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The compressibility and shear strength of soil play a crucial role in engineering design and construction. For this study, samples
were collected from the indoor geotechnical tests conducted on the fourth layer of the third series of the Haikou Formation. By
conducting a correlation analysis of various physical properties of soil and utilizing the random forest algorithm, we developed a
predictive model for the compressibility and shear strength of coastal soft soil. Initially, we proposed an empirical formula that
utilizes mathematical statistical analysis methods to characterize the correlation between the indicators of this soil. Subsequently,
we employed the feature selection guided by the aforementioned data analysis results to establish a random forest model. This model
predicts the compressive modulus, compressibility coefficient, cohesion, and internal friction angle of the soil. The results indicate
that the established model exhibits strong predictive capabilities, with the mean squared error values of compression modulus
(0.012), compression coefficient (1.21× 10−6), cohesion (0.081), and internal friction angle (0.003). The data analysis methods, fitting
parameters, empirical formulas, and random forest model employed in this study hold substantial value in guiding the preliminary
evaluation stage of engineering projects with limited data. This study helps to save time and cost of geotechnical investigation for soft
soils in the area.

1. Introduction

Estimating the mechanical parameters for civil construction
projects based on measured soil’s physical parameters is cru-
cial for proposing appropriate design parameters, establish-
ing scientific and reasonable calculation models, selecting
foundation pits with favorable safety and economic adaptabil-
ity, and determining the related support modes [1].Moreover,
it can help to avoid tedious, time-consuming, and expensive
laboratory measurements while also reducing construction
time and cost. Therefore, it is of significant theoretical and
practical importance to collect mathematical statistics on the
physical and mechanical properties of regional and represen-
tative stratums and establish their predictive model [2–4].

Many scholars have conducted a great deal of research on
the correlation between rock’s physical and mechanical indexes
and achieved substantial results. As early as the 1950s, Chinese
researchers have systematically concluded the correlations of
soft soil’s shear strength indexes with void ratio and plasticity
index, which have played an important role in engineering con-
struction in Shanghai [5]. According to related engineering geo-
logical data of Shanghai, several sets of practical correlations
between physical and mechanical properties are derived [6].
Bai et al. [7] investigated the effect of plastic index on the com-
pression deformation parameters of saturated soft clay and con-
cluded the linear fitting relations of compression index, swelling
index, and secondary consolidation coefficient with the plastic
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index. Tian et al. [8] focused on clay soil in Beijing and per-
formed statistics of physical and mechanical indexes. Li et al. [9]
analyzed the relations of the internal friction angle of soft soil in
the southern part of Kunming with various physical indexes.
Xiaoliang et al. [10] investigated the relations of soil’s com-
pression indexes with the number of loading or unloading
cycles and saturability. Jing et al. [11] concluded the correla-
tions of the variations of internal friction angle and cohesive
force with some physical parameters including plasticity and
liquidity index. Xuchang et al. [12] preliminarily investigated
the correlation between physical and mechanical perfor-
mance indexes of soil in Yangzhou. Linping et al. [13] investi-
gated the correlation between soil’s physical and mechanical
indexes of clay soil in Binhai new district of Tianjin. Xianwei
et al.[14] presents the relevance and correlation analysis on
the physical and mechanical indexs of Zhanjiang clay.

The above study extensively analyzes the correlation between
the physical and mechanical properties of soil, which greatly
simplifies geotechnical engineering analysis. However, most
of these studies mainly focus on analyzing the correlation
of individual factors. Considering multiple factors simulta-
neously and obtaining accurate correlations are challenging
due to the complexity and uncertainty of the soil [15].

Machine learning methods like artificial neural networks
(ANN), support vector machines, and random forests have
gained significant attention in geotechnical engineering due
to their ability to efficiently and accurately map highly non-
linear problems [16, 17]. Zhang et al. [18] developed a non-
parametric ensemble artificial intelligence approach to calculate
the Es of soft clay. The mean squared error and correlation
coefficient of the model applied to the testing set were 0.13
and 0.91. Pham et al. [19] investigated and compared the
performance of four machine learning methods, particle
swarm optimization—adaptive network based fuzzy infer-
ence system (PANFIS), genetic algorithm—adaptive network
based fuzzy inference system (GANFIS), support vector
regression, and ANN, for predicting the strength of soft soils.
And concluded that out of four models, the PANFIS indicates
as a promising technique for prediction of the strength of soft
soils [19]. Taffese and Abegaz [20] used machine learning
techniques to predict the compaction and strength properties
of amended soil. Li et al. [21] compared the performance of
random forest regression and artificial neural network, two
commonly used machine learning methods, for predicting
soil properties. They found that the random forest regression
method generally yielded smaller prediction errors [21].

Previous studies on machine learning mainly focus on
predicting individual indices such as compression parame-
ters and strength parameters. The analysis lacks machine
learning models that can comprehensively predict compres-
sion and shear strength indices. Moreover, these studies have
not yet analyzed the prediction of compression and shear
strength indices specifically for soft soils in Haikou City,
Hainan Province. Jiangdong new district in Haikou, as a pilot
demonstration region in Hainan free trade port, has begun a
great number of engineering plans and constructions at pres-
ent. In the future, the construction scale of various projects
will be continuously expanded. In order to better exploit and

develop underground space, reasonably save the engineering
construction cost, shorten engineering construction period,
and accumulate rich regional empirical parameters, this study
focused on the fourth member sedimentary soil in the Ter-
tiary Haikou Formation (with the lithology of cohesive soil
and extensive distribution in Jiangdong district, Haikou) and
conducted geotechnical tests for statistical analysis. The main
contributions of this study can be summarized as follows.

(1) A dataset was prepared based on investigation reports
in Haikou. (2) Studied the correlation among the physical
indexes, compressibility indexes, and shear strength indexes
of this stratum by means of mathematical statistical analysis.
(3) A random forest regression algorithm in machine learn-
ing was used to develop a model that can predict soil com-
pression and shear strength indicators. (4) The predictive
performance of ML methods and engineering measured
data was compared for evaluating model accuracy.

2. Sampling and Test Statistics

2.1. Engineering Situations Data Source. The present geo-
technical data were sourced from the project Investigation
and Evaluation of Underground Space Development and
Utilization Potential for Jiangdong New District, Haikou.
The project is a subproject of the Comprehensive Survey of
Urban Geology in Jiangdong NewDistrict, Haikou, organized
and implemented by Hainan Provincial Bureau. According
to the regional geological data of Jiangdong New Area, the
rock and soil mass that overlays the sedimentary soil layer
in the fourth section of the Tertiary Haikou Formation is
predominantly composed of quaternary sea–land alternat-
ing sedimentary soil. This layer is known to be problematic
for engineering purposes, as it consists mostly of severely
liquefied sand and seismic soft soil. The sedimentary soil in
the fourth section of the Tertiary Haikou Formation serves
as the primary pile end bearing layer for regional engineer-
ing construction, as well as the main layer for the develop-
ment and utilization of underground space. The sampling
was conducted at a depth of 100m, with a total of 182
boreholes drilled.

2.2. Test Method. The limit moisture ratio was measured by
cone penetrometer via rolling. The moisture content when
the cone with a weight of 76 g sank by 10mm was set as the
liquid limit, while the moisture content when the fractures
appeared as the soil stripe was rubbed to 3mm and fracture
was set as the plastic limit. The difference between liquid limit
and plastic limit was defined as the plasticity index. The test
data of compressibility indexes were measured with standard
consolidation test (at a pressure of 100–200 kPa). According
to Standard for Geotechnical Testing Method (GB/T 50123-
1999), consolidated quick direct shear test was performed.

2.3. Sampling Method and Statistical Analysis. During the
present field drilling process, rotary drilling with mud pro-
tection wall was adopted. Rock samples were collected with
the core barrel (φ91mm) while soil samples were collected
with single-action triple tube. In this study, 279 sedimentary
soil samples in the fourth member of the Tertiary Haikou

2 Advances in Civil Engineering



Formation were collected for statistics. The soil samples were
mainly cohesive soil (silty clay or clay). Considering the
actual engineering applications at present, the distribution
range and possible depth of the soil layer, the sampling depth
was controlled within 100m (ranging from 7.50 to 97.00m).
According to the parameter statistical method as described in
Code for Investigation of Geotechnical Engineering (GB50021-
2001, the 2019 Edition), the statistics of basic physical and
mechanical parameters of this layer of soil were obtained and
listed in Table 1.

Apparently, the variation coefficients of some physical
indexes including soil density, moisture content, and void
ratio were all smaller than 0.300, suggesting the reasonability
of soil layer division. The variation coefficients of compress-
ibility and shear strength indexes were mostly larger than
0.300. This is mainly due to that partial perturbation or
soil stress release may exist in postpreparation of samples,
thereby leading to great variations in sample parameters.

Overall, the test data of samples were quite reliable and
practical. It was feasible to perform correlation analysis on
these data for regional design suggestions and empirical
calculation.

3. Overall Analysis of Correlation of
Soil’s Parameters

The engineering characteristics of soil in soil mechanics are
mainly directly reflected by its physical and mechanical
indexes. Therefore, statistical analysis and summary of the
measured indexes of the same stratum in the region is of
great practical significance for the accumulation of regional
geological experience and engineering practice experience.

Based on previous statistical analysis experiences of geo-
technical data, the correlation among soil’s physical and
mechanical indexes generally can be described by linear
models [22]. This study adopted least square linear fitting
and unary linear regression for analysis. First, the correla-
tions among various indexes of the collected soil samples
were judged. Overall correlation analysis between soil sam-
pling position and various test indexes was performed, and
the results are shown in Table 2. Various indexes ranked
from weak to strong correlation. The detailed parameters
were then analyzed.

Based on the above statistics of correlation coefficients
and significance test results, the following conclusions can be
drawn.

(1) Except the moderate correlation with wet density,
moisture content, and void ratio, soil’s sampling depth
was weekly correlated with consistency, plasticity index,
compressibility, and shear strength indexes.

(2) Wet density and moisture content were highly corre-
lated with void ratio, which can satisfy basic conversion
indexes of three-phase indexes. Wet density, moisture
content, and void ratio were moderately–strongly cor-
related with compressibility and shear strength indexes.

(3) The compressibility indexes including the modulus
of compression and compression coefficient showed
exactly different correlations with all parameters.
This is consistent with the definitions of soil’s com-
pressibility indexes. A greater modulus of compres-
sion suggests stronger deformation resistance ability,
which corresponds to a smaller compression coefficient.

(4) The shear intensity indexes showed consistent posi-
tive/negative correlations with the other parameters.
The shear strength indexes exhibited negatively
moderate–strong correlations with moisture content
and void ratio, as well as negative weak–moderate
correlations with liquidity and plasticity indexes.

(5) The compressibility indexes were overall moderately–
strongly correlated with the shear strength indexes.
More favorable compressibility indexes suggest stron-
ger shear strength indexes and better geological prop-
erties of soil engineering.

Based on the above preliminary analysis results, the cor-
relation of soil’s three-phase measured indexes with sampling
depth, shear strength, and compressibility indexes were ana-
lyzed in depth. In addition, high-pressure consolidation test
was performed on 120 soil samples for exploring the correla-
tion between preconsolidation pressure and the foundation’s
bearing capacity.

4. Correlation between Soil’s Three-Phase
Indexes and Sampling Depth

The correlations among the measured wet density, moisture
content and void ratio, and the sampling depths of all soil
samples were investigated, as the statistical scatter diagrams
are shown in Figures 1–4.

Overall, wet density was in direct proportion to the sam-
pling depth, while moisture content and void ratio were
inversely proportional to the sampling depth. Through prelim-
inary analysis, the soil samples were collected from old clay
and can be regarded as normal consolidated–overconsolidated
soil. Themechanical indexes such as plasticity, compressibility,
and shear strength indexes were relatively stable. As the sam-
pling depth and overlying soil pressure increased, natural den-
sity increased gradually while moisture content and void ratio
dropped gradually. In terms of negative/positive correlation, as
the sampling depth increased, both compressibility and shear
strength indexes were improved. This also conforms to soil’s
sedimentary rules of underconsolidated–consolidated–over-
consolidated transition.

Meanwhile, it can be observed from the scatter diagrams
that void ratio and moisture content overall showed identical
variation rules. Figures 3 and 4 show the scatter diagram of
the correlation between void ratio and moisture content.
Linear correlation can be observed, suggesting that pores in
the soil were almost filled by water, with almost no void con-
tent. The results fit well with the measured saturation value
from 79 to 100, with a mean value of 93.93. The soil can be
judged as saturated soil.
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In terms of consolidation procedure of consolidated soil,
when soil was consolidated to a certain degree, various pores
and voids were almost compressed or filled by bound water.
Accordingly, both moisture content and void ratio were grad-
ually fixed. As shown in Figures 1–3, for the soil samples with
a sampling depth of above 50m, the correlations of wet den-
sity, moisture content, and void ratio with the sampling depth
were higher than the correlations for the samples with a sam-
pling depth of below 50m. After eliminating the samples with
a depth of below 50m, linear fitting was performed on the
correlations of wet density, moisture content, and void ratio
with the sampling depth, as the fitting formulas and correla-
tion coefficients listed in Figures 5–7.

Based on the above analysis results, for the soil samples
from the fourth member of the Tertiary Haikou Formation
from Jiangdong new district, Haikou, the related empirical
formulas that describe the correlations of dry density, mois-
ture content, and void ratio with the sampling depth can be
written as follows:
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FIGURE 1: Scatter plot of wet density and sampling depth.

W
at

er
 co

nt
en

t (
%

)

0 20 40 60 80 100
Sampling depth (m)

20

30

40

50

60

70
w = –0.2041h + 38.42
R2 = 0.3514

FIGURE 2: Scatter plot of water content and sampling depth.

0 20 40 60 80 100
Sampling depth (m)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

V
oi

d 
ra

tio

e = –0.0056h + 1.091
R2 = 0.2265

FIGURE 3: Scatter plot of void ratio and sampling depth.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

V
oi

d 
ra

tio

20 30 40 50 60 70

e = 0.0261w + 0.0751
R2 = 0.9761

Water content

FIGURE 4: Scatter plot of void ratio and water content.

0 20 40 60

ρ = 0.0051h + 1.7197
R2 = 0.3491

Sampling depth (m)

1.5

1.6

1.7

1.8

1.9

2.0

2.1
W

et
 d

en
sit

y 
(g

/c
m

3 )

FIGURE 5: Scatter plot of wet density and sampling depth.

6 Advances in Civil Engineering



(1) When h≤ 50m:

ρ¼ 0:0051hþ 1:7194;ω¼ 0:5033hþ 46:87; e¼ 0:0132h
þ1:304 :

ð1Þ

When h> 50m, ρ, ω, and e can be directly set as 1.969,
28.5, and 0.787. The values are basically coincident with the
statistical averages of 1.930, 27.6, and 0.784 in the 48 group
samples below 50m.

(2) The empirical formula between void and moisture
content can be written as follows:

e¼ 0:0261wþ 0:0751: ð2Þ

5. Correlations of Void Ratio with Soil’s
Mechanics and Displacement Index

According to previous research results, for the soil samples
collected from this layer, the void ratio is moderately–
strongly correlation with compressibility and shear strength
indexes, as the detailed statistics are shown in Figures 8–11.

Generally, under the additional stress, free-state under-
ground can be discharged from the pores of soil on account
of the fluidity, thereby leading to volume reduction and
inducing compression [23, 24]. This can account for soil
compressibility. The deformation is then referred to as con-
solidation. For ordinary foundations, the sedimentation and
deformation are always designed by considering both com-
pression modulus and coefficient [25].

Soil’s shear strength refers to soil’s capability to resist
shear failure and equals to the shear stress on the sliding
surface when shear failure occurs in soil. Certainly, whether
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soil reaches the shear failure state not only depends on soil
properties but also is closely correlation with the applied stress
combination [26]. Therefore, the indexes should be selected in
combination with actual engineering condition (mainly, the
drainage condition). According to the three-phase measured
results, the collected soil samples were saturated soil and water
in soil was mostly bound water, with poor drained. The quick
direct shear indexes in this study are of great significance to
practical applications [27].

However, in actual production, compressibility and shear
tests are always time-consuming, with great difficulty in sam-
ple collection. At the preliminary engineering design phase,
the compressibility and shear strength indexes can be rea-
sonably derived in combination with the detailed burial
depth and void ratio for further estimation of foundation
sedimentation and stability. This is quite significant for the
design of engineering exploration schemes and foundations.

It can be observed in Figures 8–11, for the fourth mem-
ber sedimentary soil of Haikou Formation from Haikou new

district, Haikou, the empirical formulas of compressibility
and shear strength indexes can be written as follows.

Compressive indexes:

eEs¼ −23:337eþ 42:431; α1−2 ¼ 0:2357e − 0:083: ð3Þ

Shear strength indexes (direct shear test):

ck ¼ −77:151eþ 144:95;φk ¼ −22:862eþ 43:509: ð4Þ

Soil layer in natural world has undergone ever-changing
consolidation history in long geological history; however, the
soil has endured the maximum pressure and reached certain
consolidation degree. The maximum pressure is exactly the
abovementioned preconsolidation pressure. Considering
that overconsolidated soil samples were collected, 120 sam-
ples with measured preconsolidation pressures and consoli-
dation indexes were selected for statistics for gain better
understanding of soil’s sedimentary history, estimate foun-
dation sedimentation, evaluating the characteristic value of
foundation bearing capacity and propose reasonable and
economic foundation scheme. The correlation between pre-
consolidation pressure and sampling depth and the correla-
tions of void ratio with preconsolidation pressure and
consolidation index were analyzed, as the results shown in
Figures 12–14.

As shown in Figure 12, the preconsolidation pressure was
quite weakly correlated with the sampling depth, indicating
that soil was subjected to low external force in sedimentary
history, under relatively stable state. The statistical results of
Pc can be described below, a range from 178.5 to 2003.7 kPa,
a mean value of 1074.4kPa, and a variation coefficient of 0.408.

Generally, high-pressure consolidation test is performed
to measure the pressure and the compressibility indexes. The
test process and parameter calculation are quite time-con-
suming. It can be observed from Figures 13 and 14 that soil’s
consolidation index was quite strongly correlated with void
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ratio, and moderately correlated with the preconsolidation
pressure. The following empirical formula can be used
at the beginning or in preliminary stage of engineering
construction:

Pc ¼ −67:65eþ 1678;Cc ¼ 1:0201e − 0:4455: ð5Þ

6. Correlation between Shear Strength and
Compressibility Indexes

The compressibility index reflects soil’s consolidation-
induced deformation while the shear strength index reflects
soil’s shear-induced deformation [28, 29]. Under the defor-
mation induced by both consolidation and shear, pores in
the soil can be compressed, water flows out and soil particles
move [30, 31]. Although the different deformation mechan-
isms, these two parameters are correlated to certain degree,

as listed in Table 2. The internal correlation should be ana-
lyzed, which can also be used for cross-verification in param-
eter design at the early stage of engineering construction.
Figures 15–18 display the statistical results.

It can be observed that the linear correlation coefficients
of the modulus of compression with internal friction angle
and cohesive force were 0.5317 and 0.7888, respectively, sug-
gesting moderate–strong correlation; the correlation of com-
pression coefficient with internal friction angle and cohesive
force can be reasonably fitted by power functions, with a
correlation coefficient of 0.6489 and 0.8152, respectively, sug-
gesting strong correlation. Overall, strong correlation between
compressive and shear strength indexes can be observed.

The main reasons can be described below.

(1) Soil samples can be regarded as saturated clay soil.
During the consolidation-induced deformation process,
pores were almost filled by water, with quite small voids.
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Water discharge under squeezing played a dominant
role in consolidation deformation under compression.

(2) Soil particles were extruded during soil’s vertical con-
solidation deformation process. There existed mutual
shearing and friction among particles during the
deformation process.

(3) Water among soil particles was mostly bound water,
with strong adsorption capacity with soil particles.
Great shear friction can be found in water drainage
process.

(4) Soil compression on macroscopic level corresponds
to shear deformation among soil particles on micro-
scopic level. Accordingly, compressibility and shear
strength indexes show strong correlation.

In actual engineering applications, when the measured
indexes show great difference under great disturbance on

sample collection, the indexes can be validated according
to the following empirical formulas:

Ck ¼ 2:2961Es1−2 þ 25:446;Ck ¼ 17:414α−0:5921−2 ;
φk ¼ 0:3056Es1−2 þ 16:61;φk ¼ 8:6661α−0:41−2 :

ð6Þ

7. Predict Soft Soil Parameters Using Random
Forest Regression

Based on the analysis presented above, it is evident that soil’s
three-phase index and other factors are correlated with its
compression and shear strength indicators. Previous sections
have quantitatively examined these relationships. However,
Figures 1–18 shows a significant amount of dispersion in the
measured data. Consequently, the quantitative relationship
curves for various parameters are deficient in accurately repre-
senting the data. Estimating the compression and strength
properties of soils based only on a single metric and a simple
linear fit is problematic. The deformation and strength indi-
cators of soil exhibit complex nonlinear relationships with soil
properties. Thus, there is a need to comprehensively char-
acterize the relationships between soil properties and its
deformation and strength indicators. Given the exceptional
performance of machine learning in fitting nonlinear com-
plex relationships, the random forest algorithm in machine
learning is chosen as a regression method specifically designed
for high-dimensional soil parameters data. The training pro-
cess of random forest involves “randomness” and “ensemble”
effects, enabling it to accurately capture the randomness and
diversity of soil parameters. The specific modeling process
(Figure 19) is described below:

(1) Preparing the dataset, based on the results of Sections
3–6 on the correlation of soil parameters, the follow-
ing parameters are selected as inputs for the model:
depth of sampling, wet density, moisture content,
void ratio, plasticity index, and liquidity index. The
output variables for prediction are compression mod-
ulus, compression coefficient, cohesion, and internal
friction angle. Overall, a total of 185 data points were
assembled for analysis. The dataset was then divided
into a training set, comprising 70% of the data, to
facilitate model training, and a test set, accounting
for 30% of the data, to assess the model’s generaliza-
tion ability.

(2) The bootstrap sampling method is used to randomly
select samples with replacement from the original
data set collected from the site of the engineering
project. This method aims to reduce the sample
dependency of the data set, thereby improving the
robustness of the model. In each sampling, a subset
of features is randomly selected. By controlling the
number and types of features, it is possible to effec-
tively reduce the complexity of the model and avoid
overfitting.
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(3) Develop a decision tree model based on the chosen
samples and features using CART algorithm. CART
builds a binary tree structure recursively by parti-
tioning the input space into subsets based on the
values of input features. The tree is constructed in a
way that each internal node represents a decision
based on a feature, and each leaf node represents
the output (class label for classification or numeri-
cal value for regression) for the corresponding sub-
set of data. Since this study focuses on regression
analysis, the decision tree construction process
employs the Gini coefficient as the split criterion
to identify the most suitable feature for node split-
ting. The Gini impurity measures the likelihood of
misclassification. For a given node, it calculates the
probability of misclassifying a randomly chosen
element if it were randomly labeled according to
the distribution of classes in the node. Conse-
quently, each subtree is able to effectively capture
and comprehend the regression characteristics inher-
ent in the data.

(4) Bootstrap sampling is used to construct subsequent
decision trees until the predefined number of trees is
reached (set at 500 for this study). During the con-
struction of each tree, the previously created trees are
combined through ensembling, and their average
probabilities are calculated to obtain the final predic-
tion result.

(5) Train the model by inputting the training set and
starting the training program. Upon completion of
training, the model calculates the predicted results by
reading the test set data. The mean square error
(MSE) is used to evaluate the discrepancy between
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FIGURE 19: Random forest regression model workflow.

TABLE 3: MSE error of measured values and predicted value of random forest regression models.

Parameters Compression modulus Compression coefficient Cohesion Internal friction angle

MSE 0.012 1.21× 10−6 0.081 0.003
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FIGURE 20: Comparison of predicted and measured values of com-
pression modulus.
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the actual data and the model’s predictions. The for-
mula for MSE is given by the following equation:

MSE¼ 1
n
∑
n

i¼1
yi − byið Þ2; ð7Þ

where n is the total number of samples, yi is the measured
results, and byi is the predicted results of the model. After
training, the model’s prediction accuracy for compressibility
modulus, compression coefficient, cohesive strength, and
internal friction angle is shown in Table 3.

Table 3 illustrates that the mean squared error (MSE)
values of the CART-based random forest regression model
for predicting each parameter are all below 0.1. This implies
that the model performs significantly better in comprehen-
sively fitting each parameter compared to the correlation
fitting curves discussed earlier in the section.

The test set data are inputted into the trained model to
calculate the predicted output. Then, these predicted values
are compared with the measured values. The results of this
comparison can be found in Figures 20–23. The figure reveals a
strong consistency between the predicted andmeasured values
of compression modulus, compression coefficient, cohesion,
and angle of internal friction. This consistency indicates that
the model possesses a certain degree of generalization capabil-
ity, allowing it to be applied in predicting the parameters of
soft soil in the fourth layer of the third series of the Haikou
Formation.

8. Conclusions

This study focused on the fourth member sedimentary soil of
Haikou Formation collected from Jiangdong new district,
Haikou, and conducted soil test on 279 samples. Through
analysis, various fitting formulas that describe the correla-
tions of three-phase indexes and sampling depth, void ratio
and compressibility indexes, void ratio and shear strength
indexes, void ratio and preconsolidation pressure, and com-
pressibility indexes and shear strength indexes were derived.
A random forest model was established to synthesize the
above parameters, realizing the prediction of compression,
and shear strength indexes. The present research results can
provide reference for in-depth understanding of basic physi-
cal and mechanical parameters, design of exploration scheme
and foundation, and the calculation of sedimentation defor-
mation. The main conclusions are described below.
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(1) At a sampling depth of below 50m, the three-phase
measured indexes (wet density, moisture content,
and void ratio) of soil samples were well correlated
with the sampling depth; as the sampling depth
exceeded 50m, the three-phase measured indexes
were almost fixed.

(2) Overall, soil’s void ratio was in good correlation with
compressibility and shear strength indexes. As the void
ratio decreased, the compression modulus increased,
the compression coefficient dropped, while both cohe-
sive force and internal friction angle increased. A smal-
ler void ratio was indicative of greater preconsolidation
pressure and smaller consolidation index.

(3) Among the correlations between compressibility and
shear strength indexes, the compression modulus
was linearly correlated with cohesive force and inter-
nal friction angle, while the correlations of compres-
sion coefficient with cohesive force and internal
friction angle can be described by power functions.

(4) The data were first subjected to correlation analysis
for random forest model parameter selection. Subse-
quently, the random forest model was developed to
predict the compressibility index and shear strength
index of soft soil. The model demonstrated a high
level of accuracy in predicting the indices and exhib-
ited excellent generalization ability. The research
outcomes are particularly helpful in the planning
and initial design stages for soft soil projects in saving
time and cost.

In summary, the machine learning algorithm based on
random forest regression can well predict the bearing capac-
ity parameters and deformation parameters of coastal soft
soil. However, due to the different causes and environments
of the soil, this model can only be applied to Jiangdong New
District of Haikou. In the future, a large amount of data
support is needed to obtain a machine learning model with
a wider range of applications.
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