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A new robust Receding Horizon Control (RHC) design approach for the sampled-data systems is proposed. The approach is based
on a dividing genetic computation of minimax optimization for a robust finite receding horizon control problem. Numerical
example is given to show the effectiveness of the proposed method.

1. Introduction

In last few decades, the Receding Horizon Control (RHC) has
been widely accepted in the industries [1]. RHC is an online
powerful control method which solves a control problem
with respect to each sampling frequency [2]. A significant
merit of RHC is easy handling of constraints during the
design and implementation of the controller [2, 3].

In the standard RHC formulation, the current control
action is derived by solving a finite or infinite horizon
quadratic cost problem at every sample time using the
current state of the plant as the initial state [1]. It is an online
optimization with big calculation amount. Then, the RHC
has been applied conventionally to systems with relatively
slow-moving dynamics such as petrochemical plants and so
on. However, recent advance of computer performance has
made it possible to use it for systems with relatively fast-
moving dynamics, for example, the mechatronics and so on.
Therefore, it is important to develop a practical RHC method
for such systems.

Incidentally, a drawback of the standard RHC is explicitly
lack of robust property with respect to model uncertainties
or disturbances since the online minimized cost function is
defined in terms of the nominal systems. A possible strategy
for realizing the robust RHC is solving the so-called minimax
optimization problem, namely, minimization problem over
the control input of the performance measure maximized
by plant uncertainties or disturbances. An earliest work was

proposed by Campo and Morari [4] and Zheng and Morari
[5]. Kothare et al. solve minimax RHC problems with state-
space uncertainties through LMIs [6]. Cuzzola et al. improve
Kothare’s method [6] to reduce conservativeness in [7].
Other methods of minimax RHC for systems with model
uncertainty can be found in [8–12]. However, the number of
available work of the robust RHC is still limited compared
with many methods of robust control synthesis for linear
systems being proposed. Main reason of this fact is that the
robust (minimax) RHC problem is hard to solve in real-time
due to the trade-off with an objective function and constraint
conditions in the problem generally. The issue of robust
RHC therefore still deserves further attention [2, 3] and
the effective approach for the robust RHC is still required,
especially in the optimization technique.

Optimization techniques by using evolutionary compu-
tation such as Genetic algorithms (GAs) [13, 14] have been
recognized to be well suited to many kinds of engineering
optimization problem. Multiple individuals can search for
multiple solutions in parallel, eventually taking advantage of
any similarities available in the family of possible solutions
to the problem. Extensions of GAs to many kinds of
optimization problems were proposed in several manners
[15–17]. For example, Schaffer [15] proposed an extension
of the simple GA to accommodate vector-valued fitness
measures, which he called the Vector Evaluated Genetic Algo-
rithm (VEGA). Moreover, Goldberg [13] firstly proposed
the Pareto-based approach as a means of assigning equal
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probability of reproduction to all nondominated individuals
in the population. Fonseca and Fleming [16] proposed a
multiobjective ranking method with the Pareto-based fitness
assignment. However, it is uncertain whether to be able
to apply these methods effectively to the minimax RHC
problem.

Therefore, in this paper, a new minimax robust finite
RHC design approach based on a new dividing genetic
computation for constrained sampled-data systems with
structured uncertainties and disturbance is proposed. This
approach is one of the general and practical framework of the
minimax robust finite RHC problem of bounded constrained
systems. Since the dividing genetic computation uniformly
controls the convergence of solutions of optimization prob-
lems with some trade-off conditions, it can be effectivefor the
minimax RHC problem. Using this approach, we can expect
to reduce the conservativeness of control performance and
to improve the control performance. Numerical example is
given to show these facts.

2. Problem Formulation

The target system in this paper is the sampled-data control
system. Hence, the control object with uncertainties is a
continuous-time system and the controller is designed in
discrete-time. Then, let us consider the following discrete-
time LTI (Linear Time-Invariant) state-space model with
structured uncertainties and disturbances:

x(k + 1) = (A + LΔRA)x(k) + (B + LΔRB)u(k),

y(k) = Cx(k) + η(k),
(1)

where LΔRA and LΔRB denote the structured uncertainties
expressed by perturbation of elements in A and B, respec-
tively. A, B,C, L, RA, and RB are constant matrices. Δ (Δ =
diag{δ1, δ′′2 , . . .}) is a structured uncertainties parameters
matrix satisfied ΔTΔ ≤ r. (r is a given constant) And
x(k), u(k), y(k), and η(k) denote the state, input, measured
output, and disturbance vector, respectively. All these vectors
and matrices have appropriate dimensions.

Then, we can transform this system as

x(k + 1) = Ax(k) + Bu(k) + Lw(k), (2)

z(k) = RAx(k) + RBu(k), (3)

y(k) = Cx(k) + η(k), (4)

where w(k) = Δz(k). We assumed that the system is
constrained with following conditions with N − 1 steps:
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where Pw, Pη, Pu (Pw,Pu,Pη � 0) are positive symmetric
matrices for weights of constraints.

For this systems, to use the RHC, a quadratic perfor-
mance measure with finite horizon with positive weighting
constant matrices Q and R (Q,R � 0) as
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N−1∑

j=0
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is used. x(k + j | k), y(k + j | k), and u(k + j | k) are the
predicted state of the plant, the predicted output of the plant
and the future control input at time k + j, respectively.

Then, the robust RHC is need to solve the following
minimax optimization problem at each step k:
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(7)

Generally, the following state feedback schema is
employed:

u
(
k + jk

) = −Fk+ jx
(
k + jk

) (
j = 0, 1, . . . N − 1

)
, (8)

where Fk+ j is a feedback gain matrix.
Finally, the procedure of robust RHC is summarized as

follows. At the current step k, future state values x(k + j |
k) ( j = 0, . . . ,N − 1) are predicted by using the state space
model (2)–(4), and future feedback gain matrix candidates
Fk+ j( j = 0, . . . ,N − 1) are calculated by solving (7) under
(8). Only first gain matrix F(k + 1) is employed for an actual
control input and the others are discarded. Then, go to next
step k + 1 and repeat same operations.

Namely, the robust RHC requires an online minimax
optimization. However, it is difficult to solve this problem
as it is at each step, generally. Therefore, the method to
eliminate the maximization procedure and transform this
problem to simple minimization problem is shown in the
next section.

3. Transformation of Minimax Finite
RHC Problem

Firstly, introducing the following vectors

X :=
[
x(k + 1k) x(k + 2 | k) · · · x(k +N | k)

]T
,

Y :=
[
y(k + 1 | k) y(k + 2 | k) · · · y(k +N | k)

]T
,

U :=
[
u(k | k) u(k + 1 | k) · · · u(k +N − 1 | k)

]T
,

W :=
[
w(k | k) w(k + 1 | k) · · · w(k +N − 1 | k)

]T
,

Λ :=
[
η(k | k) η(k + 1 | k) · · · η(k +N − 1 | k)

]T

(9)
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and using state space equations (2)–(4) recursively, we can
derive

X = Ãx(k) + B̃U + L̃W ,

Y = CÃx(k) + CL̃W +Λ,
(10)

where
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,
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(11)

Hence, we can transform the minimax problem (7) to

min
U

γ

max
W ,Λ

Π ≤ γ,

subject to wT
(
k + j

)
Pw w

(
k + j

) ≤ 1

uT
(
k + j

)
Pu u

(
k + j

) ≤ 1

ηT
(
k + j

)
Pη η

(
k + j

) ≤ 1
(
j = 0, . . . ,N − 1

)
,

(12)

where γ > 0 (scalar parameter) and Pi is defined as follows:
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To eliminate the maximization procedure, we have to
remove W and Λ terms in the first constraint. For this,
in the first place, following basis for all variables and
transformation matrices are defined,

ζ =
[
x(k) WT ΛT 1

]T
, (14)
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Y = Hyζ , (16)

Λ = Hηζ , (17)
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where
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and where

I := (identity matrix with appropriate dimension
)
,
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By using these, we can express the first constraint condition
of problem (12):

max
W ,Λ

{∥∥
∥Hyζ
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2
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∥2
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}
≤ (H1ζ)Tλ(H1ζ). (21)

Please take notice that both the left side and the right side of
this inequality are expressed by the quadratic forms and they
have positive scalar values. Hence, if the inequality is held
by maximum values of W and Λ in left side, this inequality
must be held by any other values of them. This fact means
that we can eliminate the maximization procedure in the
first constraint. We can only check the following condition
instead of the first constraint of problem (12):
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∥
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2
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}
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In the second place, Hw( j) is defined. This matrix picks
out the suitable block from W and satisfies the relation of
w(k + j) = H

( j)
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For the constraints of η, u and z, we can derive the following
relations in the same way:
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Furthermore, by using (14)–(21), all constraints in
minimax problem (12) can be transformed into
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Then, we can transform the original minimax problem
(7) to the following one by using S-procedure [18]:
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and where τwj , τuj , τ
η
j , and τzj are positive semidefinite scalars.

It must be noted that this transformation satisfies only a
sufficient condition of S-procedure, since S-procedure is not
the so-called “lossless” in this case. We cannot therefore avoid
that the design results are slightly conservative. Nevertheless,
we can expect the reduction of conservativeness in design
result by this technique in contrast with the results by
preexisting methods, because the conservativeness caused
by S-procedure is too small to put a matter for practical
purposes.

Finally, using “Schur-complement” [19], we can trans-
form the minimax optimization problem (7) into the
following problem:
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γ
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Figure 1: Dividing strategy.

where

Σ :=
N−1∑

j=0

[
τwj S

w
j + τuj S

u
j + τ

η
j S

η
j

]
. (29)

It is known that this problem has trade-off with the
objective function and the constraint condition. Therefore,
the fast method of finding nondominated solutions with
respect to the trade-off as a lot as possible is needed. Then,
the method using dividing genetic computation is shown in
the next section.

4. RHC Method with Adaptive DA Converter
Using Dividing Genetic Computation

4.1. Dividing Genetic Computation. To find the best possible
nondominated solutions for the RHC problem (28), a partial
convergence of nondominated solutions must be avoided.
Therefore, a dividing method which uniformly controls the
distribution of solutions is proposed. The proposed method
assigns all nondominated individuals to prespecified regions.
An example of the dividing strategy in two objective mini-
mizing problem is shown in Figure 1. The dividing genetic
computing method consists of following procedure. First, the
objective space is divided into prespecified regions. The edge
points of the whole region corresponds to the best solutions
for each objective function. In Figure 1, the individuals p1

and p7 match them. Then, the fitness fi of the individual pi
is defined as fi = 1/ni. The value of ni denotes the number
of nondominated solutions in the identical region with the
individual pi. In the example, the fitness of the individuals
illustrated in the figure corresponds to the following values
( f1, f2, f3, f4, f5, f6, f7) = (1/3, 1/3, 1/3, 1, 1, 1/2, 1/2). In the
proposed evolutionary computing method, let us define a
neighborhood to every individual as follows: two objective
functions of a multiobjective problem are selected by using
prespecified selective probabilities. Individuals are arranged
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on the two-dimensional coordinates, and the neighborhood
of an individual is calculated by using the relative distance
between all individuals.

The crossover operator is made locally in each neigh-
borhood in parallel. Even if the fitness of an individual
is relatively very high in a population, it can spread over
the succeeding populations only through an overlap of the
neighborhood. This prohibits a rapid increase of an relatively
high-performance individual, and then, the population
diversity is favorably maintained. The evolutionary operators
are defined as follows.

(a) The selection is done by considering the number
of individuals in the 2-dimensional objective space.
That is, the fitness Γi of the individual pi is defined
as Γi = 1/ni. The value of ni denotes the number of
individuals in the identical region with the individual
pi. The proportional fitness method is employed in
the selection process.

(b) BLX-α method is employed for crossover. The mate
of crossover is chosen randomly in the neighbor-
hood.

(c) The real-code string representation is employed for
candidate solution.

(d) Mutation is designed to perform random exchange;
that is, it selects some bits randomly in an individual
and exchanges their values. Boundary mutation
and nonuniform mutation are used to avoid the
premature convergence of the solutions.

The procedure of dividing genetic computation approach
consists of the following steps.

Step 1. Set a generation number t = 0. Randomly generate
an initial population P(t) of M individuals.

Step 2. Calculate the fitness of each individual in the current
population according to the distribution of the objective
space.

Step 3. Select M individuals according to above fitness;
then the mate of the individuals is chosen randomly in the
neighborhood.

Step 4. Generate a new population P′(t) from P(t) by using
a crossover operator.

Step 5. Apply a mutation operator to the newly generated
population P′(t).

Step 6. Calculate the fitness both of P(t) and P′(t).

Step 7. SelectM individuals from all population members on
the basis of the fitness.

Step 8. If a terminal condition is satisfied, stop and return the
best individuals. Otherwise set t = t + 1 and go to Step 2.

In this procedure, update of the current population size is
always constant M. Here, to avoid the rapid loss of genetic

(k − 2)t (k − 1)t (k)t (k + 1)t

Time (t)

u(k − 2)

u(k − 1)

û(k|k)(= u(k))

û(k + 1|k)

Past Now Future

Figure 2: Interpolation based on a 2nd-order spline sampling
function using predictive future control inputs.

diversity, multiple equivalent individuals are eliminated from
the current population.

As a result of exploratory experiments using the multiob-
jective ranking [16], the following facts have been obtained
by comparison with the standard genetic algorithm (GA).

(i) By using the proposed method, the solutions are
widely distributed in the trade-off surface, and the
search performance does not deteriorate significantly.

(ii) The standard GA approaches cause the partial con-
vergence of the solutions because of stochastic errors
in the iterative process.

(iii) It is clear that the proposed method can seek for the
widely distributed solutions in comparison with the
standard GA.

Therefore, it is judged that the proposed dividing genetic
computation method is expected to be effective for the
minimax RHC problem.

4.2. Interpolation Using Predictive Control Inputs. Generally,
the interpolation of samples in the DA conversion is executed
by a convolution of samples by using sampling function.
In the case of sampled-data control system, to interpolate
the current interval, the future sample is need. But, the
information about future sample is unable to be obtained in
the present time. Hence, we need to wait to obtain this future
sample information. As a result, the time-delay is occurred.
However, in the case of controlling systems with relatively
fast-moving dynamics, such as robots or vehicles, the method
with long time-delay is unable to be applied. That is the
point. Therefore, a new idea to use the predictive control
inputs obtained by RHC for interpolation is proposed.

In RHC, the optimal control inputs {û(k | k), û(k + 1 |
k), . . . , û(k +N − 1 | k)} are calculated in each step, and only
the first control input û(k | k) is used as a real control input.
Therefore, we consider to use the other optimal control
inputs {û(k+1 | k), û(k+2 | k), . . .} as virtual future sampling
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−2t −t 0

1

t 2t

Time (t)

−t 0

1

t
Time (t)

−t/2 t/20

1

Time (t)

2

1

0

m

Time (t)

Time (t)

Time (t)

Sampling function Interpolated signal

Figure 3: Sampling functions Ψ and their interpolations (m =
1, 2, 3) (τ: sampling interval).

points. Actually, it is only necessary to use the optimal
control inputs which are need for interpolation according to
the sampling function. Figure 2 shows an example of this way
by using the 2nd-order spline function for interpolations.
Only û(k+ 1 | k) is used as a virtual future sampling point in
this case.

Hence, by using the predictive control inputs for inter-
polation, it becomes possible to reduce the time-delay in
the DA conversion, and the total waiting-time is just only
computation time of optimization in current step.

Of course, one needs to take account that there is a
difference between virtual future sampling points and real
sampling points like û(k + 1 | k) /=u(k + 1) in future
step. However, we consider that this point is not a critical
problem because the influence on interpolated waveform
due to prediction error is not so big compared to the scale
of prediction error. Although the differentiability of each
sampling function is lost at sampling points, this also does
not become a critical problem compared to the zero-order
hold, and it is possible to keep a certain level of smoothness.

4.3. Adaptive DA Converter. The spline functions provide
various sampling functions with all kinds of orders. There-
fore, we consider switching the spline functions optimally
according to the system status in the adaptive DA converter.
In this paper, we use the spline functions with the order m =
0, 1, 2 as sampling functions. Namely, in the case of m = 0,
the sampling function is equivalent to the staircase function.
In the case of m = 1, it is the 1st-order piecewise polynomial
function, and in m = 2, 2nd-order one as shown in Figure 3.

Appropriate selecting the values of m according to the object
enables to deal with DA conversion flexibly and precisely in
the interpolation operation. Although the interpolation is
more precisely in the case of using the spline function with
m = 3 or more, it is difficult to apply to fast-moving dynamic
systems due to the bigger amount of calculation. Therefore
we use only the spline functions with the order m = 0, 1, 2.

The interpolated signals in the closed-open interval
[kτ, (k + 1)τ) using these sampling functions are obtained
as follows:

u(t) =
k+1∑

l=k

{
u(l)·1,2Ψ(t − lτ)

}
(m = 0, 1),

u(t) =
k+2∑

l=k−1

{
u(l)·3

[c]Ψ(t − lτ)
}

(m = 2),

(30)

where Ψ(·) is sampling function as shown in Figure 3, and
where u(t) and u(l) are analog signal and digital signal,
respectively.

Figure 4 shows the entire controlled system with the
proposed RHC and the adaptive DA converter. As shown
in Figure 4, the adaptive DA converter has internal model
with sampling interval τ/d. Please take notice that this
internal model 2 is different from interval model 1 in which
sampling interval is just τ. The interval to be interpolated
is also partitioned to d sections, and the partitioning points
um( j; k), ( j = 1, 2, . . . ,d − 1) on interpolated waveforms are
used for the selection of parameter m, that indicates the
degree of spling sampling functions:

The partition points um( j; k) are calculated as follows,

um
(
j; k
) =

k+φ−1∑

1=k−φ

{
u(l)·mψ

(
(k − 1)τ +

τ

d
· j − lτ

)}

(
j = 1, 2, . . . ,d − 1

)
,

(31)

where φ is the number of samples which the sampling
function needs for interpolation, and it is adjusted according
to the sampling function.

Figure 5 shows the difference of the interpolation and
partition points according to the sampling function with
m = 0, 1, 2 in the case of d = 5. How to select the values
of m in each interval is summarized as follows. Each value of
sample on the partition point is calculated from the state-
space equation (2) in the current interval. The evaluation
values using J(k) in (6) are calculated in each m. Then, the
parametermwhose evaluation value is the smallest is selected
for this interval.

From several test simulation results, it has been obtained
that the partition number d = 5 is most appropriate by the
trade-off between computation time and precision.

5. Numerical Example

In this section, an example that illustrates the effectiveness of
the proposed method is given. The example is adopted from
the benchmark problem in [20] as shown in Figure 6.
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Figure 4: Proposed RHC systems with adaptive DA converter.

(k − 1)t (k)t

u(k − 1)
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(1)m = 1
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u(k)

t

u(t)
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Figure 5: Interpolation ways (d = 5).

u m1 m2

x1 x2

K

Figure 6: Coupled spring-mass system.

Although the original system consists of a two-mass-
spring system without noise for output, the bounded noise is
added to demonstrate the proposed method. The state-space
equations are obtained as follows:

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.1 0

0 1 0 0.1

−0.1K/m1 0.1K/m1 1 0

0.1K/m2 0.1K/m2 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(k)

x2(k)

x3(k)

x4(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0.1/m1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(k),

(32)

Table 1

α in the BLX-α method 0.5

Population size 50

Mutation rate 0.10

Maximum generation 100

The number of dividing region 50× 50 = 2500

Table 2: Upper bound values of Kmax.

Method Kmax

Proposed method 79.47

Cuzzola’s method [7] 68.28

Kothare’s method [6] 45.36

where m1 and m2 are the two masses and K is the spring
constant. State variables x1 and x2 are the positions of the
two masses, respectively, and x3 and x4 are their velocities.
Now we assume the following perturbations of m2 and K :

m2 ∈ {m2 | 1 ≤ m2 ≤ 10},
K ∈ {K0.5 ≤ K ≤ Kmax},

(33)

and m1 is constant equaled to 1. The weighting matrices are
fixed asQ = I and R = 0.5. The constraint condition of input
|u(k)| ≤ 1 must be satisfied. This means that Pu = 1. And
the constraints of external disturbance, η, are set Pη = 36.0.
A prediction horizon of the RHC is set N = 10.

Furthermore, the following GA parameter specifications
are used in the simulation. These values have been selected
from several tests(see Table 1).

The results as follows are the best ones in having repeated
20 times.

Figure 7 shows the closed-loop response of the output.
From this figure, we can say that the proposed method has
good robust performance.

Figure 8 shows the change of the parameter m of the
adaptive DA converter. From this figure, we can see that the
spline function with m = 0 (staircase function) is likely
to be selected when the control input stays flat, and the
function with m = 1 (piecewise linear function) is selected
when the control input changes rapidly. The function with
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Figure 7: Closed-loop response.
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Figure 8: Illustration of Switching ways of sampling functions in
the interpolation.

m = 2 (piecewise quadratic function) is also likely to be
selected when the control input changes smoothly. These are
natural results, but please take notice that the tiny difference
of control input causes a big influence on the result, in the
case of the systems with fast-moving dynamics. Therefore,
it is important to select the appropriate value of m in each
interval flexibly for better control performance. Moreover,
longer the sampling interval, the improvement of control
performance is expected to be more conspicuous using the
proposed method.

To show the fact that the proposed method can reduce
the conservativeness, the maximum values of Kmax by the

Table 3

CPU Intel Core2 Duo U7700 1.33 GHz

Memory 2 GB RAM

OS Windows Vista Business

proposed method, the technique in [6], and the one in [7]
are searched, respectively, within the limits of holding the
feasibility of the robust RHC problem. Then results obtained
are indicated in Table 2.

From Table 2, we can see that the result by proposed
method is much better than the one in [6] and slightly
better than the one in [7]. We can see therefore that the
proposed method with the dividing genetic computation can
realize the less conservative control performance than the
preexisting methods in [6, 7].

To examine the performance of the dividing genetic
computation method, comparisons of computation time
with NSGA-II [21] and SPEA-II [22] are done.

Computation environment using a software, “MATLAB
7.8.0”, is asshown in Table 3.

Then, maximum computation time of the feedback gain
matrix F per each step in the robust RHC by using the
dividing genetic computation method is 0.04 second. On
the other hand, the times by NSGA-II and by SPEA-II
are indicated by the same value 0.02 second. Although the
proposed method takes twice time compared with NSGA-II
and SPEA-II, it can be said that the proposed method can be
practicable in such a time.

Moreover, the upper bound values of Kmax by the
proposed method, by NSGA-II [21], and by SPEA-II [22] are
calculated, respectively. As a result, values are obtained: 79.47
by proposed method as above mentioned, 78.98 by NSGA-II,
and 79.28 by SPEA-II, respectively. Judging from this, we can
say that the proposed method might be somewhat excellent
for the reducing the conservativeness of control performance
compared with them.

6. Conclusion

The new approach of minimax robust finite RHC method
based on dividing genetic computation for constrained
sampled-data control systems with structured uncertainties
and disturbance has been proposed. At the same time,
a numerical example is given to show that the proposed
method improves the control performance.

Although the dividing genetic computation method is
able to uniformly control the convergence of solutions of
the minimax RHC design problems, more performance
investigation of this method is compared with other GA
methods, for example, NSGA-II, SPEA-II, and so on, or other
heuristic optimization methods, for example, Particle Swarm
Optimization [23], Ant Colony Optimization [24], and so
on, as future works.

Moreover, I also need to develop the selection method of
the best sampling function according to the control object,
and need to make sure the effectiveness of the proposed
method in various control objects as future works.
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Appendix

The proposed minimax approach is easily extended to sys-
tems with other constraints which are specified by ellipsoidal
bounds, for example, state estimation errors, and so on as
follows.

In the case that x(k) is not full measured, we need to
estimate x(k), where the bound of estimation error e(k) =
x(k)− x̂(k) is guaranteed as an ellipsoidal set as

eT(k)Pee(k) ≤ 1, (A.1)

where Pe is a positive symmetric matrix for weight. This
specification of estimation error is standard one. Now we
introduce He as

He :=
[

1 0 · · · 0 −x̂(k)
]

, (A.2)

and then the relation of e(k) = Heζ is hold. And the
condition below is also held:

ζT
(
HT

1 H1 −HT
e PeHe

)
ζ ≥ 0. (A.3)

Since this condition has same form as other constraints in
(7), we can include this condition into the condition of
problem (26) by using a new variable τe. Furthermore, in this
case, a new output equation with measurement noise ψ(k) is
needed as follows instead of (4):

y(k) = Cx(k) + ψ(k)
(
ψT(k)Pψψ(k) ≤ 1

)
. (A.4)

We can also include this constraint into the condition of
problem (26) by using a new variable τψ .
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