) to conduct a rationality analysis
of the relative weights of elements at the current

TABLE 2: Decision attributes for deep foundation pit support design schemes under the DB general contracting model.

Engineering
classification

Overall project
General contracting
enterprise factor

Environmental effect Project factors

μ1: Construction
coordination and

overlapping

μ5: Experience in similar
projects in contracted

enterprises

μ12: Influence of construction
on surrounding residents

μ17: Complexity of project
technology

μ2: Application of new
materials and technologies

μ6: Construction safety
capability of supporting

system

μ13: Influence of construction
on surrounding buildings

and underground equipment

μ18: Project design depth and
service requirements

μ3: Environmental safety
around the construction site

μ7: Main equipment
advantages of enterprises

μ14: Narrow space
μ19: Expected profit of

project

Key influencing
factors

μ4: Standardization of
economic and technical

indicators

μ8: Design capability of
contracting enterprises

μ15: Building density and
strength

μ20: Project scale

—

μ9: Construction technical
ability

μ16: Climatic and
hydrological conditions of

the project

μ21: Project duration
requirements

—

μ10: Enterprise governance
ability

—

μ22: Construction site
convenience conditions

—

μ11: Financial ability of
contracting enterprises

— —
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level and eliminate any unreasonable questionnaire
data.

Step 2: Establish the decision matrix; Request the deci-
sion group to provide solutions. Conduct nd valid
questionnaire surveys with renowned professors
and experts through electronic questionnaires,
constructing decision matrices R¼ðrijÞm̃×ñ for
each of the nd decision-makers.

Step 3: Identify the positive ideal point of the solutions.
Based on the decision-makers’ matrices, identify
the positive ideal point ν¼ ½riþL; rjþU � : for each
influencing factor of the solutions.

Step 4: Solving the deviation between the solution and
the positive ideal point, and aggregating based on
their corresponding attribute weights to obtain
group deviation: Utilizing Formula (9), perform
deviation aggregation on the deviation Dðμ; υÞ :

corresponding to the ith decision-maker, calcu-
lating the group deviation Dðxþ; xlÞ :, and then
determining the weighted linguistic variables for
each group ν̃i

ðkÞ;
Step 5: Develop the decision model for deep foundation

pit support schemes under the DB mode using
the LH method. The decision model is repre-
sented as DP   ½ LHAAW;DWðν̃iðkÞÞ� :. The LH
method relies on the calculated weighted linguis-
tic variables ν̃i

ðkÞ. Acquire the scheme set X¼
fx1; x2;…; xig :. Establish the scheme set and per-
form ranking and selection. Determine the group
with the lowest comprehensive score as the opti-
mal choice OptðxiÞ : in the decision-making pro-
cess for deep foundation pit design (refer to
Figure 1).

4. Results

4.1. Project Overview. X Investment Management Co., Ltd.,
plans to construct a commercial hotel project in X district, X

city. The project is planned with a total land area of 6,870
square meters, a total construction area of 36,190.2 square
meters, and a total building footprint area of 2,197.5 square
meters. The proposal includes the construction of a 19-story
hotel complex building with a height of 75.9m above ground,
featuring three basement levels. The site’s elevation is Æ0.00,
at 75.5m, and the surrounding environment is complex. The
northwest and southeast sides are close to the main street
with heavy traffic, and numerous pipelines surround the site.
On the northeast side, there is a neighboring food building,
while on the southwest side, there is a neighboring group
building. The anticipated excavation depth for the project’s
foundation pit is 14m, and the safety level of the foundation
pit is categorized as Level I. In accordance with engineering
requirements and design specifications, four deep foundation
pit design schemes have been formulated, namely gravity
retaining wall scheme (x1), soil nailing and shotcrete support
scheme (x2), sheet pile support scheme (x3), and under-
ground diaphragm wall support scheme (x4).

The objective of the study is to utilize a scientific multi-
attribute decision model to screen and identify the most
superior solution among these various deep foundation pit
design schemes under specific engineering conditions. This
aims to comprehensively consider the requirements of engi-
neering safety and economic feasibility.

4.2. Decision Model Calculation

Step 1: Calculate the weight vector of decision attributes.

Engage three experts in deep foundation pit engineering
for a survey. Distribute electronic questionnaires and utilize
the received valid responses. Based on the Saaty 1–9 scale
method, construct judgment matrices C by averaging the
data from each expert’s opinion. Organize the AHP hierar-
chical analysis model for deep foundation pit project design
(as illustrated in Figure 2).

Subsequently, normalize the data of each matrix at vari-
ous levels and compute the relative weights of each

Consistency validation
of weightings assigned
to influential factors

Select decision
experts and gather

valid data

Calculate the
decision model
and identify the
optimal solution

Calculate
comprehensive

attributes

Establish the
decision matrix

Calculate group
deviations

Select LHA
operator and

determine positive
ideal points for

solutions

Calculate the
weights of

influencing factors

Select influencing
factors and
construct a

judgment matrix

FIGURE 1: Schematic diagram of the modeling and analysis process.
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influencing factor using Formula (3) (refer to Figure 3). In
Figure 3, it is apparent that among the 22 indicators, the one
with the highest weight is “Construction coordination and
overlapping,” scoring 0.211, while the lowest is “Construc-
tion site convenience conditions,” scoring 0.0065.

Performing a one-time consistency check using Formula
(4), all CR values are less than 0.1, indicating a satisfactory
result.

Step 2: Establish a decision matrix.

For the deep foundation pit engineering design schemes
under the DB contracting mode, we adopted a questionnaire
survey to collect expert opinions to ensure the scientific
nature of the decision-making process. In this survey, three
experts with advanced professional titles and extensive expe-
rience in the field of deep foundation pit engineering were
invited to participate. They all have profound theoretical
knowledge and practical experience in this field. We used

the quantitative evaluation method of the Satty 1–9 scale to
score various indicators of each scheme, aiming to reduce the
impact of subjective factors on the results. The three experts
filled out electronic questionnaires, presenting a comprehen-
sive view of expert assessment results with high authority
and representativeness. All three valid questionnaires col-
lected were compiled to form the decision evaluation matrix
(as shown in Tables 3–5). Here, x1 to x4 represent different
deep foundation pit engineering schemes, and μ1 to μ22
denote the relative weights of various influencing factors
for deep foundation pit support schemes.

Step 3: Identifying the positive ideal points for the
solutions.

Based on the decision matrices of the three decision-
makers, the positive ideal points for each influencing factor
of the solutions (refer to Figure 4) are determined as follows:

ν¼
4; 5½ � 4; 5½ � 4; 5½ � 3; 4½ � 4; 5½ � 4; 5½ � 4; 5½ �
4; 5½ � 4; 5½ � 4; 5½ � 4; 5½ � 4; 5½ � 4; 5½ � 3; 4½ �
4; 5½ � 4; 5½ � 4; 5½ � 3; 4½ � 3; 4½ � 3; 4½ � 3; 4½ � 3; 4½ �

2
64

3
75: ð12Þ

Figure 4 illustrates the positive ideal points for various
influencing factors derived from the decision matrices of the
three decision-makers. The horizontal axis (X-axis) represents
different influencing factors, labeled from μ1 to μ22, while the
vertical axis (Y-axis) represents the positive ideal points for attri-
bute values, ranging from 3 to 5. The red dots in the chart

indicate the upper bounds for each factor, and the blue dots
represent the lower bounds. These data form the basis for calcu-
lating the deviation components of different decision-makers
from the positive ideal points when choosing different schemes.
This information is valuable for assessing the strengths and
weaknesses of each scheme and making optimal decisions.

μ1—Construction coordination and overlapping

μ2—Application of new materials and technologies
μ3—Safety of construction site surroundings

μ4—Standardization of economic and technical indicators
μ5—Similar project experience of contracting firms

μ6—Safety competence in support system construction
μ7—Primary equipment advantage of the company

μ8—Design capability of contracting firms
μ9—Construction technical capability

μ10—Management capability of the company
μ11—Financial capability of contracting firms environmental impact

μ12—Impact of construction on surrounding residents

μ13—Impact of construction on surrounding buildings and underground facilities 

μ14—Limited site space
μ15—Building density and strength

μ16—Climate and hydrological conditions at the project site project-

μ17—Technical complexity of the project
μ18—Project scale

μ19—Expected project profit

μ20—Depth of project design and service requirements

μ21—Project schedule requirements
μ22—Convenience of construction site

specific factors

Deep excavation
support scheme

Project overall
general

contracting  

Corporate factors

Environmental
impact 

Project-specific
factors

FIGURE 2: AHP hierarchical analysis model for deep foundation pit support schemes.

10 Advances in Civil Engineering



Step 4: Calculate the deviation between the schemes and
the positive ideal points and aggregate the devia-
tion components using the LHA operator.

As per Definition 10, the deviation calculation formula
for μ and υ is given byDðμ; υÞ: ¼1

2 ðsc−a ⊕ sd−bÞ :. Utilizing this
formula, we can compute the deviation components of

0.2110
0.0908
0.1292

0.0494

0.0581
0.0345
0.0184
0.0504
0.0388
0.0255

0.0205

0.0557

0.0421

0.0266
0.0352

0.0362

0.0257
0.0136
0.0114

Deep excavation support scheme

0.0111
0.0093
0.0065

Project overall
general contracting

μ1—Construction coordination and overlapping
μ2—Application of new materials and technologies

μ3—Safety of construction site surroundings
μ4— Standardization of economic and technical indicators

corporate factors
μ5—Similar project experience of contracting firms

μ6—Safety competence in support system construction
μ7—Primary equipment advantage of the company

μ8—Design capability of contracting firms
μ9—Construction technical capability

μ10—Management capability of the company
μ11—Financial capability of contracting firms

environmental impact
μ12—Impact of construction on surrounding residents

μ13—Impact of construction on surrounding buildings and
 underground facilities
μ14—Limited site space

μ15—Building density and strength
μ16—Climate and hydrological conditions at the project site

project-specific factors
μ17—Technical complexity of the project

μ18—Project scale
μ19—Expected project profit

μ20—Depth of project design and service requirements
μ21—Project schedule requirements

μ22—Convenience of construction site

Corporate factors

Environmental
impact

Project-specific
factors

FIGURE 3: Relative weights of various influencing factors in deep foundation pit support schemes.

TABLE 3: Data table of survey on impact factor weights (A).

Survey on impact factor weights μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

x1 ½− 3; − 2�: ½− 3; − 2�: ½4; 5�: ½− 4; − 3�: ½− 1; 0� : ½1; 2� : ½− 4; − 3�: ½− 1; 0� :

x2 ½2; 3� : ½0; 1� : ½3; 4�: ½3; 4�: ½3; 4� : ½1; 2� : ½2; 3� : ½2; 3� :

x3 ½3; 4� : ½0; 1� : ½2; 3�: ½2; 3�: ½3; 4� : ½2; 3� : ½4; 5� : ½2; 3� :

x4 ½4; 5� : ½3; 4� : ½2; 3�: ½2; 3�: ½4; 5� : ½3; 4� : ½4; 5� : ½2; 3� :

μ9 μ10 μ11 μ12 μ13 μ14 μ15 μ16

x1 ½0; 1� : ½3; 4� : ½1; 2�: ½4; 5�: ½4; 5� : ½3; 4� : ½3; 4� : ½3; 4� :

x2 ½2; 3� : ½3; 4� : ½1; 2�: ½3; 4�: ½3; 4� : ½3; 4� : ½3; 4� : ½4; 5� :

x3 ½3; 4� : ½3; 4� : ½1; 2�: ½3; 4�: ½3; 4� : ½1; 2� : ½1; 2� : ½3; 4� :

x4 ½4; 5� : ½3; 4� : ½1; 2�: ½1; 2�: ½1; 2� : ½1; 2� : ½1; 2� : ½2; 3� :

μ17 μ18 μ19 μ20 μ21 μ22

x1 ½1; 2� : ½− 4; − 3�: ½1; 2�: ½1; 2�: ½2; 3� : ½2; 3� :

x2 ½2; 3� : ½− 4; − 3�: ½2; 3�: ½2; 3�: ½2; 3� : ½1; 2� :

x3 ½2; 3� : ½− 3; − 2�: ½2; 3�: ½2; 3�: ½2; 3� : ½2; 3� :

x4 ½4; 5� : ½− 1; 0� : ½1; 2�: ½2; 3�: ½1; 2� : ½3; 4� :
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different decision-makers from the positive ideal points
when selecting various schemes. Figure 5 visually presents
these deviation components in a heatmap format, with the
horizontal axis representing “influencing factors” and the
vertical axis representing “deviation from the PIS,” color-
coded from deep blue to yellow, where yellow indicates a
larger deviation. These computed results will be utilized in
the subsequent LHA operator processing to aggregate the
group deviations of different decision-makers. This process
is crucial for evaluating the strengths and weaknesses of each
scheme and making the final optimal decision.

Step 5: Construct the decision model for deep foundation
pit support schemes under the DBmode, utilizing
Formula (9) to aggregate the deviations Dðμ; υÞ:

corresponding to the i-th decision-maker and cal-
culate the group deviation Dðxþ; xlÞ :.

D xþ; xlð Þ ¼ aω1D μ; υð Þ 1ð Þ ⊕ aω2D μ; υð Þ 2ð Þ

⊕…⊕ aωjD μ; υð Þ 22ð Þ:
ð13Þ

Next, by computing the weighted linguistic variables
ν̃i

ð22Þ, obtain the comprehensive scores and compare them.
By coding and using MATLAB 2016b software to process

themodel data, we derived the group deviation values for each
scheme (For detailed code implementation, please refer to the
Supplementary Material). Figure 6 illustrates the group devi-
ation values for three decision-makers (A, B, and C) across
four different scheme options (Option 1 to Option 4), analyz-
ing the differences between each scheme and the positive ideal
solution regarding the target indicators. The x-axis represents
the four alternative options, i.e., Option 1 to Option 4, while
the y-axis displays the group deviation values, indicating the
proximity of each scheme to the positive ideal solution

TABLE 4: Data table of survey on impact factor weights (B).

Survey on impact factor weights μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

x1 ½2; 3� : ½− 2; − 1�: ½− 4; − 3�: ½0; 1� : ½3; 4� : ½0; 1� : ½3; 4� : ½3; 4� :

x2 ½4; 5� : ½0; 1� : ½− 4; − 3�: ½3; 4� : ½3; 4� : ½− 1; 0� : ½4; 5� : ½4; 5� :

x3 ½4; 5� : ½3; 4� : ½3; 4� : ½3; 4� : ½4; 5� : ½4; 5� : ½4; 5� : ½4; 5� :

x4 ½4; 5� : ½4; 5� : ½3; 4� : ½− 3; − 2�: ½3; 4� : ½3; 4� : ½3; 4� : ½2; 3� :

μ9 μ10 μ11 μ12 μ13 μ14 μ15 μ16

x1 ½3; 4� : ½3; 4� : ½4; 5� : ½0; 1� : ½− 3; − 2�: ½− 4; − 3�: ½− 4; − 3�: ½2; 3� :

x2 ½4; 5� : ½4; 5� : ½3; 4� : ½0; 1� : ½− 4; − 3�: ½− 4; − 3�: ½− 4; − 3�: ½− 2; − 1�:

x3 ½3; 4� : ½3; 4� : ½3; 4� : ½1; 2� : ½1; 2� : ½3; 4� : ½2; 3� : ½3; 4� :

x4 ½4; 5� : ½4; 5� : ½3; 4� : ½1; 2� : ½3; 4� : ½3; 4� : ½3; 4� : ½3; 4� :

μ17 μ18 μ19 μ20 μ21 μ22

x1 ½2; 3� : ½2; 3� : ½0; 1� : ½0; 1� : ½0; 1� : ½− 3; − 2�:

x2 ½3; 4� : ½− 2; − 1�: ½− 3; − 2�: ½− 3; − 2�: ½3; 4� : ½1; 2� :

x3 ½3; 4� : ½1; 2� : ½1; 2� : ½2; 3� : ½2; 3� : ½3; 4� :

x4 ½2; 3� : ½3; 4� : ½1; 2� : ½3; 4� : ½0; 1� : ½2; 3� :

TABLE 5: Data table of survey on impact factor weights (C).

Survey on impact factor weights μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

x1 ½− 3; − 2�: ½− 4; − 3�: ½− 5; − 4�: ½1; 2� : ½3; 4� : ½− 5; − 4�: ½3; 4� : ½0; 1� :

x2 ½− 4; − 3�: ½− 4; − 3�: ½− 3; − 2�: ½1; 2� : ½3; 4� : ½− 4; − 3�: ½3; 4� : ½3; 4� :

x3 ½3; 4� : ½0; 1� : ½2; 3� : ½− 1; 0�: ½3; 4� : ½2; 3� : ½3; 4� : ½3; 4� :

x4 ½3; 4� : ½0; 1� : ½4; 5� : ½− 1; 0�: ½3; 4� : ½4; 5� : ½3; 4� : ½3; 4� :

μ9 μ10 μ11 μ12 μ13 μ14 μ15 μ16

x1 ½3; 4� : ½0; 1� : ½2; 3� : ½− 5; − 4�: ½− 5; − 4�: ½− 5; − 4�: ½− 5; − 4�: ½− 5; − 4�:

x2 ½3; 4� : ½1; 2� : ½2; 3� : ½− 5; − 4�: ½− 5; − 4�: ½− 5; − 4�: ½− 5; − 4�: ½− 5; − 4�:

x3 ½3; 4� : ½3; 4� : ½2; 3� : ½1; 2� : ½1; 2� : ½0; 1� : ½3; 4� : ½2; 3� :

x4 ½3; 4� : ½3; 4� : ½2; 3� : ½2; 3� : ½2; 3� : ½0; 1� : ½4; 5� : ½2; 3� :

μ17 μ18 μ19 μ20 μ21 μ22

x1 ½0; 1� : ½0; 1� : ½− 1; 0� : ½0; 1� : ½− 3; − 2�: ½3; 4� :

x2 ½0; 1� : ½0; 1� : ½0; 1� : ½0; 1� : ½− 4; − 3�: ½3; 4� :

x3 ½0; 1� : ½0; 1� : ½2; 3� : ½0; 1� : ½3; 4� : ½3; 4� :

x4 ½0; 1� : ½0; 1� : ½3; 4� : ½0; 1� : ½2; 3� : ½3; 4� :
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regarding the target indicators. The analysis shows that
Option 4 generally has lower group deviation values, being
closest to the ideal value, and is thus identified as the optimal
solution. This result emphasizes the importance of evaluating
the proximity of schemes to the positive ideal solution during
the decision-making process.

Furthermore, the analysis of the comprehensive scores
for different decision-makers under the four options was
conducted by calculating the weighted linguistic variables

ν̃i
ð22Þ. In Figure 7, the x-axis represents the design scheme

options and y-axis represents the scores for the schemes,
measuring their performance across various target indicators.
The calculated results indicate that the comprehensive scores
for options x1, x2, x3, and x4 are 2.4489, 1.5495, 0.6884, and
0.5131, respectively, resulting in the ranking x1>x2>x3>x4.
This implies that the comprehensive score for Option x4 is the
lowest, indicating it as the optimal solutionOpt ðxiÞ : because it
exhibits the smallest deviation from the positive ideal solution
across various target indicators, i.e., it is closest to the positive
ideal solution. Based on literature and similar case studies,
where options like underground continuous wall support are

Positive ideal points of each influencing factor
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FIGURE 4: Positive ideal points for the solutions.
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FIGURE 5: Deviation components of each solution from the positive
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commonly adopted [46], the decision result aligns with the
actual engineering schemes, demonstrating the applicability
of the model.

4.3. Comparative Methodology. To demonstrate the superior-
ity of the proposed LHA operator, this section conducts a
comparative analysis with three existing methods: the OWA
operator employing the OWAmethod, the aggregated average
(AA) operator utilizing the weighted averaging aggregation
method, and the WGA operator employing the weighted geo-
metric averaging aggregationmethod. The calculationmethods
for the other three approaches are outlined as follows:

(1) OWA operator for hesitant uncertain MADM:
(i) Arrange the attributes based on the ranking

function S, sorting them in the order of s1 to sn;
(ii) Rearrange the weights of the attributes accord-

ing to the sorted order, expressed as follows:
AW¼ ½aws1; aws2;…; awsn� :;

(iii) Calculate the OWA value, which is the weighted
average of the attribute values X¼ ½x1; x2;…; xn� :

based on the reordered weights AW.

OWA¼ ∑
n

i¼1
awi ⋅ xi: ð14Þ

(2) The AA operator is an aggregation method used for
MADM. It summarizes the values of each attribute
through weighted averaging. AA stands for “aggre-
gated average,” and the calculation process is as
follows:
(i) Given a set of attributes X¼ ½x1; x2;…; xn� : and

their respective weights AW¼ ½aws1; aws2;…;
awsn� :.

(ii) Multiply each attribute value by its correspond-
ing weight and sum all these products to obtain
the final aggregated value.

AA¼ ∑
n

i¼1
awi ⋅ xi: ð15Þ

(3) The WGA operator is an aggregation method for
MADM that uses weighted geometric averaging to
summarize the values of each attribute. WGA stands
for “weighted geometric average,” and the calculation
process is as follows:
(i) Given a set of attributes X¼ ½x1; x2;…; xn� : and

their respective weights AW¼ ½aws1; aws2;…;
awsn� :.

(ii) Apply the geometric average to each attribute
value, then weight these geometric averages using
the weights to obtain the final aggregated value.

WGA¼ ∏
n

i¼1
xawi
i

� � 1
∑n
i¼1

awi : ð16Þ

Here, xi denotes the attribute value after sorting, and awi
corresponds to the respective weight. Please refer to [47–49]
for a detailed explanation of the calculation process. Utilizing
various operators with the case data for computation, the
comparative results are summarized in Table 6.

The results of the four methods are combined and com-
pared using MATLAB 2021b, and the ranking of schemes is
displayed in Figure 8. Figure 8 presents the evaluation results
of the LHA operator, OWA operator, AA operator, and
WGA operator for the four design schemes. The x-axis
represents different schemes, while the y-axis represents
the overall scores, i.e., the performance evaluation of each
method for a specific scheme. The results indicate that in the
LHA operator, the score for Scheme 4 is 0.5131, significantly
lower than Scheme 1, with a score of 2.4489. Under the
OWA operator, Scheme 4 only scores 0.5657, also substan-
tially lower than Scheme 1 with a score of 2.3393. When
using the AA operator, Scheme 4’s score of 0.2727 is similarly
lower than Scheme 1’s score of 1.1232. The same trend is
observed with the WGA operator, where Scheme 4’s score of
1.1627 is lower than Scheme 1’s score of 2.1519. It’s worth
noting that there are differences in the scoring rankings of
the four operators for the other three schemes. For example,
in Scheme 1, the LHA operator gives the highest score of
2.4489 compared to the other three operators, while in
Scheme 3, the OWA operator’s 2.4577 points are the highest.
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FIGURE 7: Presents a comparative analysis of the optimal schemes.

TABLE 6: Score table of integrated results for each operator.

Scheme LHA OWA AA WGA

x1 2.4489 2.3393 1.1232 2.1519
x2 1.5495 1.3566 0.6652 1.5046
x3 0.6884 2.4577 1.0286 2.0326
x4 0.5131 0.5657 0.2727 1.1627
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The scoring differences among the four operators stem from
their respective calculation mechanisms. The OWA operator
considers uncertainty between attributes through attribute
sorting andweight rearrangement. The AA operator performs
a simple linear weighted average. The WGA operator uses a
geometric average and adjusts the influence of each attribute
by weight. The LHA operator explicitly evaluates based on the
relative distance between the positive ideal point and the
evaluation point. Despite the different mechanisms, all four
operators in this case consider Scheme 4 superior to the other
schemes. This is closely related to the specific conditions of
the project, such as a large excavation area, significant depth,
and a complex surrounding environment. This demands
design schemes with strong rigidity and high waterproof per-
formance to meet the requirements of the complex site.

Combining the specific analysis of the four design schemes
in the previous text, this aligns with the high rigidity support
advantage of Scheme 4. As mentioned earlier, the underground
continuous wall in Scheme 4 has the ability to adapt to complex
terrain, with high strength to deal with complex geological
conditions and excellent waterproof performance. In contrast,
the other three schemes have certain limitations in applicable
conditions, with weaker advantages in the current site. Further-
more, from an investment decision perspective, deep founda-
tion pit projects have a long investment cycle, a large amount of
capital, and high risks. Selecting the optimal scheme is crucial
for project success. The decision model constructed in this
study considers the mutual constraints and correlations of
many influencing factors, providing effective decision support
for investors in a complex environment. Comparatively, the
LHA operator, by utilizing the relative distance between posi-
tive and negative ideal points, can more comprehensively
reflect the strengths and weaknesses of each scheme, offering
more reliable decision support.

In conclusion, this study, based on data analysis and
comprehensive evaluation, validates the necessity of selecting
the LHA operator and Scheme 4. This provides an important
reference for investment decisions in deep foundation pit
projects in similar complex environments, with significant
practical application value.

5. Discussion

5.1. Parameter Sensitivity Analysis. Next, we will conduct a
detailed analysis of the influence of parameter variations on
the decision results. In this case, for the sake of fairness, we
assume that the weights among decision-makers are equal,
i.e., dw= (0.3333, 0.3333, 0.3333). According to the theorem,
the balance factor “t” of linguistic variables is determined by
the number of decision-makers, in this case, t¼ 3. After
analyzing, we have four alternative schemes, denoted as
Xi ¼ ½x1; x2; x3; x4� :. Therefore, we will focus on analyzing a
crucial independent parameter in the proposed method:
attribute weights ðawÞ :. These weights play a significant role
in the calculation results. Different values of “aw” may lead
to variations in the score functions of the alternative schemes
obtained through integration, thus affecting the ranking
results. Assuming other parameter values remain constant,
we will vary the “aw” weights from 0 to 0.5 and perform
calculations using different integration operators. We will
observe the impact of “aw” variations on the score functions
and the ranking results. Refer to Figure 9 for details.

To gain a deeper understanding of the characteristics of
various operators, this study conducts a sensitivity analysis for
four operators under changes in attribute weights. The results
indicate that the LHA and AA operators exhibit relative sta-
bility when weights vary, OWA shows a certain level of adapt-
ability, and WGA demonstrates the highest sensitivity.

Specifically, as attribute weights change, the optimal solu-
tion and scores for LHA remain constant, showcasing its
robustness to weight variations. OWA shows a minor
response to changes in weights, maintaining a relatively stable
performance. AA consistently retains the same scores but fails
to reflect the impact of different weights on scheme rankings.
WGA, on the other hand, exhibits noticeable fluctuations in
optimal solution selection and scores with changing weights.

To validate these findings, the study also compares two
scenarios: uniform weight distribution and removal of low-
weight attributes. The results confirm that, regardless of how
weights are set, Scheme 4 consistently maintains its optimal
status, affirming its stable advantage. Simultaneously, subtle
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differences in the response of different operators to weight
changes are revealed. For instance, after streamlining factors,
the relative rankings of schemes, excluding Scheme 4, expe-
rience slight adjustments due to the reinforced influence of
remaining factors.

In summary, Sensitivity analysis helps understand the
characteristics of various operators and provides a more
comprehensive basis for integrated decision-making. The
LHA operator is more stable and can adapt to weight varia-
tions. Its relative stability under different attribute weights
makes it suitable for complex decision scenarios with uncer-
tain influencing factors. The WGA operator, however, is very
sensitive to weight changes and needs careful consideration
of the impact of weight selection. Choosing the appropriate
operator based on the actual situation can improve the reli-
ability of decision results.

5.2. Model Innovation and Validation. Addressing the gap
highlighted in Section 2.5 concerning “Limited Integration of
Decision-Making Research,” this study adopts the AHP for
weight analysis. It also introduces a refined approach that
integrates the positive ideal point with the LHA operator.
This methodological advancement harmonizes AHP with
linguistic uncertainty and multiattribute group decision-
making, offering a cohesive solution that mitigates the frag-
mentation observed in decision-making research. When
applied to the design decision-making processes for deep
foundation pits within the DB contract framework, this
innovative method demonstrates enhanced accuracy and
adaptability in decision-making, surpassing the performance
of conventional models.

To validate the efficacy of the proposed method, we exe-
cuted a decision-making application utilizing the enhanced
algorithm through MATLAB. This implementation show-
cased significant improvements in decision-making effi-
ciency, convenience, and speed. Our methodology addresses
the “Scarce DB Contract Perspective” gap by incorporating
distinct attributes of DB contracting into the evaluation
framework, thereby ensuring that the method’s technical
applicability is in harmony with the specific requirements of
DB contracting. The pioneering contributions of this study
pave new avenues and establish novel perspectives for both
scholarly research and practical application in the field of
deep foundation pit design.

5.3. Case Analysis. This section applies the proposed method
to a prominent commercial hotel project to discuss its empir-
ical validation and demonstrate its real-world engineering
applicability. MATLAB 2016b aided computation yields
group deviations for each evaluated scheme (x1= 2.4489, x2
= 1.5495, x3= 0.6884, and x4= 0.5131), with the underground
continuous wall design scheme emerging as the most optimal
due to its minimal deviation from the positive ideal point
across diverse targets. This not only substantiates the
model’s practical feasibility but also conclusively validates
its proficiency in decision-making for complex engineering
scenarios.

The positive correlation of the model’s output with the
genuine engineering solution harnessed strengthens its

scientific foundation as a decision-making reference that ele-
vates the precision and reliability of engineering judgments.
Such alignment undeniably tackles the gaps identified in
Section 2.5, demonstrating how our systematized method
attends to the intricacies of DB contracting constraints and
augments integrative decision-making research, thus infus-
ing the deep foundation pit design discipline with robust,
innovative approaches.

5.4. Limitations of the Model.We recognize some limitations
in our study of the deep foundation pit design decision
model that may affect its comprehensiveness and applicabil-
ity. First, we need to consider the limitations of the number
and types of cases. We selected a commercial hotel project as
a case, which provided a practical context for deep founda-
tion pit design. However, this case did not cover all possible
scenarios in this field. Future research could include more
cases of different types and scales to test the model under
various conditions.

Second, we relied on expert opinions to set weights,
which introduced some subjectivity. We used a subjective
weighting method with the AHP to determine the weights
of different influencing factors. However, these weights may
not reflect universal standards, because they depended on
expert judgments and experiences [50]. To address this issue,
we suggest creating a recognized system of influencing fac-
tors that incorporates risk assessment. Moreover, using big
data research could offer new ways of analyzing weights,
which could improve their objectivity and universality.

Third, we did not fully consider the impact of the multi-
party participation mechanism in the decision-making pro-
cess under the DB mode. Deep foundation pit design and
construction require collaboration among multiple parties,
and our model did not account for the influence of the mul-
tiparty participation mechanism under the DB mode. Future
research could use a systems engineering approach to
explore the framework and interaction mechanisms of mul-
tiparty decision-making systems under the DB mode, which
could provide a deeper understanding of the complexity of
deep foundation pit design decision-making.

In addition to these concerns, we must also acknowledge
the absence of geological and geotechnical uncertainties in
our analysis, which are intrinsic and can notably affect the
performance and safety of geotechnical structures, as
highlighted in prior studies [51]. The complex nature of sub-
surface conditions and their unpredictable variability present
significant challenges that were not encapsulated in the 22
types of uncertainties we considered. This exclusion repre-
sents a limitation of our research that may impact the model’s
predictive capability regarding the behavior of actual geotech-
nical systems under varied field conditions [52]. Addressing
this limitation might involve integrating advanced geostatis-
tical methods to better capture the stochastic nature of soil
properties, thereby enhancing the model’s robustness and
making it a more comprehensive tool for risk management
in deep foundation pit design. This added dimension would
certainly augment the accuracy with which our model can
simulate real-world conditions and project outcomes.
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In conclusion, despite the innovations our research pre-
sents in the decision model for deep foundation pit design, it
also possesses discernible limitations, from case selection and
expert-derived weighting to multiparty participation and the
critical yet omitted aspect of geotechnical uncertainty. Future
investigations should strive to incorporate these parameters,
thus refining our model to better align with the complexities
and nuances of this engineering domain, elevating both its
practical and academic applicability.

6. Conclusion

Drawing upon the theory of ideal point MADM and leverag-
ing the AHP, an optimal decision-making model has been
introduced for deep foundation pit design schemes within
the framework of DB contracting projects. Applied to the
assessment of four design alternatives for the deep founda-
tion pit of a commercial hotel project under DB contracting,
the following key observations emerge:

(1) The model selected the optimal design scheme
among the four options for a deep foundation pit
in a DB contracting project, showing its effectiveness.

(2) The model identified the key factors influencing the
decision and calculated the weights of different influ-
encing factors for the design schemes in a deep foun-
dation pit project under DB contracting.

(3) The design scheme with an underground continuous
wall had the smallest group deviation score, meaning
it was the optimal design scheme.
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