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Multilevel production scheduling problem is a typical combinatorial optimization problem in a manufacturing system, which is
traditionally modeled as several hierarchical sublevel problems and optimized at each level, respectively. An integrated model,
which can cope with the whole multilevel scheduling information simultaneously, is proposed in this paper, and a specific
evolutionary algorithm is designed to solve the integrated model with a twin-screw coding strategy. In order to evaluate the
performance of the new algorithm, a real 3-level production scheduling problem is employed for case study, and two typical
metaheuristic algorithms, a genetic algorithm (GA) and a simulated annealing (SA), are also employed for comparison study.
Experimental simulation results show that our proposed modeling and optimization method has outperformed the other ones.

1. Introduction

Multi-level production scheduling problem is a typical
combinatorial optimization problem in manufacturing sys-
tem, which is traditionally modeled as several hierarchical
sublevel problems, and solved by single-level scheduling
methods level by level [1–4]. As we know, the trends of
manufacturing system development are increasing the com-
petitivity of the company, promoting the customers’ service
level, integrating the global manufacturing information, and
processing flexible task flows in a more efficient way [5, 6].
In order to cope with these trends, researchers need to
optimize plant operations and total activities from suppliers
to customers and help manufacturers to find their ways in
global optimization and support the needs of manufacturing
at the same time. Along with all these scenarios, problem
modeling and its optimization techniques play important
roles in achieving these goals [7–10].

Generally speaking, multi-level production scheduling
problem (MLPS) is one kind of hierarchical production
planning problem, which considers a set of jobs on given
machines with predefined sequence, while discarding to
cope with a lot size problem [11–13]. Jobs in an MLPS

problem belong to different product levels, and the higher
level product cannot begin its process operation until all
its subproducts in the lower level are finished. The general
way to solve an MLPS problem is decomposing the entire
problem into several sublevel problems according to its
product level structure and optimize these subproblems
within each level [14]. The product level structure of a typical
MLPS problem can be illustrated as in Figure 1, in which
job 1 belongs to level 1; jobs 2, 3 belong to level 2; jobs 4,
5, 6, 7, 8 belong to level 3. Besides, the process operation
precedence between adjacent levels is as follows: job 2 (level
2) cannot begin its process operation, until all its sub-jobs 4,
5 (level 3) are finished; job 1 (level 1) cannot begin its process
operation, until all its subjobs 2, 3 (level 2) are finished.

2. Related Works

During the past decades, some researches have tried their
efforts to demonstrate that a hierarchical production plan-
ning technique is the most efficient way in solving a
multistage, multilevel production planning problem [15–
17], while other researchers believed in that a mono-
lithic/integrated method is better than a hierarchical one.
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These researchers proposed many integrated multi-level
production planning models for various problems and
obtained some exciting conclusions. But most of them are
focused on coping a scheduling problem with a lot sizing
problem simultaneously; few attention is taken on the MLPS
described as in Figure 1. The reason may lied in the fact
that a batch production module plays a major role in most
manufacturing companies during the past decades, but a
small batch, multiclass production module becomes more
and more popular in current factories, especially in some
high technological industries. This leads researchers to find
more efficient models and optimization techniques to solve
the MLPS in recent years [18–20].

Since the occurrence of modern heuristic optimization
algorithms, like evolutionary algorithm (EA), simulated
annealing (SA), coevolutionary algorithm (COEA), ant
colony (AC), and particle swarm optimization (PSO), and
so forth, solving a large scale MLPS with an integrated
model becomes possible within an acceptable computational
cost. More and more attentions are attracted to solve this
NP complete (or NP-Hard) problem with an integrated
model, and various problem-dependent heuristic algorithms
are proposed to enhance the efficiency of the algorithms,
among which evolutionary algorithm is the most attrac-
tive/preferred one [21–23].

Usually, an evolutionary algorithm is designed to solve
a single-level scheduling problem, and an MLPS integrated
model can be solved with a hierarchical looped EA, in
which precedence prerequisite information can be satisfied
with transferring the ready time and release time between
adjacent levels. The result is greatly improved by contrast to a
hierarchical technique. But the computational cost with this
scheme may grow rapidly as the problem scale is increasing.
Besides, the optimality of the final result is doubted by many
classical optimization mathematicians. This leads researchers
turning to new gene expression and evolving strategies to
overcome those drawbacks.

In the following sections, Section 3 builds up a general
integrate 3-level production scheduling optimization model.
Section 4 proposes a twin-screw-coded hybrid evolutionary
algorithm to solve the integrated model. Section 5 employs
a real 3-level production scheduling case study to evaluate
the performance of the proposed modeling and optimization
technique, and Section 6 gives the conclusion of this study
and highlights some perspectives for future study.

3. Mathematical Integrated Model for a Typical
Three-level Production Scheduling Problem

In general, a multi-level production scheduling problem
(Figure 1) can be described as follows: a final product con-
sists of several (n) assemblies, each assembly consists of some
(n(i j)(i = 1, 2, . . . ,n)) subassemblies, and each subassembly
consists of several (n(i j) (i = 1, 2, . . . ,n; j = 1, 2, . . . ,n(i j)))
parts, . . . . All the jobs, including assemblies, subassemblies,
and parts, should be processed through m(i), m(i j), and m(i jk)

operational sequences with given orders, where m(i) (i =
1, 2, . . . ,n) represents the maximum operation number of

Job_1Level 1

Level 3

Level 2 Job_2 Job_3

Job_6Job_4 Job_5 Job_7 Job_8

Figure 1: An example of hierarchical structure of MLPS problem.

assembly (i), m(i j) (i = 1, 2, . . . ,n; j = 1, 2, . . . ,n(i))
represents the maximum operation number of subassembly
(i j), and m(i jk) (i = 1, 2, . . . ,n; j = 1, 2, . . . ,n(i), k =
1, 2, . . . ,n(i j)) represents the maximum operation number of
part (i jk). Besides, one assembly cannot begin its process
operation until all of its subassemblies are finished and
assembled into the assembly. The final product is assembled
by the assemblies. Generally, min{makespan} is considered
as the optimization objective. In this section, an integrated 3-
level MLPS model is built up, which can be stated as (1)–(24):

min f = min{Cmax} = min
{

max
{
C(i)
}}

(1)

s.t. tS[a](i) ≥ tS[a](i j) + p[a](i j);

a = 1, 2, . . . ,m(i); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i);

(2)

tS[a](i j) ≥ tS[a](i jk) + p[a](i jk);

a = 1, 2, . . . ,m(i j); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i); k = 1, 2, . . . ,n(i j);

(3)

tS[a](i) + p[a](i) ≤ tS[b](i) +M · (1− q[a][b](i)
)
;

a, b = 1, 2, . . . ,m(i); i = 1, 2, . . . ,n;
(4)

tS[a](i j) + p[a](i j) ≤ tS[b](i j) +M ·
(

1− q[a][b](i j)

)
;

a, b = 1, 2, . . . ,m(i j); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i);

(5)

tS[a](i jk) + p[a](i jk) ≤ tS[b](i jk) +M ·
(

1− q[a][b](i jk)

)
;

a, b = 1, 2, . . . ,m(i jk); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i); k = 1, 2, . . . ,n(i j);
(6)

tS[g](i) + p[g](i) ≤ tS[g]( j) +M ·
(

1− q[g]((i)( j))

)
;

g = 1, 2, . . . ,m(i); i, j = 1, 2, . . . ,n;
(7)

tS[g](i j) + p[g](i j) ≤ tS[g](ik) +M ·
(

1− q[g]((i j)(ik))

)
;

g = 1, 2, . . . ,m(i j); i = 1, 2, . . . ,n j,

k = 1, 2, . . . ,n(i);

(8)
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tS[g](i jk) + p[g](i jk) ≤ tS[g](i jl) +M ·
(

1− q[g]((i jk)(i jl))

)
;

g = 1, 2, . . . ,m(i jk); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i); k, l = 1, 2, . . . ,n(i j);
(9)

tS[g](i) + p[g](i) ≤ tS[g]( jk) +M ·
(

1− x[g]((i)( jk))

)
;

i, j = 1, 2, . . . ,n; k = 1, 2, . . . ,n(i);

g ∈ {1, 2, . . . ,m(i)
}∩

{
1, 2, . . . ,m( jk)

}
;

(10)

tS[g]( jk) + p[g]( jk) ≤ tS[g](i) +M ·
(

1− x[g](( jk)(i))

)
;

i, j = 1, 2, . . . ,n; k = 1, 2, . . . ,n(i);

g ∈ {1, 2, . . . ,m(i)
}∩

{
1, 2, . . . ,m( jk)

}
;

(11)

tS[g](i) + p[g](i) ≤ tS[g]( jkl) +M ·
(

1− x[g]((i)( jkl))

)
;

i, j = 1, 2, . . . ,n; k = 1, 2, . . . ,n(i);

l = 1, 2, . . . ,n( jk);

g ∈ {1, 2, . . . ,m(i)
}∩

{
1, 2, . . . ,m( jkl)

}
;

(12)

tS[g]( jkl) + p[g]( jkl) ≤ tS[g](i) +M ·
(

1− x[g](( jkl)(i))

)
;

i, j = 1, 2, . . . ,n; k = 1, 2, . . . ,n(i);

l = 1, 2, . . . ,n( jk);

g ∈ {1, 2, . . . ,m(i)
}∩

{
1, 2, . . . ,m( jkl)

}
;

(13)

tS[g](i j) + p[g](i j) ≤ tS[g](kls) +M ·
(

1− x[g]((i j)(kls))

)
;

i, k = 1, 2, . . . ,n; j, l = 1, 2, . . . ,n(i);

s = 1, 2, . . . ,n(i j);

g ∈
{

1, 2, . . . ,m(i j)

}
∩ {1, 2, . . . ,m(kls)

}
;

(14)

tS[g](kls) + p[g](kls) ≤ tS[g](i j) +M ·
(

1− x[g]((kls)(i j))

)
;

i, k = 1, 2, . . . ,n; j, l = 1, 2, . . . ,n(i);

s = 1, 2, . . . ,n(i j);

g ∈
{

1, 2, . . . ,m(i j)

}
∩ {1, 2, . . . ,m(kls)

}
;

(15)

tS[a](i) ≥ 0;

a = 1, 2, . . . ,m(i); i = 1, 2, . . . ,n;
(16)

tS[a](i j) ≥ 0;

a = 1, 2, . . . ,m(i j); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i);

(17)

tS[a](i jk) ≥ 0;

a = 1, 2, . . . ,m(i jk); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i); k = 1, 2, . . . ,n(i j);

(18)

x[g]((i)( j)) + x[g](( j)(i)) = 1,

where x[g]((i)( j)) = 0 or 1;

g = 1, 2, . . . ,m(i); i, j = 1, 2, . . . ,n;

(19)

x[g]((i j)(ik)) + x[g]((ik)(i j)) = 1,

where x[g]((i j)(ik)) = 0 or 1;

g = 1, 2, . . . ,m(i j); i = 1, 2, . . . ,n;

j, k = 1, 2, . . . ,n(i);

(20)

x[g]((i jk)(i jl)) + x[g]((i jl)(i jk)) = 1,

where x[g]((i jk)(i jl)) = 0 or 1;

g = 1, 2, . . . ,m(i jk); i = 1, 2, . . . ,n;

j = 1, 2, . . . ,n(i); k, l = 1, 2, . . . ,n(i j);

(21)

x[g]((i)( jk)) + x[g](( jk)(i)) = 1 (i) /=
(
j
)
,

where x[g]((i)( jk)) = 0 or 1;

i, j = 1, 2, . . . ,n; k = 1, 2, . . . ,n(i);

g ∈ {1, 2, . . . ,m(i)
}∩

{
1, 2, . . . ,m( jk)

}
;

(22)

x[g]((i)( jkl)) + x[g](( jkl)(i)) = 1 (i) /=
(
j
)
,

where x[g]((i)( jkl)) = 0 or 1;

i, j = 1, 2, . . . ,n; k = 1, 2, . . . ,n(i);

l = 1, 2, . . . ,n( jk);

g ∈ {1, 2, . . . ,m(i)
}∩

{
1, 2, . . . ,m( jkl)

}
;

(23)

x[g]((i j)(kls)) + x[g]((kls)(i j)) = 1
(
i j
)
/= (kl),

where x[g]((i j)(kls)) = 0 or 1;

i, k = 1, 2, . . . ,n; j, l = 1, 2, . . . ,n(i);

s = 1, 2, . . . ,n(i j);

g ∈
{

1, 2, . . . ,m(i j)

}
∩ {1, 2, . . . ,m(kls)

}
.

(24)
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The definition of the parameters in the model is as
follows.

FS represents the feasible solution set; o[a](i) represents
the ath operation of job assembly (i), o[a](i j) represents the
ath operation of job subassembly (i j); o[a](i jk) represents
the ath operation of job part (i jk); p[a](i) represents the
operation time of o[a](i); p[a](i j) represents the operation time
of o[a](i j); p[a](i jk) represents the operation time of o[a](i jk); M
is an infinite positive multiply factor:

q[a][b](i)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the operation of assembly (i) on machine [b]

is exactly after its operation on machine [a],

0, otherwise,

q[a][b](i j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if the operation of subassembly
(
i j
)

on

machine [b] is exactly after its operation

on machine [a],

0, otherwise,

q[a][b](i jk)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the operation of part
(
i jk
)

on machine [b]

is exactly after its operation on machine [a],

0, otherwise.
(25)

The definition of the decision variables in the model is as
follows.

tS[a](i) represents the start time of operation o[a](i), tS[a](i j)

represents the start time of operation o[a](i j), tS[a](i jk) repre-
sents the start time of operation o[a](i jk) and C(i) represents
the end time of assembly (i); thus we have

C(i) = max
a∈1,2,...,m(i)

(
tS[a](i) + p[a](i)

)
, (26)

and the 0-1 programming variables are defined as

x[g](i)( j)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the immediate successive operation of

assembly (i) on machine
[
g
]

is
(
j
)
,

0, otherwise,

x[g](i j)(ik)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the immediate successive operation of

subassembly
(
i j
)

on machine
[
g
]

is (ik),

0, otherwise,

x[g](i jk)(i jl)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the immediate successive operation of

part
(
i jk
)

on machine
[
g
]

is
(
i jl
)
,

0, otherwise,

x[g](i)( jk)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if the immediate successive operation of

assembly (i) on machine
[
g
]

is

subassembly
(
jk
)
,

0, otherwise,

x[g]( jk)(i)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if the immediate successive operation of

subassembly
(
jk
)

on machine
[
g
]

is

assembly (i),

0, otherwise,

x[g](i)( jkl)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if the immediate successive operation of

assembly (i) on machine
[
g
]

is

part
(
jkl
)
,

0, otherwise,

x[g]( jkl)(i)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the immediate successive operation of

part
(
i jk
)

on machine
[
g
]

is assembly (i),

0, otherwise,

x[g](i j)(kls)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the immediate successive operation of

subassembly
(
i j
)

on machine
[
g
]

is part (kls),

0, otherwise,

x[g](kls)(i j)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if the immediate successive operation of part

(kls) on machine
[
g
]

is subassembly
(
i j
)
,

0, otherwise.
(27)

The physical explanation for the model (shown as (1)–
(24)) is as follows.

Equation (1) gives the optimization objective as
makespan; (2) constrains that the start time of an assembly
must be later than the completion time of all its subassem-
blies; (3) constrains that the start time of a subassembly
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1
(A_1)

2
(Sub_11)

3
(Sub_12)

4
(Part_111)

5
(Part_112)

6
(Part_121)

Assembly
level

Sub_assembly
level

Part level

7
(A_2)

11
(Part_211)

12
(Part_212)

13
(Part_213)

14
(Part_221)

15
(Part_231)

16
(Part_232)

8
(Sub_21)

9
(Sub_22)

10
(Sub_23)

Figure 2: Example of a 3-level production scheduling problem.

must be later than the completion time of all its parts;
(4) defines the precedence relationship of assembly (i)’s
two successive operations o[a](i) and o[b](i); that is, the start
time of operation o[b](i) must be later than the end time of
operation o[a](i) if q[a][b](i) = 1, and vice versa; (5) defines
the precedence relationship between subassembly (i j)’s two
successive operation o[a](i j) and o[b](i j); (6) defines the
precedence relationship between part (i jk)’s two successive
operation o[a](i jk) and o[b](i jk); (7)–(15) define that there
can only process at most one job on machine [g] at one
time; (16)–(18) constrain the start time of each operation
as a non-negative variable; (19)–(21) define the constraints
between each related-pair of decision variables in each level
to guarantee the feasibility of the solution; (22)–(24) define
the constraints between each pair of decision variables in
different levels.

4. Twin-Screw-Coded Evolutionary Algorithm
for Multilevel Production Scheduling
Optimization

Since the computational complexity of the multi-level
production scheduling problem is very high, it is hard
to solve it with current existing optimization methods
efficiently (either the precise methods or the problem-
dependent heuristic algorithms). In order to overcome the
drawbacks of current existing methods, a twin-screw-coded
evolutionary algorithm is proposed in this paper, which
encodes a possible multi-level scheduling scheme in a twin-
screw chromosome, and a metaheuristic-based population
gap for elitist exchange and local search is employed to
enhance the convergence of the algorithm.

A typical 3-level MLPS example is shown in Figure 2,
which includes two assembles (1,7), five subassemblies (1’s
subassemblies include 2, 3; 7’s subassemblies include 8, 9, 10)
and nine parts (2’s parts are 4, 5; 3’s part is 6; 8’s parts are 11,
12, 13; 9’s part is 14; 10’s parts are 15, 16). The hierarchical
process precedence relationship between the jobs can be
easily told from the figure, in which the process scheduling
optimization covers all 3-levels’ jobs at the same time.

4.1. Gene Expression: Twin-Screw Coding. Current existing
evolutionary coding can only express one single level’s
scheduling information; it is hard to employ them to express
a multi-level production scheduling information with one

5 7 7 12 4 16 3 5 2 3 14 11 8 12 13 6115 5 109

3 1 1 3 3 3 2 3 2 2 3 3 2 3 3 313 3 22

Figure 3: The feasible gene expression for a three-level shop
scheduling solution.

chromosome. Hence, we propose an operation-based twin-
screw coding strategy to solve this problem: we define each
job number with an implicit subsidiary coding (subcoding)
to label its level information and construct a twin-screw
module to express the hierarchy of the scheduling scheme.
Assume that, in the example of Figure 2, each job in {3, 7, 12}
has two operations, respectively, job 5 has three operations,
and all the other jobs have only one operation, which is a
typical mixed flexible job shop problem. A feasible solution
for this problem can be coded as a twin-screw gene (shown
as Figure 3), in which the italic gene in the second row shows
the level of the job above it. Thus, we can construct a feasible
chromosome for the 3-level job process scheduling problem
with the twin-screwed gene expression.

In order to guarantee the feasibility of a twin-screw-
coded chromosome, a specifically designed decoding strategy
(shown as Figure 4) is employed to cope with this issue.
We employ the example mentioned above to illustrate the
process of our proposed decoding method, in which process
scheduling information is obtained from lower level to
the higher one. The genotype codes of a chromosome are
scanned from the beginning to the end; those operations
that labeled with a “3” as its implicit twin-code (in the
second line) are Recognized as part level’s jobs and labeled to
phenotype; after a round-robin scan, all the jobs belonging to
the part level are kicked off from the original chromosome,
a second round scan is taken to label the subassembly level,
and then the assembly level, until all the levels’ operations are
labeled and the whole chromosome is decoded to a complete
3-level job scheduling solution with phenotype status.

In the decoding process (Figure 4), o5
1 represents the first

operation of job 5; o4 represents the operation of job 4. The
final decoded solution of the above example is as follows:

(i) part level: o15, o5
1 , o12, o4, o16, o5

2 , o14, o11, o12, o13,
o06, o5

3 ;

(ii) subassembly level: o3
1 , o2, o3

2 , o8, o9, o10;

(iii) assembly level: o1, o7
1 , o7

2 .
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3
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1

7

1

12

3

4

3

16

3

3

2

5

3

2

2

3

2

14

3

11

3

8

2

12

3

13

3

6

3

1

1

15

3

5

3

10

2

9

2

1

3 1 1 3 3 3 2

2

3 2 2

1

3 3 2 3 3 313

3

3 22

5 7 7 12 4 16 3 5 2 3 14 11 8 12 13 6115 5 109

o3
1

5 7 7 12 4 16 3 5 2 3 14 11 8 12 13 6115 5 109

2

3 1 1 3 3 3 2 3 2 2 3 3 2 3 3 313 3 22

1

5 7 7 12 4 16 3 5 2 3 14 11 8 12 13 6115 5 109

2

3 1 1 3 3 3 2 3 2 2 3 3 2 3 3 313 3 22

o7o7
o1

o2 o3
o8 o9 o10

o15 o5 o12 o16 o14 o11 o12 o13 o6 o5o5o4

Figure 4: A decoding example.

Chromosome_3Chromosome_2Chromosome_1 Chromosome_POPSIZE

GENE_1 GENE_2 Job_1 Job_2 Job_N Mach_1 Mach_2 Mach_M

OperIndex JobIndex StartTime EndTime

StartTime EndTimeCurrentOperNr

FinishedSubJobsOperationInfoSucJobNrTotalSubJobsTotalOperNr

FlagJobNr

Current evolutionary population

GENE_TotalOper··· ···

···

···

Figure 5: The data structure for decoding process.

In order to promote the decoding efficiency, an object-
oriented data structure is designed to fulfill this task
(Figure 5). The principle of designing the data structure and
some variable abbreviations are noted as the follows.

(1) A chromosome composes three parts: twin-screw
codes for sequence and “level” information, job-related
information, and machine-related information.

(2) “GENE i” represents the twin-screw coding structure
of a chromosome; “JobNr” represents the job number (the
number of each job is equal to its operation number); The
initial “Flag” of job “i” indicates the production level, which
job “i” belongs to.

During the decoding process, when all the operations
of one subjob of job “i” are finished, we add “Job i”’s
“FinishedSubJobs” by (1): when the value is equal to “i”’s
“TotalSubJobs”, that means all the subjobs of “i” have been
finished we turn the “Flag” of “i” from 1 to 0 under this
circumstance, and return the scan pointer into the beginning
of the twin-screw, and rescan the left operations.

(3) “OperationInfo” records the start time and end time
of each job.

(4) “TotalOperNr”, “TotalSubJobs”, and “SubJobNr” are
the initial status of the jobs; these information can be
obtained from the configuration document.
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Figure 6: The crossover operator: an example.

5 7 7 12 4 16 3 5 2 3 14 11 8 12 13 6115 5 109

5 7 7 3 4 16 3 5 2 12 14 11 8 12 13 6115 5 109

Parent

Offspring

Mutate point1 Mutate point2

3 1 1 3 3 3 2 3 2 2 3 3 2 3 3 313 3 22

3 1 1 2 3 3 2 3 2 3 3 3 2 3 3 313 3 22

Figure 7: The mutation operator: an example.

(5) “Mach i” records the job sequences at machine “i”;
these pieces of information are employed to verify the
validity of a solution, and to make preparation data for Gantt
graph, while not participating the decoding process.

4.2. Evolutionary Operators: Crossover and Mutation. In
order to guarantee the feasibility and validity of the chromo-
some during the population evolution, we propose improved
crossover and mutation operators for the twin-screw-
coded chromosome based on previous work in permutation
scheduling problem studies (see [22]). The principle of
designing the evolutionary operators is similar to that of
PMX crossover and swap mutation operators (see [22]),
which can be illustrated by examples shown in Figures 6
and 7.

Crossover operator for a twin-screw-coded chromosome
is as follows.

Step 1. Randomly generate two cutting points c1, c2 (assume
c1 < c2) on the two parents chromosome chrom1, chrom2.

Step 2. Exchange the partial chromosome between c1 and
c2 (not only the process sequence information but also the
“level” information) to get the two proto-children, shown as
P′1 and P′2 in Figure 6.

Step 3. Scan and eliminate the existing elements of P′1 from
parent 1 and P′2 from parent 2 to determine the map-
ping relationship between two mapping sections. After the
mapping operation, we get two subsidiary partial mapping
information as the P′′1 , P′′2 shown in Figure 6.
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Figure 8: Flowchart of the Twin-screw Coded Evolutionary Algorithm (TCEA) for MLPS.

Step 4. Legalize the offspring with the mapping relationship
information, and obtain two feasible offspring children
(offspring1 and offspring2 in Figure 6).

Please note that the whole crossover process is guided
and dominated by the sequence information, but not the
“level” information. Because in our proposed twin-screw-
coded chromosome, each bit of “level” information is bound
strength with a corresponding operation information, it does
not make any sense except in the decoding process.

Mutation operator for twin-screw-coded chromosome is
as follows.

Step 1. Randomly generate two mutate points m1, m2 on the
parent chromosome to be mutated.

Step 2. Swap the two position’s sequence and “level” infor-
mation to generate a legal offspring child (as shown in
Figure 7).

4.3. Population Reconstruction with Elitism Strategy. In our
previous work, we have proposed an escalating evolutionary
structure (shown in Figure 8), which has outperformed
several other modern heuristic algorithms with applications
to flow shop scheduling problems under the similar compu-
tational cost. In order to solve the integrated MLPS model
efficiently, we introduce the escalating strategy into the twin-
screw-coded EA to enhance its convergence performance.

The brief idea of escalating strategy can be explained as
follows.

A population evolves from a random beginning status,
the probability of an individual to bring its offspring lies on
its fitness. After some generations’ evolution, the population
may keep in evolving with no progress further more in some
successive generations; then the elitist individual (the best
one in the population from the beginning to current genera-
tion) is kept and introduced into a new population directly,
and all the other individuals of the new population are
generated randomly (reconstruction/reinitialization). Thus,
the new population continues the evolution process until the
stop criterion is satisfied.

The escalation process implies two meanings: (1), the
elitist individual will be introduced into the new population
directly; (2), other individuals of the new population will be
generated randomly, where (1) makes it possible to utilize
the previous level’s search information, and (2) is designed
to keep the population diversity, which helps the algorithm
escaping from premature.

5. Case Study

5.1. Problem Description. In order to evaluate the perfor-
mance of our proposed modeling and optimization tech-
nique, a 3-level production scheduling problem from one
of Chinese famous satellite production factory is employed
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Figure 9: Problem description.

for case study. All the processing information has been
necessarily deposed with pre-declassification need before-
hand.

The hierarchical product structure of the problem is
similar to the model described as (1)–(24): product 0–0
consists of 3 assemblies, each assembly consists of 4, 3, 2
subassemblies, respectively, and each subassembly consists

of some given number of parts. The job of a higher level
could begin its process operation only if all its sub-products
are finished and are assembled. The process information
includes technical constraints within levels and between
levels, process time, and predefined operational sequence
between jobs. The hierarchical logic relationship of the
problem can be highlighted as shown in Figure 9.
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Table 1: The raw data of case study problem.

Oper.1 Oper.2 Oper.3 Oper.4

JobNr machine time machine time machine time machine time · · ·
11–1 O1 16 O4 7.1 O1 16 DM 38 · · ·
11–2 O1 8 RM 5.3 O3 7 PM 10 · · ·
11–3 O2 20 DM 44.8 O2 11.2 PM 80 · · ·
11–4 RM 3.3 O3 0.4 PM 4.6 O1 8 · · ·
11–5 O2 10.4 DM 44.2 O1 16 O2 12 · · ·
11–6 O2 5 DM 14 RM 2 O1 8 · · ·
11–7 O2 20 DM 56 RM 33.2 O3 2 · · ·
11–0 RM 31 O7 20.3 O1 16 PM 12 · · ·
12–1 RM 29 DM 20 O1 8 RM 22 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
12–5 O7 7 RM 11 O1 8 O6 12 · · ·
12–0 RM 27 O2 12

13–1 O1 8 O4 19.5 RM 21.2 O4 2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
13–8 O7 21 RM 33 O1 8 O6 22 · · ·
13–0 RM 36 OM 54 PM 21 O5 8

14–1 RM 9 O9 60 O5 6

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
14–9 O2 2.4 O1 8 DM 12.4 O3 2 · · ·
14–0 O2 9 O2 5 O1 8 O2 6 · · ·
1–0 O3 82 O2 14 RM 61 O3 24 · · ·
21–1 O7 27.2 O7 10.4 O1 64 O6 144 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
21–9 RM 1152 OM 768 PM 768 O5 384 · · ·
21–0 O3 208 RM 136 DM 84 O5 32 · · ·
22–1 RM 61.5 DM 170 O1 40 DM 720 · · ·
22–2 RM 19 DM 60 O1 16 DM 248 · · ·
22–0 O3 23 RM 54

23–1 O11 8.5 DM 5.2 O1 8 O9 7 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
23–8 O11 8.5 DM 5.2 O1 8 O9 7 · · ·
23–0 O3 43 DM 44 O3 4

2–0 O3 84 DM 20 O9 32 DM 88 · · ·
31–1 O2 4.6 RM 4 DM 6.4 O3 3 · · ·
31–2 O2 8 O1 8 O2 3.3 DM 16 · · ·
31–3 O2 8 OM 4.4 O5 8 O3 0.5 · · ·
31–0 O2 32 OM 58 O1 8 O2 28 · · ·
32–1 O2 20 OM 12 O3 9.3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
32–5 O4 4 DM 1 O3 1

32–0 O2 5.2 O2 5.2 RM 116 O13 6 · · ·
3–0 O13 40 DM 52 O3 8

0–0 O3 32 OM 81 O3 23 OM 68 · · ·

Table 1 gives the detail process information of the
problem. There are some complementary comments to the
problem.

(1) The O1–O13 in Table 1 represent the process opera-
tions on those machines, whose process ability can be greatly

increased with a bit costs and the workloads on them can
be considered as light as possible. So the capability of these
machines can be considered as infinite. These machines
include common low-precise manufacturing machines, like
lathe, planer, grinder, and so forth.
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While the workloads on the other kind of machines are
obviously heavy, not only the fixed expensive purchasing
costs but also the expensive unit time process costs on them
are much higher than the common ones. There are 4 units
of such machines in the factory that we investigated, whose
name can be listed as Rough Milling machine (RM), Precise
Milling machine (PM), Digital Milling machine (DM), and
Other Milling machine (OM), respectively.

(2) The definition of job numbers (JobNr) in Table 1 is
as follows.

(i) 11–01 represents the 01 part of subassembly 11;

(ii) 11–0 is the label for subassembly 11;

(iii) 1–0 is the label for assembly 1;

(iv) 0–0 is the label of the final product.

After analyzing the process information, we make two
assumptions to deduce the computational complexity of
the raw problem, in which only the most “expensive”
and “crowed” machines are specifically treated, while we
neglect the scheduling planing on those “cheap” or “loosely
required” machines.

Assumption 1 (Machine Scarce/Nonscarce Assumption). As
we know, a satellite product requires more precision than a
civil product; its large size and highly precision quality leads
to the need of high-performance milling machines in many
operations. We discriminately treat the operations that need
to be operated on milling machines with those operations
that need to be operated on other machines and call the
operations on these two kind of machines as Scarce machine
operations and nonscarce machine operations. Consecutive
operations on nonscarce machines can be combined into
“Dummy Operations”.

The adjacent operations on nonscarce machines can be
combined as one operation time, and the new combined
operation can be considered as operations that have no
constraints on machine availability; we only take its opera-
tion time into account but neglect the operation’s machine
information.

Assumption 2 (Machine Specification Assumption). As dif-
ferent machines for the same type of task in the satellite
factory take different costs, the milling operations are
allocated to different machines according to its precision
requirements, which aims at strengthening the economic
profit of the whole. After the hypothesis of dummy operation
and machine operation specialization, we focus our effort on
the scheduling of scarce machines, which can help us avoid
to waste time on insignificant operations or wasting costly
machines on simple or nonprecise operations; thus can we
possibly obtain a better solution in a given time.

5.2. Data Preprocessing. There are 4 milling machines
(RM/PM/DM/OM) in the factory. Since the operations
on these milling machines are the bottle neck of the
scheduling problem, we allocate the milling operations to
these machines with regard to each machine’s operational
precision and cost.
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Figure 10: Statistical results of 3-level MLPS with TCEA, GA, and
SA.

Gantt chart for 3-level MLPS problem (69 jobs
∗4 milling machines) with TCEA
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Figure 11: A typical solution of 3-level MLPS with TCEA.

(i) Rough milling operations are allocated to the ma-
chine “RM”.

(ii) Precise milling operations are allocated to the ma-
chine “PM”.

(iii) Digital milling operations are allocated to the ma-
chine “DM”.

(iv) Other milling operations are allocated to the machine
“OM”.

All the other nonmilling operations are considered as
“dummy operations” (as mentioned in Section 5.1). After we
combined the “dummy operations”, we get the new modified
process data of the problem (shown in Table 2).

5.3. Comparison Study Algorithms and Parameters Setting.
In order to evaluate the performance of our proposed
TCEA with its application to MLPS, we employ two basic
metaheuristic algorithms, GA (Genetic Algorithm), and SA
(Simulated Annealing) as comparison algorithms for case
study.

In order to obtain the best performance of TCEA,
parameters experiment has been taken to search the best
parameters combination. The experiment is designed with
the following guidance rules [21].
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Table 2: The modified data of case study problem.

Level 1: the part level

JobNr dum mach time dum mach time dum mach time · · ·
11–01 32.1 DM 38 26 NS 0

11–02 8 RM 5.3 7 PM 10 8 DM 80 · · ·
11–03 20 DM 44.8 11.2 PM 80 4.8 NS 0 · · ·
11–04 0 RM 3.3 0.4 PM 4.6 8 PM 23 · · ·
11–05 10.4 DM 44.2 28 PM 80 4.4 NS 0 · · ·
11–06 5 DM 14 0 RM 2 11.5 DM 8 · · ·
11–07 20 DM 56 0 RM 33.2 14 DM 32 · · ·
12–01 0 RM 29 0 DM 20 8 RM 22 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
12–05 7 RM 11 20 PM 52 1 DM 19 · · ·
13–01 27.5 RM 21.2 2 PM 11 18.4 NS 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
13–08 21 RM 33 30 PM 52 13 DM 19 · · ·
14–01 0 RM 9 66 NS 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
14–09 10.4 DM 12.4 2 NS 0

21–01 245.6 PM 416 10.4 DM 152

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
21–09 0 RM 1152 0 OM 768 0 PM 768 · · ·
22–01 0 RM 61.5 0 DM 170 40 DM 720 · · ·
22–02 0 RM 19 0 DM 60 16 DM 248 · · ·
23–01 8.5 DM 5.2 19.5 DM 13 8 DM 32 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
23–08 8.5 DM 5.2 19.5 DM 13 8 DM 32 · · ·
31–01 4.6 RM 4 0 DM 6.4 3 NS 0 · · ·
31–02 19.3 DM 16 2.5 NS 0

31–03 8 DM 4.4 8.5 NS 0

32–01 20 OM 12 9.3 NS 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
32–05 4 DM 1 1 NS 0

Level 2: the subassembly level

JobNr dum mach time dum mach time dum mach time · · ·
11–0 0 RM 31 36.3 PM 12 16 NS 0 · · ·
12–0 0 RM 27 12 NS 0

13–0 0 RM 36 0 OM 54 0 PM 21 · · ·
14–0 29 DM 29

21–0 208 RM 136 0 DM 84 32 NS 0 · · ·
22–0 23 RM 54

23–0 43 DM 44 4 NS 0

31–0 32 OM 58 36 OM 60 8 OM 12 · · ·
32–0 10.4 RM 116 23 NS 0

Level 3: the assembly level (including the final product)

JobNr dum mach time dum mach time dum mach time · · ·
1–0 96 RM 61 24 NS 0

2–0 84 DM 20 32 DM 88 16 NS 0 · · ·
3–0 40 DM 52 8 NS 0

0–0 32 OM 81 23 OM 68
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Table 3: Parameters setting for 3-level MLPS study case.

pop size max gens Pc Pm nL

TCEA 200 200× 5 0.9 0.1 20

GA 200 1000 0.9 0.1

T0 Tfinal β nL
SA 1000 0.1 0.999 50

Table 4: Statistical optimization results of the 3-level MLPS with TCEA, GA and SA.

Algorithms avg.Makespan max.Makespan min.Makespan dev.Makespan

TCEA 5612.4 5632 5598 3.86

GA 5691.2 5704 5668 8.61

SA 5788.5 5814 5768 11.26

Gantt chart for 3-level MLPS problem (69 jobs
∗4 milling machines) with GA
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Figure 12: A typical solution of 3-level MLPS with GA.

(i) Population size (POP SIZE) varies from 100 to 500,
skip rule 100.

(ii) Evolutionary generation varies from 100 to 500, skip
rule 100.

(iii) Crossover probability varies from 0.3 to 0.9, skip rule
0.1.

(iv) Mutation probability varies from 0.01 to 0.1, skip rule
0.01.

(v) Population escalation gap varies from 10 to 1, skip
rule 1.

(vi) Elitist local search step varies from 10 to 50, skip rule
10.

After the parameters experiment, we set the parameters
of TCEA as in Table 3. In order to compare the performance
of TCEA with that of GA and SA in a fair circumstance, we
make the similar parameters experiments for GA and SA,
respectively, in which the total CPU time consumption is
kept in the same level as TCEAs. After the experiments, we
can set the parameters of TCEA, GA, and SA as in Table 3.
Since the twin-screw coding strategy is a general encoding
strategy designed for MLPS problems, we employ the coding
strategy in all the three algorithms.

5.4. Results Analysis. Since all the algorithms that we study
are metaheuristic algorithms, we run each algorithm for 20
independent times to collect their statistical results. With

parameters set in Table 3, we get the optimization results as
in Table 4 and figure 10, in which the average result of TCEA
outperforms that of GA and SA:

The average makespan of product 0–0 obtained by our
TCEA is 5612.4, and the results of GA and SA are 5691.2
and 5788.5, respectively; all these metaheuristic algorithms
outperformed current technique in the factory (6580).

However, the computational cost of TCEA (about 270s) is
a bit longer than that of GA (about 250s) and SA (about 190s)
in the same experiment environment (all the experiments are
taken in a CPU Pentium IV-3.2 G, 1 G Ram PC platform).

In general, the statistical results show the outstanding
performance of our TCEA by contrast to that of GA and SA
to cope with an MLPS problem.

Figures 11 and 12 show two typical solutions derived
from TCEA and GA, respectively.

6. Conclusion

A twin-screw-coded evolutionary algorithm (TCEA), which
is motivated by solving a typical multi-level production
scheduling problem (MLPS), is put forward in this paper.
The principle of the new algorithm is introduced; besides,
a real 3-level satellite part’s case study has revealed the
superiority of TCEA by contrast to GA and SA, which
further demonstrates the effectiveness and practicability of
our integrated model and optimization technique in solving
such complex production scheduling problems. As we know,
MLPS is a complex NP-hard problem; this work just shows
the preliminary result of our project. Further research
has been taken, in which multiobjective MLPS problem
modeling and optimization technique has been taken into
consideration.
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