
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2010, Article ID 185063, 11 pages
doi:10.1155/2010/185063

Review Article

A Review of Constraint-Handling Techniques for
Evolution Strategies

Oliver Kramer

International Computer Science Institute, Berkeley, CA 94704, USA

Correspondence should be addressed to Oliver Kramer, okramer@icsi.berkeley.edu

Received 24 September 2009; Accepted 6 January 2010

Academic Editor: Chuan-Kang Ting

Copyright © 2010 Oliver Kramer. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Evolution strategies are successful global optimization methods. In many practical numerical problems constraints are not
explicitly given. Evolution strategies have to incorporate techniques to optimize in restricted solution spaces. Famous constraint-
handling techniques are penalty and multiobjective approaches. Past work has shown that in particular an ill-conditioned
alignment between the coordinate system of Gaussian mutation and the constraint boundaries leads to premature convergence.
Covariance matrix adaptation evolution strategies offer a solution to this alignment problem. Last, metamodeling of the constraint
boundary leads to significant savings of constraint function calls and to a speedup by repairing infeasible solutions. This work gives
a brief overview over constraint-handling methods for evolution strategies by demonstrating the approaches experimentally on
two exemplary constrained problems.

1. Introduction

Many continuous optimization problems in practical appli-
cations are subject to constraints [1]. Constraints can make
an easy problem hard and hard problems even harder.
Surprisingly, in the past only little research efforts have
been devoted to the development of efficient and effective
constraint-handling techniques—in contrast to the energy
invested in the development of new methods for uncon-
strained optimization. This observation also holds true in
the field of evolutionary computation. This paper is devoted
to constraint-handling techniques that have been developed,
in particular for evolution strategies. It summarizes our
line of research of the last years in the field of constraint-
handling and premature step-size reduction [2–7]. In real-
valued solution spaces a constrained problem can be hard
to solve due to a coordinate system alignment problem
that leads to premature fitness stagnation. We review not
only various general approaches like penalty functions, but
also specialized approaches that have been developed to
solve coordinate alignment problems, by summarizing each
constraint-handling method, stating experimental results on
two exemplary test functions and discussing advantages and
disadvantages.

The remainder of this section gives a brief introduc-
tion to evolution strategies, constrained problems, and
a taxonomy of constraint-handling techniques. Section 2
introduces three examples from the famous family of penalty
functions. A bioinspired multiobjective approach is reviewed
in Section 3. The methods that concentrate on coordinate
system alignment are presented in Section 4, while Section 5
is devoted to metamodeling of the constraint boundary.

1.1. Evolution Strategies. Evolution strategies (ES) are a
family of strong stochastic methods for global optimization.
Developed by Rechenberg [8] and Schwefel [9], they have
become famous for global numerical optimization, that is,
nonconvex optimization in RN . In each iteration λ offspring
solutions are produced and the μ best are selected as parents
for the following generation. An important basis of ES is
the self-adaptive Gaussian mutation operator that we briefly
repeat in this context. An individual a of a (μ+,λ)-ES with the
N-dimensional objective variable vector x ∈ RN is mutated
in the following way:

x′ := x + z,

z := (σ1N1(0, 1), . . . , σNNN (0, 1)),
(1)



2 Applied Computational Intelligence and Soft Computing

while Ni(0, 1) delivers a Gaussian distributed number. The
strategy parameter vector undergoes mutation—a typical
variation of σ—with log-normal mutation:

σ ′ := e(τ0N0(0,1)) ·
(
σ1e

(τ1N1(0,1), . . . , σNe(τ1NN (0,1)
)

, (2)

as crossover operator arithmetic recombination is applied in
most cases. For a detailed introduction to ES we recommend
the introduction by Beyer and Schwefel [10] or the introduc-
tory chapter to ES in Eiben’s book [11].

1.2. Constrained Problems. In the field of evolutionary
computation the constraints typically are not considered
available in their explicit formal form. Rather, the constraints
are assumed to be black boxes: a vector x fed to the black
box just returns a numerical or boolean value. If there
is a numerical response, then the information about a
positive value can be used to assess the distance to feasible
solutions. A number of constraint-handling methods exploit
this information. In general, the constrained continuous
nonlinear programming problem is defined as follows: find a
solution x = (x1, x2, . . . , xN )T in the N-dimensional solution
space RN that minimizes the objective function f (x), in
symbols as:

f (x) −→ min!, x ∈ RN subject to

inequalities gi(x) ≤ 0, i = 1, . . . ,n1,

equalities hj(x) = 0, j = 1, . . . ,n2 .

(3)

A feasible solution x ∈ RN satisfies all n1 inequality and
n2 equality constraints. A feasible solution that minimizes
f (·) is termed as an optimal solution. If gi(x∗) = 0 for
some inequality constraint at an optimal solution x∗, then
the constraint is said to be active. We assume that the
evaluations of the constraint functions are computationally
expensive and that the return values are boolean and provide
the information of whether the solution is feasible or not.
In order to be able to develop more advanced constraint-
handling techniques, for example, repair or feasibility check
approaches, metamodels of the constraint function can be
built with certain assumptions, that is, to be linear, quadratic,
and so forth.

The two following test functions excellently demonstrate
the phenomenon of premature fitness stagnation that will be
discussed in the following sections and that is a challenge for
most constraint-handling techniques. The two functions will
be used for the discussion of the methods reviewed in the
current paper. Problem 2.40—taken from Schwefel’s artificial
test problems [10]— exhibits a linear objective function and
an optimum with five active linear constraints. The problem
is to minimize

f2.40(x) = −
5∑

i=1

xi, (4)

subject to

g2.40(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj ≥ 0, for j = 1, . . . , 5,

−
5∑

i=1

(9 + i)xi + 50000 ≥ 0, for j = 6

(5)

with minimum x∗ = (5000, 0, 0, 0, 0)T and f (x∗) = −5000.
The second problem is called tangent problem (TR). It is

based on the sphere model subject to one linear constraint:

fTR(x) =
N∑

i=1

xi with gTR(x) =
∑
xi −N > 0 (6)

with x∗ = (1, . . . , 1)T and f (x∗) = N . The success rates
on TR get worse when approximating the optimum. In
this paper we will focus on the TR problem with N = 2
dimensions, denoted as TR2.

1.3. A Brief Taxonomy of Constraint-Handling Methods. A
variety of constraint-handling methods for evolutionary
algorithms have been developed in the last decades. Most of
them can be classified into five main types of concepts.

(i) Penalty functions decrease the fitness of infeasible
solutions by taking the number of infeasible constraints or
the distance to feasibility into account [12–16]. The history
of penalty functions began with the sequential unconstrained
minimization technique by Fiacco and McCormick [13] in
which the constrained problem is solved by a sequence
of unconstrained optimizations. The penalty factors are
stepwise intensified. In similar approaches penalty factors
can be defined statically [14] or depending on the number
of satisfied constraints [16]. They can dynamically depend
on the number of generations as Joines and Houck propose
[15]:

f̃ (x) = f (x) + (C · t)α ·G(x), (7)

at generation t, parameters C and α are user defined; typical
settings are C = 0.5, α = 1, or 2. G(x) is a measure for
the constraint violation. A frequent definition is G(x) =∑n1

i=1 max[0, gi(x)]β +
∑n2

j=1 |hj(x)|γ with factors β ≥ 1 and
γ ≥ 1. Penalties can be adapted according to an external
cooling scheme [15] or by adaptive heuristics [12]. In the
death penalty approach [5] infeasible solutions are rejected
and new solutions are created until enough feasible ones
exist. In the segregated genetic algorithm by Riche et al.
[17] two penalty functions, a weak one and an intense
one, are calculated in order to surround the optimum. In
the coevolutionary penalty function approach by Coello
Coello [18] the penalty factors of an inner evolutionary
algorithm are adapted by an outer evolutionary algorithm.
Some methods are based on the assumption that any feasible
solution is better than any infeasible one [19, 20]. Examples
are the metric penalty functions by Hoffmeister and Sprave
[21]. Feasible solutions are compared using the objective
function while infeasible solutions are compared considering
the satisfaction of constraints. Similar is the approach by



Applied Computational Intelligence and Soft Computing 3

Oyman et al. [22]. Their fitness function depends on the
parent and children population at every generation and,
therefore, becomes a dynamic approach.
In his approach called stochastic-ranking Runarsson [23] he
uses metamodels to predict both fitness functions values and
penalties based on constraint violations. From this point of
view the approach is related to methods that are based on
metamodeling the constraint boundary.

(ii) Repair algorithms either replace infeasible solutions
or only use the repaired solutions for evaluation of their
infeasible pendants [24, 25]. This class of algorithms can also
be seen as local search methods that reduce the constraint
violation. The repair algorithm generates a feasible solution
from an infeasible one. In the Baldwinian case, the fitness
of the repaired solution replaces the fitness of the original
solution. In the Lamarckian case, the feasible solution
overwrites the infeasible one. In general, defining a repair
algorithm can be as complex as solving the problem itself.

(iii) Decoder functions map genotypes to phenotypes
which are guaranteed to be feasible. Decoders build up a
relationship between the constrained solution space and an
artificial solution space easier to handle [25–27]. They map
a genotype into a feasible phenotype. By this means even
quite different genotypes may be mapped onto the same
phenotype. Eiben and Smith [11] define decoders as a class of
mappings from the genotype space S′ to the feasible regions
F of the solution space S with the following properties:
every z ∈ S′ must map to a single solution s ∈ F ,
every solution s ∈ F must have at least one representation
s′ ∈ S′, and every s ∈ F must have the same number of
representations in S′ (this need not be one).

(iv) Feasibility preserving representations and operators
force candidate solutions to be feasible [28, 29]. A famous
example is the GENOCOP algorithm [27] that reduces the
problem to convex search spaces and linear constraints. A
predator-prey approach to handle constraints is proposed by
Paredis [28] using two separate populations. Schoenauer and
Michalewicz [29] propose special operators that are designed
to search regions in the vicinity of active constraints.
A comprehensive overview to decoder-based constraint-
handling techniques is given by Coello [25] and also by
Michalewicz and Fogel [27].

(v) Multiobjective optimization techniques are based on
the idea of handling each constraint as an objective [30–35].
Under this assumption many multiobjective optimization
methods can be applied. Such approaches were used by
Parmee and Purchase [34], Jimenez and Verdegay [32],
Coello Coello [31], and Surry et al. [36]. In the behavioral
memory-method by Schoenauer and Xanthakis [35] the EA
concentrates on minimizing the constraint violation of each
constraint in a certain order and optimizing the objective
function in the last step.

Of course, constraint-handling methods exist that do
not fit into the taxonomy. Montes and Coello Coello [37]
introduced a technique based on a multimembered ES
with a feasibility comparison mechanism. The ε-constrained
differential evolution approach by Takahama and Sakai [38]
combines the usage of an ε for equality constraints with
differential evolution. The dynamic multiswarm particle

Table 1: Experimental results of the death penalty method.

Death penalty best mean dev ffe cfe

TR2 4.1 · 10−7 3.1 · 10−4 3.8 · 10−4 11,720 20,447

2.40 51.9 227.6 65.2 50,624 96,817

optimizer by Liang and Suganthan [39] makes use of a set
of subswarms concentrating on different constraints. It is
combined with sequential quadratic programming as a local
search method. The approach of Mezura-Montes et al. [40]
combines differential evolution, different mutation operators
to increase the probability of producing better offspring,
three selection criteria, and a diversity mechanism. Mezura-
Montes [41] approach gives a survey of constraint-handling
methods for evolutionary algorithms.

In the following section we will compare various appro-
aches from different fields and compare them, in particular
with regard to the mentioned premature step-size problem.
The next section shows this problem experimentally.

2. Penalty Methods

Evolutionary search is guided by the quality of its candidate
solutions. Consequently, an obvious solution to constraint-
handling is to deteriorate the fitness of infeasible methods
[11, 25]. Here we review three penalty functions exemplarily.
Death penalty is the simplest way, but wastes comparably
many constraint function calls. Paragraph 2.2 is a typical
penalty technique where the solutions are penalized with
regard to the progress of the search. The death penalty
step control approach that prevents premature step-size
reduction is reviewed in Section 2.3.

2.1. Death Penalty. First of all, we will analyze the behav-
ior of death penalty, that is, simply discarding infeasible
offspring solutions [42, 43]. This is the first time we can
observe premature fitness stagnation. Table 1 shows the
corresponding results of a (15,100)-ES with the following
settings on problems 2.40 and TR2. We use the mutation
introduced in Section 1.1 with settings τ0 = (

√
2N)−1 and

τ1 = (
√

2
√
N)−1 and arithmetic recombination with ρ =

2 randomly chosen parents. All experiments in this article
make use of the same experimental settings unless stated
explicitly. The termination condition is fitness stagnation:
the algorithms terminate if the fitness win from generation
t to generation t + 1 falls below θ = 10−12. In this case
the magnitude of the step sizes is too small to effect further
improvements. Parameters best, mean, and dev describe the
achieved fitness (difference between the optimal fitness and
the fitness of the best solution | f (x∗) − f (xbest)|) of 25
experimental runs while ffe counts the average number of
fitness function evaluations and cfe of constraint function
evaluations, respectively. The results show that death penalty
is not able to approximate the optimum of the problem
satisfactorily. The relatively high-standard deviations dev
show that the algorithms produce unsatisfactorily different
results.



4 Applied Computational Intelligence and Soft Computing

Table 2: Experimental results of the dynamic penalty function by
Joines and Houck [15] on problems TR2 and 2.40.

best mean dev ffe cfe

TR2 1.2 · 10−6 1.2 · 10−3 1.5 · 10−3 13,100 13,100

2.40 219.4 440.8 85.0 31,878 31,878

We can summarize the behavior of death penalty menti-
oning the advantage that death penalty is easy to implement.
The disadvantages are that death penalty is inefficient as
many infeasible tries are wasted, and it suffers from prema-
ture convergence. The following methods aim at preventing
premature convergence.

2.2. Dynamic Penalty Functions. The question arises whether
dynamic penalty functions also suffer from premature
convergence. To answer this question we tested the penalty
function by Joines and Houck [15] that is based on adding a
penalty on infeasible solutions

f̃ (x) = f (x) + (C · t)α ·
n1∑

i=1

G
β
i (8)

with parameters C,α, β and the constraint violation Gi(x) =∑n1
i=1 max[0, gi(x)]β. The penalty depends on the number

of iterations t and decreases in the course of time. Table 2
shows the experimental analysis of the penalty function on
2.40 and TR2 with α = 1.0 and β = 1.0. Again, the
algorithm is based on a (15,100)-ES with the same settings
like in the last paragraph 2.1. The algorithm stops earlier,
but the results are even worse and show that premature
fitness stagnation occurs, too. The reason is quite obvious:
the success rate in the vicinity of the infeasible search space
remains small because of the penalty—no matter whether
caused by discarding or penalizing. Consequently, we can
summarize as follows: dynamic penalty functions are easy to
implement, and no feasible starting point is required. But the
disadvantages are that dynamic penalty functions suffer from
premature convergence. Related work on penalty functions
can be found in [12–16].

2.3. Death Penalty Step Control. The most obvious mod-
ification to prevent premature step-size reduction is the
introduction of a minimum step-size ε for the mutation
strengths σi with 1 ≤ i ≤ N :

σi ≥ ε. (9)

This is exactly what the death penalty step control evolution
strategy (DSES) is aiming at [5]. Nevertheless, a lower
bound on the step sizes will also prevent an unlimited
approximation of the optimum when reaching the range of ε.
Consequently, the DSES makes use of a control mechanism
to reduce ε during convergence to the optimal solution.
The reduction process depends on the number of infeasible
mutations produced when reaching the area of the optimum
at the boundary of the feasible solution space. The reduction
process of ε depends on the number z of rejected infeasible

solutions: in every 
 infeasible trial, ε is reduced by a factor
0 < ϑ < 1 according to the equation

ε′ := ε · ϑ. (10)

The DSES is denoted by [
; ϑ]-DSES. Again, we show the
behavior of the constraint-handling method on problem TR2
and 2.40; see Table 3. The method is able to approximate
the optimum of problem 2.40 with comparably few fitness
function evaluations, but a waste of constraint function
evaluations. Intuitively, the five active linear constraints of
problem 2.40 cause many infeasible samples, so does the
step-sizes reduction mechanism. On harder problems like
TR2 the low success rates still prevent an arbitrarily exact
approximation of the optimal solution. The success of the
DSES depends on a proper reduction speed, that is, proper
parameter settings for ε and ϑ. Too fast reduction results
in premature convergence; too slow reduction is inefficient.
Further experiments on other test functions confirm this
picture.

Again, we summarize the following results: death penalty
step control is easy to implement, and shows an improvement
of the approximation of optima with active constraints.
But the disadvantages are that death penalty step control
consumes many constraint function evaluations, its success
depends on proper parameter settings, and on some prob-
lems it may still suffer from low success rates. A more detailed
experimental analysis of the DSES can be found in [4, 5].

3. A Multiobjective Bioinspired Approach

A familiar variant to handle constraints is to treat each
constraint—or an aggregated sum of all constraints—and the
objective function as separate objectives in a multiobjective
formulation. Similar approaches have been introduced in the
past [30–35]. Here we review a similar constraint-handling
technique that treats the fulfillment of constraints and the
optimization of the objective function as separate objectives
that are optimized using a population specific selection
scheme. The bioinspired concept offers an answer to the
problem of low success rates: our two-sex evolution strategy
(Kramer and Schwefel [5]) allows candidate solutions to
cross the constraint boundary. The mechanism to enforce
the approach of the optimum stems from nature. Individuals
of different sex are selected by different criteria and nature
allows pairing only between individuals of different sex.
Transferring this principle to constraint-handling means:
Every individual of the two sexes evolution strategy (TSES) is
assigned to a feature called sex. Similar to nature, individuals
with different sexes are selected according to different
criteria. Individuals with sex o are selected by the objective
function. Individuals with sex c are selected by the fulfillment
of constraints. The intermediary recombination operator
plays a key role. Recombination is only allowed between
parents of different sex. A few modifications are necessary
to prevent an explosion of the step size, that is, a two-step
selection operator for individuals of sex c similar to the
operator by Hoffmeister and Sprave [21]. For a list of TSES
variants and modifications we refer to [5]. The populations



Applied Computational Intelligence and Soft Computing 5

Table 3: Experimental results of the death penalty step control evolution strategy.

DSES Type best Mean dev ffe cfe

TR2 [15; 0.5] 3.7 · 10−9 8.5 · 10−6 2.5 · 10−6 1,253,394 2,315,574

2.40 [100; 0.7] 1.9 · 10−11 2.7 · 10−10 7.9 · 10−10 89,832 1,118,490

Table 4: Experimental results of the two-sex evolution strategy on
TR2 and 2.40.

TSES Type κ best mean dev ffe/cfe

TR2 (8+8,10+90) 200 5.4 · 10−8 2.9 · 10−7 4.7 · 10−8 521,523

2.40 (8+8,13+87) 50 0.0 0.0 3.7 · 10−11 498,594

are noted as (μo + μc, λo + λc)—the index determines the sex,
that is, o for objective function and c for constraints.

Table 4 shows the experimental results of the TSES on
problems TR2 and 2.40. While death penalty completely
fails on problem 2.40, the (8 + 8, 13 + 87)-TSES reaches
the optimum in every run. Now, a better approximation
of the harder problem TR2 is possible. Nevertheless, the
approximation quality may still be improved and an analysis
on further test problems—that can be found in [4]—shows
that the TSES is successful on many constrained problems,
but not on all. Fortunately, the TSES is quite robust to the
chosen population ratios.

We can summarize that the two-sex evolution strategy
improves the approximation of optima with active con-
straints, allows infeasible starting points, saves constraint
function evaluations, for example, in comparison to the
DSES, and is quite robust to parameter changes. But the
disadvantages are that the two-sex evolution strategy still con-
sumes many fitness function evaluations; on some problems
it may still suffer from low success rates, for example, on TR2.

4. Coordinate Alignment Techniques

In real-valued optimization the coordinate system plays an
important role. If the coordinate system of the mutation
operators, for example, of Gaussian mutation, is not aligned
to the coordinate system of the objective function—and
this is frequently the case in black-box optimization—
undesirable effects may occur like premature step-size reduc-
tion.

4.1. Premature Step-Size Reduction. The phenomenon of
premature step-size reduction at the constraint boundary has
been analyzed in [2]—in particular for the condition that the
optimum lies on the constraint boundary or even in a vertex
of the feasible search space. In such cases the evolutionary
algorithm frequently suffers from low success probabilities
near the constraint boundaries. Under simple conditions,
that is, a linear objective function, linear constraints, and
a comparably simple mutation operator, the occurrence of
premature convergence due to a premature decrease of step
sizes was proven. Figure 1 illustrates the reason for premature
step size reduction. We assume the simplified case in which
mutations are produced on the boundary of the circles.

Infeasible solution space

d
σ s1

x1

Feasible
solution space

Direction to
optimumd

σ

s2

x2

Figure 1: Illustration of the success probabilities at the constraint
boundary. In this simplified model we assume that mutations are
produced uniformly on the boundary of the circles. Both solutions
x1 and x2 lie close to the constraint boundary with distance d. In
case of small step sizes σ < d, the success probability (si/(2πσ)) is
higher than in the case of σ > d.

in case of large mutation strengths (x1) with σ > d the
region of success, that is, the marked part s1 of the circles,
is smaller in comparison to the whole circle than in the
case that the circle is not cut by the constraint boundary
(x2). Consequently, the probability to produce successful
mutations is higher for small step sizes and these mutations
are favored during optimization. This is a coordinate system
alignment problem: In case of N independent step sizes
and coordinate rotation the mutation circle can adapt to a
mutation ellipsoid whose region of success is not restricted
by the constraint boundary.

Arnold and Brauer [44] analyzed the behavior at the
boundary of linear constraints and models the distance
between the search point and the constraint plane with
a Markov chain. Furthermore, they discuss the working
of step length adaptation mechanisms based on success
probabilities.

4.2. Biased Mutation. The shape of the standard mutation
ellipsoid is Gaussian. The best modification to improve the
success rate situation would be a more flexible mutation
distribution function. Later, we will see that a rotation of
the mutation ellipsoid is a reasonable undertaking. But is a
deformation also an adequate solution to low success rates?
Biased mutation aims at biasing the mean of the Gaussian
distribution into beneficial directions self-adaptively [7].
A self-adaptive bias coefficient vector ξ determines the
direction of this bias and augments the degree of freedom
of the mutation operator. This additional degree of freedom
improves the success rate of reproducing superior offspring.



6 Applied Computational Intelligence and Soft Computing

The mutation operator adapts the bias direction within the
interval −1 (for left) and 1 (for right) in each of the N
dimensions:

ξ = (ξ1, . . . , ξN ) with− 1 ≤ ξi ≤ 1. (11)

This relative direction must be translated into an absolute
bias vector. For this sake the step sizes σi can be used. For
every i ∈ 1, . . . ,N the bias vector b = (b1, . . . , bN ) is defined
by

bi = ξi · σi. (12)

Since the absolute value of bias coefficient ξi is less than
or equal to 1, the bias will be bound to the step sizes σi.
This restriction prevents the search from being biased too far
away from the parent. Hence, the biased mutation works as
follows:

x′ = x + (σ1N1(0, 1) + b1, . . . , σNNN (0, 1) + bN )

= x + (σ1N1(ξ1, 1), . . . , σNNN (ξN , 1)).
(13)

To allow self-adaptation, the bias coefficients are mutated in
the following meta-EP way:

ξ′i = ξi + γ ·N (0, 1), i = 1, . . . ,N , (14)

with parameter γ determining the mutation strength on
the bias. The biased mutation operator (BMO) biases the
mean of mutation and enables the ES to reproduce offspring
outside the standard mutation ellipsoid. To direct the search,
the biased mutation enables the center of the ellipsoid
to move within the bounds of the regular step sizes σ .
An adaptive variant of the originally self-adaptive biased
mutation is the descent mutation operator. It estimates the
descent direction of two population’s centers χt and χt+1 of
successive generations. Let χt be the center of the population
at generation t:

χt =
μ∑

i=1

xi. (15)

The normalized descent direction ξ of two successive popu-
lation centers χt and χt+1 is

ξ = χt+1 − χt∣∣∣χt+1 − χt
∣∣∣
. (16)

Similar to the BMO, the descent mutation operator (DMO)
now becomes

x′ = x + (σ1N1(ξ1, 1), . . . , σNNN (ξN , 1)). (17)

The DMO is reasonable as long as the assumption of locality
is true: the estimated direction of the global optimum can be
derived from local information, that is, the descent direction
of two successive populations’ centers. Again, we analyze
both biased mutation operators on the test problems 2.40
and TR2 and show the results in Table 5. For the sake of
adaptation of the bias an increase of offspring individuals

Table 5: Experimental results of the biased mutation variants BMO
and DMO.

BMO best mean dev ffe cfe

TR2 1.6 · 10−6 9.0 · 10−4 2.9 · 10−4 26,832 25,479

2.40 8.2 · 10−12 2.2 · 10−7 2.4 · 10−8 459,774 508,387

DMO best mean dev ffe cfe

TR2 8.8 · 10−9 4.6 · 10−4 1.4 · 10−4 31,506 29,196

2.40 1.6 · 10−11 1.2 · 10−9 2.8 · 10−10 358,954 359,545

to λ = 300 is necessary. The bias mutation parameter is
set to the standard setting γ = 0.1. Our experiments show
that the BMO and the DMO are both able to improve
the results on problem 2.40. The experiments reveal that
the mutation distribution deformation improves the success
rate—intuitively by shifting the center of the mutation
ellipsoid so that the latter is not cut off by the infeasible
solution space. But the results show that the harder problem
TR2 is still not easy to approximate.

We can conclude that biased mutation improves the
approximation of optima with active constraints. Descent
biased mutation is comparatively efficient, in particular more
efficient than the BMO. But the disadvantages are that biased
mutation consumes many fitness and constraint function
evaluations, and on some problems it may still suffer from
low success rates.

4.3. Mutation Ellipsoid Rotation. Correlated mutation by
Schwefel [45] rotates the axes of the hyperellipsoid to adapt
to local properties of the fitness landscape. Three ways are
possible to rotate the mutation ellipsoid with the help of
Nα = N(N − 1)/2 possible rotation angles:

(1) a self-adaptive rotation—in this case the Nα rotation
angles become strategy parameters and the algorithm
has to tune itself,

(2) a rotation with the help of a coevolutionary
approach,

(3) with a metamodel of the constraint boundary that
delivers the orientation of the constraint boundary.

Table 6 shows the experimental results of self-adaptive
correlated mutation (SA-ES), a metaevolutionary approach
((3,15(3,15))-MA-ES) [5], and correlated mutation using
the metamodel estimator (MM-ES) with 10 and 30 binary
search steps. Correlated mutations make use ofNα additional
strategy parameters, that is, angles for the rotation of
the hyperellipsoid. The self-adaptation process of the SA-
ES fails to adapt the angles automatically. The parameter
space of N step sizes and Nα angles is too large to adapt
successfully by means of self-adaptation. The MA-ES is a
nested ES, that is, an outer ES evolves the angles of an
inner ES that optimizes the problem itself. Of course, this
approach is rather inefficient—as one fitness evaluation
of the outer ES causes a whole run of the inner ES on
the original problem—but the results demonstrate that
the rotation of the hyperellipsoid has a strong impact on



Applied Computational Intelligence and Soft Computing 7

Table 6: A comparison of correlated mutation, metaevolution, and
the metamodel-based ellipsoid rotation on TR2.

SA-ES MA-ES MM-ES (10) MM-ES (30)

Best 1.6 · 10−8 0 2.9 · 10−11 0.0

Mean 2.4 · 10−4 0 1.6 · 10−6 0.0

Dev 3.5 · 10−4 3.1 · 10−16 5.9 · 10−6 0.0

Ffe 22,445 927,372 18,736 11,998

Cfe 39,921 1,394,023 32,960 20,183

Table 7: Experimental analysis of the CMA-ES with death penalty.

CMA-ES (DP) best mean dev ffe cfe

TR2 0.0 0.0 5.8 · 10−16 6,754 12,019

2.40 0.0 0.0 1.3 · 10−13 19,019 71,241

the approximation capabilities on problem TR2. The MM-
ES approach is capable of estimating the proper rotation
angle and controlling the mutation ellipsoid to approximate
the optimum. We use the linear metamodel that will be
introduced in Section 5. The Nα rotation angles can be
computed estimating the normal vector nh of the estimated
hyperplane h and the axes of the mutation ellipsoid. This
is an easy undertaking in two dimensions. A comparison
between the MM-ES approach with 10 and with 30 binary
search steps shows that it is advantageous to invest search
for a precise metamodel estimation: a higher accuracy of the
metamodel delivers better approximation results.

Obviously, the coordinate system alignment problem is
solved with the mutation ellipsoid rotation. But the self-
adaptive rotation does not lead to satisfying results, while
the metaevolutionary approach is inefficient. In the following
paragraph we will investigate whether the covariance matrix
adaptation techniques, which are designed to align coordi-
nate systems, are able to adapt their covariance matrix to
constrained problems automatically without a metamodel.

4.4. Covariance Matrix Techniques. Past research on cons-
traint-handling missed to concentrate on covariance matrix
adaptation techniques. It is an astonishing fact that no
sophisticated constraint-handling techniques for these algo-
rithms have been introduced so far. Nevertheless, we will now
analyze whether the coordinate system alignment problem
can be solved with covariance matrix adaptation using death
penalty. The idea of covariance matrix adaptation techniques
is to adapt the distribution of the mutation operator such
that the probability to reproduce steps that led to the actual
population increases. This idea is similar to the estimation of
distributions approaches. The covariance matrix adaptation
evolution strategy (CMA-ES) was introduced by Hansen [46]
and Ostermeier [47]. The results of the CMA-ES on problems
TR2 and 2.40 can be found in Table 7. Amazingly, the CMA-
ES is able to cope with the low success rates around the
optimum of the TR problem. We observed that the average
number of infeasible solutions during the approximation
is 44%. This indicates that a reasonable adaptation of the
mutation ellipsoid takes place. An analysis of the angle

between the main axis of the mutation ellipsoid and the
constraint function shows that it converges to zero, the same
do the step sizes during approximation of the optimum.
Hence, the coordinate system alignment is successful.

We can conclude that the CMA-ES is able to align
the coordinate system automatically without a metamodel.
Recent results have shown that an acceleration can be
achieved if the covariance matrix is rotated with the help of a
metamodel exactly at the time when the constraint boundary
is reached [3].

5. Metamodeling of Constraints

In black-box scenarios the constraint boundaries are not
explicitly given. Metamodeling of constraints allows advan-
ced constraint-handling methods. Metamodels can be used
for various purposes, for example, for checking the feasibility
and for repair of infeasible mutations, and—like we have seen
in the previous section—for control of mutation ellipsoids
and covariance matrices. Metamodeling of objective func-
tions has developed to a successful standard in evolutionary
optimization [48–50].

5.1. Linear Constraint Estimation. For constraint metamod-
eling various classification and regression methods can be
applied. For the case of linear constraints a metamodel that
is based on sampling N infeasible points and binary search
on the segments to the last feasible point has been developed
[3]. The approach works as follows: first, the center point of
the model estimator is determined. When the first infeasible
offspring individual q1 is produced, the feasible parent x f is
the center of the corresponding metamodel estimator and
the distance becomes radius r of the model estimator. Then,
random points are generated on the surface of a hypersphere.
Point x f is the center of a hypersphere with radius r, such
that the constraint boundary is cut. In N dimensions N − 1
additional infeasible points qi, 1 ≤ i ≤ N − 1 have to
be produced. The model estimator produces the infeasible
points by sampling on the surface of a hypersphere with
radius r until a sufficient number of infeasible points are
produced. The points on the surface are sampled randomly
with uniform distribution using the method of Marsaglia
[51]. In the first step the algorithm produces N − 1 Gaussian
distributed points and scales the numbers to length 1.
Further scaling and shifting yields N randomly distributed
point on the hypersphere surface.

In a next step the binary search procedure is applied
to identify N points s1, . . . , sN on the constraint boundary:
the line between the feasible point x f and the ith infeasible
point qi cuts the real constraint hyperplane h∗ in point s∗i .
We approximate s∗i with binary search on this segment. The
center si of the last interval defined by the last points of the
binary search is an estimation of point s∗i on h0. Figure 2
illustrates the situation. With regard to the estimated angle
error φ, the real hyperplane lies between h∗1 and h∗2 .

In the last step we calculate the normal vector n0 of
h0 using the N points on the constraint boundary. We
assume that the points si, 1 ≤ i ≤ N , represent linearly
independent vectors as the endpoints of the lines they lie on



8 Applied Computational Intelligence and Soft Computing

have been generated in a random procedure. A successive
Gram-Schmidt orthogonalization of the (i + 1)th vector
on the ith previously produced vectors delivers the normal
vector n0 of h0. Note that we estimate the normal vector n0

of the linear constraint model h0 only one time, that is, when
the first infeasible solutions have been detected. Later update
steps only concern the local support point pt of the hyper-
plane (hence, in iteration t the linear model ht is specified
by normal vector n0 and current support point pt). At the
beginning, any of the points si may be the support point p0.
For later update steps two cases have to be distinguished. Let
dt0 be the distance between the mutation ellipsoid center ct0
and the constraint boundary ht0 at time t0 and let k be the
number of binary search steps to achieve the angle accuracy
of δ < 0.25◦.

(1) The search (i.e., the center of the mutation ellipsoid)
ct approaches ht: if distance dt between ht and ct0
becomes smaller than dt0 /2

k, a reestimation of the
support point pt is reasonable.

(2) The search ct moves parallel to ht: an exceeding of
distance

ct0 − ct =
√√√√ 1

tan
(
φ
)2 + 4 · dt0 (18)

with φ = 0.25 · (0.57)3k causes a reestimation of ht.

We use 4k binary steps on the line between the current
infeasible solutions and ct to find the new support point pt.

For nonlinear constraints other regression or classifi-
cation techniques may be taken into account like support
vector regression or support vector machines [52].

5.2. Feasibility Check. A metamodel can be used to check
the feasibility of new solutions in order to reduce constraint
function evaluations [3]. For this purpose an exact esti-
mation of the constraint boundary is necessary. Potentially
feasible solutions are checked for feasibility with a real
evaluation of the constraint function. Two errors for the
feasibility prediction of individual xt are possible.

(1) The model predicts that xt is feasible, but it is not.
Points of this category are examined for feasibility.
This will cause an unnecessary constraint function
evaluation.

(2) The model predicts that xt is infeasible, but it is
feasible. The individual will be discarded, but may be
a very good approximation of the optimum.

Exemplarily, we take the linear constraint metamodel of
the previous paragraph into account and test the feasibility
check approach. A safety margin δ can reduce the number
of errors of type 2. We set δ to the distance d of the
mutation ellipsoid center c and the estimated constraint
boundary ht. Hence, the distance between c and the shifted
constraint boundary h′t becomes 2d. A regular update of
the constraint boundary support point pt is necessary; see
previous Section 5.1. Table 8 shows the results of the CMA-
ES with feasibility check using the constraint metamodel.

Feasible search space

x f

r

s1

s2

q1

q2

h∗1 ht

h∗2

Infeasible search space

Figure 2: Procedure to estimate the constraint boundary h0 in two
dimensions: the method performs binary search on the segments
between a feasible point x f and each two infeasible points q1, q2 to
estimate two points s1, s2 on the metamodel.

Table 8: Results of the CMA-ES with feasibility check based on the
linear metamodel.

CMA-ES (check) best mean dev ffe cfe

TR2 0.0 0.0 6.9 · 10−16 6,780 7,781

2.40 0.0 0.0 1.8 · 10−13 19,386 34,254

Table 9: Results of the CMA-ES with repair mechanism based on
the linear metamodel.

CMA-ES (repair) best mean dev ffe cfe

TR2 0.0 0.0 5.5 · 10−16 3,432 5,326

2.40 0.0 0.0 9.1 · 10−14 16,067 75,705

We can observe a significant saving of fitness and constraint
evaluations with a high approximation capability.

5.3. Solution Repair. The repair approach projects infeasible
mutations onto the constraint boundary ht. We assume
the angle error φ that can be estimated by the number of
binary search steps k. In the solution repair approach the
projection vector is elongated by length δ. Figure 3 illustrates
the situation. Let pt be the support point of the hyperplane
ht at time t and let xi be the infeasible solution. It holds that
a2 + b2 = d2 and δ/b = tanφ. We get

δ =
√
a2 − d2 · tanφ. (19)

The elongation of the projection into the potentially fea-
sible region guarantees feasibility of the repaired individuals.
Nevertheless, it might prevent fast convergence, in particular
in regions far away from the hyperplane support point pt
as δ grows with increasing length of d. The center of the
hyperplane is updated every 10 generations. The results of
the CMA-ES repair algorithm can be found in Table 9. We
observe a significant decrease of fitness function evaluations,
in particular on problem TR2. The search concentrates on
the boundary of the infeasible search space, in particular on
the feasible site.

6. Summary

Many constraint-handling methods exist for evolution
strategies, at the head penalty functions. Due to low success



Applied Computational Intelligence and Soft Computing 9

Feasible search space

Infeasible search space

xr

δ

φ

pt

ht

a

b d

xi

Figure 3: The elongation of the projection of infeasible solution xi
onto the estimated constraint boundary ht by length δ ensures that
the repaired point xr is feasible.

Table 10: Results of the CMA-ES with covariance matrix rotation,
feasibility check, and repair mechanism [3].

CMA-ES (all) best mean dev ffe cfe

TR2 0.0 0.0 5.1 · 10−16 3,249 3,650

2.40 0.0 0.0 9.1 · 10−14 11,216 30,069

rates at the constraint boundary, ES without coordinate
alignment techniques often fail to find the optima in the
vertex of the feasible solution space. The death penalty step
control approach and the multiobjective biologically inspired
two-sex ES prevent a premature step-size reduction on some
problems, but its success depends on proper parameter
settings. Low success rates at the constraint boundary can
be increased with coordinate system alignment techniques.
A first step into this direction is biased mutation techniques,
that is, biased mutation and descent biased mutation.
Much better results can be achieved with metamodel-based
mutation ellipsoid rotation. This rotation cannot be achieved
self-adaptively, but automatically with covariance matrix
adaptation mechanisms. The latter shows excellent results,
even on hard problems like TR2. Further improvements of
the CMA-ES can be achieved with metamodeling: constraint
boundary surrogates can be used for prediction of feasibility
of mutations and for repair of infeasible solutions. At
last, Table 10 summarizes the best results that could be
achieved on the two problems combining the CMA-ES with
covariance matrix rotation, feasibility check, and repair of
infeasible solutions.

Metamodeling of constraints will probably become more
and more important for future research. Nonlinear models
will increase the accuracy of feasibility prediction. Advanced
regression methods will improve the accuracy of repaired
infeasible solutions. Further constraint-handling methods
are imaginable like adaptation of mutation probability
distributions and covariance matrices—also with non-linear
metamodels.

References

[1] C. Floudas and P. Pardalos, A Collection of Test Problems for
Constrained Global Optimization Algorithms, Springer, Berlin,
Germany, 1990.

[2] O. Kramer, “Premature convergence in constrained contin-
uous search spaces,” in Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature (PPSN
’08), pp. 62–71, Springer, Dortmund, Germany, 2008.

[3] O. Kramer, A. Barthelmes, and G. Rudolph, “Surrogate con-
straint functions for CMA evolution strategies,” in Proceedings
of the 32nd German Annual Conference on Artificial Intelligence
(KI ’09), pp. 169–176, Paderborn, Germany, September 2009.

[4] O. Kramer, S. Brugger, and D. Lazovic, “Sex and death: towards
biologically inspired heuristics for constraint handling,” in
Proceedings of the 9th Conference on Genetic and Evolutionary
Computation (GECCO ’07), pp. 666–673, ACM Press, London,
UK, July 2007.

[5] O. Kramer and H.-P. Schwefel, “On three new approaches
to handle constraints within evolution strategies,” Natural
Computing, vol. 5, no. 4, pp. 363–385, 2006.

[6] O. Kramer, C.-K. Ting, and H. Kleine Büning, “A muta-
tion operator for evolution strategies to handle constrained
problems,” in Proceedings of the 7th Conference on Genetic
and Evolutionary Computation (GECCO ’05), pp. 917–918,
Washington, DC, USA, June 2005.

[7] O. Kramer, C.-K. Ting, and H. Kleine Büning, “A new
mutation operator for evolution strategies for constrained
problems,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’05), pp. 2600–2606, Edinburgh, UK,
September 2005.

[8] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer
Systeme nach Prinzipien der Biologischen Evolution, Fromma-
nn-Holzboog, Stuttgart, Germany, 1973.

[9] H.-P. Schwefel, Numerische Optimierung von Computer-
Modellen Mittel der Evolutionsstrategie, Birkhäuser, Basel,
Switzerland, 1977.

[10] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies—a
comprehensive introduction,” Natural Computing, vol. 1, pp.
3–52, 2002.

[11] A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing, Springer, Berlin, Germany, 2003.

[12] J. C. Bean and A. B. Hadj-Alouane, “A dual genetic algo-
rithmfor bounded integer programs,” Tech. Rep., University
of Michigan, Kalamazoo, Mich, USA, 1992.

[13] A. Fiacco and G. McCormick, “The sequential unconstrained
minimization technique for nonlinear programming—a pri-
mal-dual method,” Management Science, vol. 10, pp. 360–366,
1964.

[14] A. Homaifar, S. H. Y. Lai, and X. Qi, “Constrained optimiza-
tion via genetic algorithms,” Simulation, vol. 62, no. 4, pp.
242–254, 1994.

[15] J. Joines and C. Houck, “On the use of non-stationary
penalty functions to solve nonlinear constrained optimization
problems with GAs,” in Proceedings of the 1st IEEE Conference
on Evolutionary Computation, D. B. Fogel, Ed., pp. 579–584,
IEEE Press, Orlando, Fla, USA, June 1994.

[16] A. Kuri-Morales and C. V. Quezada, “A universal eclectic
genetic algorithm for constrained optimization,” in Pro-
ceedings 6th European Congress on Intelligent Techniques &
Soft Computing (EUFIT ’98), pp. 518–522, Mainz, Aachen,
Germany, September 1998.

[17] R. G. L. Riche, C. Knopf-Lenoir, and R. T. Haftka, “A
segregated genetic algorithm for constrained structural opti-
mization,” in Proceedings of the 6th International Conference
on Genetic Algorithms (ICGA ’95), L. J. Eshelman, Ed., pp.
558–565, University of Pittsburgh, Morgan Kaufmann, San
Francisco, Calif, USA, July 1995.



10 Applied Computational Intelligence and Soft Computing

[18] C. A. Coello Coello, “Use of a self-adaptive penalty approach
for engineering optimization problems,” Computers in Indus-
try, vol. 41, no. 2, pp. 113–127, 2000.

[19] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer Methods in Applied Mechanics and
Engineering, pp. 971–978, 2001.

[20] D. Powell and M. M. Skolnick, “Using genetic algorithms in
engineering design optimization with non-linear constraints,”
in Proceedings of the 5th International Conference on Genetic
Algorithms (ICGA ’93), S. Forrest, Ed., pp. 424–431, University
of Illinois at Urbana-Champaign, Morgan Kaufmann, San
Francisco, Calif, USA, July 1993.

[21] F. Hoffmeister and J. Sprave, “Problem-independent handling
of constraints by use of metric penalty functions,” in Proceed-
ings of the 5th Conference on Evolutionary Programming (EP
’96), L. J. Fogel, P. J. Angeline, and T. Bäck, Eds., pp. 289–294,
MIT Press, Cambridge, UK, February 1996.

[22] A. I. Oyman, K. Deb, and H.-G. Beyer, “An alternative
constraint handling method for evolution strategies,” in
Proceedings of the Congress on Evolutionary Computation (CEC
’99), vol. 1, pp. 612–619, IEEE Service Center, Piscataway, NJ,
USA, July 1999.

[23] T. P. Runarsson, “Approximate evolution strategy using
stochastic ranking,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’06), pp. 2760–2767, IEEE,
Vancouver, Canada, July 2006.

[24] S. V. Belur, “CORE: constrained optimization by randomevo-
lution,” in Proceedings of the Late Breaking Papers at the
Genetic Programming Conference, J. R. Koza, Ed., pp. 280–286,
Stanford University, Stanford, Calif, USA, July 1997.

[25] C. A. Coello Coello, “Theoretical and numerical constraint
handling techniques used with evolutionary algorithms: a
survey of the state of the art,” Computer Methods in Applied
Mechanics and Engineering, vol. 191, no. 11-12, pp. 1245–1287,
2002.

[26] S. Koziel and Z. Michalewicz, “Evolutionary algorithms,
homomorphous mappings, and constrained parameter opti-
mization,” Evolutionary Computation, vol. 7, no. 1, pp. 19–44,
1999.

[27] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern
Heuristics, Springer, Berlin, Germany, 2000.

[28] J. Paredis, “Co-evolutionary constraint satisfaction,” in Pro-
ceedings of the 3rd Conference on Parallel Problem Solving from
Nature (PPSN ’94), pp. 46–55, Springer, Jerusalem, Israel,
October 1994.

[29] M. Schoenauer and Z. Michalewicz, “Evolutionary compu-
tation at the edge of feasibility,” in Proceedings of the 4th
Conference on Parallel Problem Solving from Nature (PPSN
’96), H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P.
Schwefel, Eds., pp. 245–254, Berlin, Germany, September
1996.

[30] C. A. Coello Coello, “Constraint handling through a multiob-
jective optimization technique,” in Proceedings of the Genetic
and Evolutionary Computation Conference, A. S. Wu, Ed., pp.
117–118, Orlando, Fla, USA, July 1999.

[31] C. A. Coello Coello, “Treating constraints as objectives
for single-objective evolutionary optimization,” Engineering
Optimization, vol. 32, no. 3, pp. 275–308, 2000.

[32] F. Jimenez and J. L. Verdegay, “Evolutionary techniques for
constrained optimization problem,” in Proceedings of the
7th European Congress on Intelligent Techniques and Soft
Computing (EUFIT ’99), H.-J. Zimmermann, Ed., Mainz,
Aachen, Germany, September 1999.

[33] E. Mezura-Montes and C. A. Coello Coello, “Constrained
optimization via multiobjective evolutionary algorithms,”
Multi-Objective Problem Solving from Nature: From Concepts
to Applications, pp. 53–75, 2008.

[34] I. C. Parmee and G. Purchase, “The development of a
directed genetic search technique for heavily constrained
design spaces,” in Proceedings of the Conference on Adaptive
Computing in Engineering Design and Control (PEDC ’94), I. C.
Parmee, Ed., pp. 97–102, University of Plymouth, Plymouth,
UK, September 1994.

[35] M. Schoenauer and S. Xanthakis, “Constrained GA optimiza-
tion,” in Proceedings of the 5th International Conference on
Genetic Algorithms (ICGA ’93), S. Forrest, Ed., pp. 573–580,
Morgan Kaufman, San Francisco, Calif, USA, July 1993.

[36] P. D. Surry, N. J. Radcliffe, and I. D. Boyd, “Amulti-objective
approach to constrained optimisation of gas supply networks:
the COMOGA Method,” in Proceedings of the Evolutionary
Computing, AISB Workshop, T. C. Fogarty, Ed., Lecture Notes
in Computer Science, pp. 166–180, Springer, Sheffield, UK,
April 1995.

[37] E. M. Montes and C. A. Coello Coello, “A simple multi-
membered evolution strategy to solve constrained optimiza-
tion problems,” IEEE Transactions on Evolutionary Computa-
tion, vol. 9, no. 1, pp. 1–17, 2005.

[38] T. Takahama and S. Sakai, “Constrained optimization by
the e constrained differential evolution with gradient-based
mutation and feasible elites,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’06), G. G. Yen, S.
M. Lucas, G. Fogel, et al., Eds., pp. 1–8, IEEE Press, Vancouver,
Canada, July 2006.

[39] J. Liang and P. Suganthan, “Dynamic multi-swarm particle
swarm optimizer with a novel constraint-handling mecha-
nism,” in Proceedings of the IEEE Congress on Evolutionary
Computation, G. G. Yen, S. M. Lucas, G. Fogel, et al., Eds., pp.
9–16, IEEE Press, Vancouver, Canada, July 2006.

[40] E. Mezura-Montes, J. Velazquez-Reyes, and C. A. Coello
Coello, “Modified differential evolution for constrained opti-
mization,” in Proceedings of the IEEE Congress on Evolutionary
Computation, G. G. Yen, S. M. Lucas, G. Fogel, et al., Eds., pp.
25–32, Vancouver, Canada, July 2006.

[41] E. Mezura-Montes, Ed., Constraint-Handling in Evolutionary
Computation, vol. 198 of Studies in Computational Intelligence,
Springer, Berlin, Germany, 2009.

[42] H.-P. Schwefel, Evolutionsstrategie und numerische opti-
mierung, Ph.D. thesis, TU Berlin, Berlin, Germany, 1975.

[43] H.-P. Schwefel, Evolution and Optimum Seeking. Sixth-
Generation Computer Technology, Wiley Interscience, New
York, NY, USA, 1995.

[44] D. V. Arnold and D. Brauer, “On the behaviour of the
(1+1)-es for a simple constrained problem,” in Proceedings of
the 10th International Conference on Parallel Problem Solving
From Nature (PPSN ’08), pp. 1–10, Dortmund, Germany,
September 2008.

[45] H.-P. Schwefel, “Adaptive mechanismen in der biologischen
evolution und ihr einfluss auf die evolutionsgeschwindigkeit,”
in Interner Bericht der Arbeitsgruppe Bionik und Evolutionstech-
nik am Institut für Mess- und Regelungstechnik, TU Berlin,
Berlin, Germany, July 1974.

[46] N. Hansen, “The cma evolution strategy: a tutorial,” Tech.
Rep., TU Berlin, ETH Zürich, Germany, 2005.

[47] A. Ostermeier, A. Gawelczyk, and N. Hansen, “A deran-
domized approach to self adaptation of evolution strategies,”
Evolutionary Computation, vol. 2, no. 4, pp. 369–380, 1994.



Applied Computational Intelligence and Soft Computing 11

[48] M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, and K.
Giannakoglou, “Metamodel-assisted evolution strategies,” in
Proceedings of the 7th International Conference on Parallel Prob-
lem Solving from Nature (PPSN ’02), pp. 361–370, Granada,
Spain, September 2002.

[49] S. Kern, N. Hansen, and P. Koumoutsakos, “Local meta-
models for optimization using evolution strategies,” in Pro-
ceedings of the 9th International Conference on Parallel Problem
Solving from Nature (PPSN ’06), pp. 939–948, Reykjavik,
Iceland, 2006.

[50] H. Ulmer, F. Streichert, and A. Zell, Optimization by Gaussian
Processes Assisted Evolution Strategies, Springer, Heidelberg,
Germany, 2003.

[51] G. Marsaglia, “Choosing a point from the surface of a sphere,”
The Annals of Mathematical Statistics, vol. 43, pp. 645–646,
1972.

[52] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, Berlin, Germany, 2009.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


