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In the previous work, it was demonstrated that one can effectively employ CTRNN-EH (a neuromorphic variant of EH method)
methodology to evolve neuromorphic flight controllers for a flapping wing robot. This paper describes a novel frequency grouping-
based analysis technique, developed to qualitatively decompose the evolved controllers into explainable functional control blocks.
A summary of the previous work related to evolving flight controllers for two categories of the controller types, called autonomous
and nonautonomous controllers, is provided, and the applicability of the newly developed decomposition analysis for both
controller categories is demonstrated. Further, the paper concludes with appropriate discussion of ongoing work and implications
for possible future work related to employing the CTRNN-EH methodology and the decomposition analysis techniques presented
in this paper.

1. Introduction

Most, if not all, existing bird-sized and insect-sized flapping-
wing vehicles possess only a small number of actively
controlled degrees of freedom. In these vehicles, the bulk of
the wing motions are generated via a combination of actively
driven linkages (motors and armatures, piezoelectric beams,
etc.) and passively driven elements (wing flex or rotation
via dynamic pressure loading, etc.) [1, 2]. The number of
controlled degrees of freedom is often minimized to simplify
control and to limit the number of bulky actuators carried
on board. In theory, both bird-sized [1] and insect-sized [2]
robots can sustain stable flight with controllers generating
actuation signals for only few degrees of freedom. But it
would require taking advantage of every possible degree
of freedom available in the robot to achieve sophisticated
maneuvers that are possible in their biological counterparts.
Thus, there exists a possibility that applying a learning or
adaptable controller techniques [1, 3–6] to the control of the
insect-sized flapping wing vehicles, hereafter referred to as
Microlevel Flapping Wing Robots (MFWRs), will likely to
produce more biomimetic control and maneuver patterns
that evade traditional controller design. One can imagine

two basic approaches to the “adaptable controller” problem.
First, one might attempt to hybridize an adaptive system
to a traditional controller in the hope that the combined
system could learn the specific needs of an individual
vehicle by augmenting a base controller. Second, one might
attempt to construct an adaptable controller that could learn
acceptable control laws tabula rasa either all-at-once or via
a staged approach. Even if tabula rasa methods could be
made to work, one would incur a responsibility to explain
the operation of controllers that, though functional, might
operate in ways not conformant with existing explanatory
paradigms. In previous work [4, 7–9], the authors were able
to demonstrate controllers could be “learned from scratch”
by verifying the idea within a framework of neuromorphic
evolvable hardware. Further, this previous work also demon-
strated the feasibility of neuromorphic adaptive hardware
implementations that provide computational advantage over
existing adaptive control techniques using similar neural
substrates [10, 11]. The work mentioned in this paper
focuses more intensely on that problem of explaining what
those controllers do and how they do it. It will discuss sub-
sequent work that was undertaken to analyze those evolved
flight controllers with newly developed frequency-based and
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Figure 1: Schematic of CTRNN-EH Framework.

preexisting modularization decomposition methods. In this
vein, the background knowledge necessary to understand
the terminology, methods, and approaches employed as part
of the above-mentioned CTRNN-EH framework are briefly
explained in Section 2. Following is Section 3 describing
the specific methods and models employed to successfully
evolve CTRNN-EH flight controllers for a specific MFWR
model. Section 4 describes the details of the proposed
analysis methods and their applicability to the evolved flight
controllers, followed by Section 5 with concluding remarks
on the current work and ongoing future work.

2. Background and Previous Work

2.1. CTRNN-EH Framework. The CTRNN-EH framework
introduced in the previous works [5, 12, 13] is summarized
schematically in Figure 1. The CTRNN-EH framework is a
neuromorphic variant of the standard Evolvable Hardware
paradigm using Continuous Time Recurrent Neural Net-
works (CTRNNs) as the reconfigurable hardware substrate.
CTRNNs are networks of Hopfield continuous model neu-
rons [13] with unconstrained connection weight matrices.
CTRNN neural activity and outputs are governed by an nth
degree differential equation of the form:

τ
dyi
dt

= −yi +
N∑

j-1

wjiσ
(
yj + θj

)
+ siIi(t), (1)

where yi is the state of neuron i, τi is time constant of neuron
i, wji is the strength of the connection from the jth to ith the
neuron, θ is a bias term, σ(x) = 1/(1 + e−x) is the standard
logistic activation function, and Ii(t) represents a weighted
sensory input with strength si. The set of parameters
defining a neuron I (incoming weights, time constant, and
bias) are called an individual neuron configuration, and a
collection of these individual neuron configurations for a

given network is called a network configuration or CTRNN
configuration. These CTRNNs have been proven to be
universal approximators of any smooth dynamics [14]. The
practical benefit of this is that in principle, any possible
control law can be approximated arbitrarily well given
enough CTRNN neurons. In practice, even small networks
of CTRNN neurons are capable of producing complex
dynamical behavior. Based on the Evolvable Hardware (EH),
principle of evolving optimized and desired configurations
in a reconfigurable substrate using evolutionary algorithm
techniques. CTRNNs are evolved to produce, the right con-
trol signal, using the evolutionary algorithms. The training
of the CTRNNs is finding the appropriate parameter settings,
that is, configuring the neuron settings in the network. The
evolutionary algorithms search the given possible settings of
the neuron and find the optimal settings for the network
as a whole, to produce the required control signals. The
CTRNNs functioning with optimal settings produced by the
EA is called as the evolved controller for the given control
problem being dealt. Based on previous work, the Minipop
algorithm [15] is chosen as the evolutionary algorithm for
the CTRNN-EH framework. The Minipop algorithm is a
light weight evolutionary algorithm driven by mutation and
hypermutation [15], more details of the same can be found
in [13, 15].

2.2. Previous Work. The above-mentioned CTRNN-EH
framework has been successfully employed to control legged
locomotion in both real and simulated hexapod walkers
[3, 16] by author’s colleagues. These efforts concentrated
on solving a learning locomotion control problem for
the hexapod robots with twelve degrees of freedom, from
scratch, without any preknowledge of the robot’s physical
characteristics (like weight and any leg damages). Conceptu-
ally, each leg of the hexapod (with two degrees of freedom in
its actuators) would require optimal oscillatory patterns in
its two actuators, with appropriate phase relations to aid in
generating forces to move the hexapod forward or backward
directions. Moreover, any controller that claims to provide
optimal locomotion controller for the hexapod has to take
into consideration the required optimal oscillatory dynamics
in each leg as well as the needed collaborative dynamics
among all the six legs to generate optimal and energy-
efficient motion in the hexapod [3]. This complex mix of
local and distributed locomotion pattern generation problem
was successfully addressed by the CTRNN-EH architec-
ture mentioned in [6]. Moreover, the evolved oscillatory
CTRNN-EH locomotion controllers in those experiments
embedded a large amount of practical functionality in very
small numbers of neurons. These evolved controllers were
capable of optimally controlling variously weighted bodies
with or without damaged legs. The controllers could do this
without reevolution and could adapt their dynamics on the
fly by entraining to external sensory input [6, 13]. Further
the work conducted to understand these evolved CTRNN-
EH controllers (for legged locomotion) has resulted in a set
of dynamical module analysis concepts [5, 6, 16] that can
be employed to predict and explain the behavior of these
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Figure 2: Illustrative representation of the assembly of neurons forming the autonomous neuromorphic (shown in (a)) and nonautonomous
Neuromorphic (shown in (b)) controllers. “P” notation is used for primary neuron directly controlling the actuator of the robot under
control and “S” is the secondary neuron, which aids in generating appropriate external dynamics required for the primary neuron. The
numbering of the neurons in the network is arbitrarily chosen as appropriate.

evolved controllers, and controllers with similar nature, in
terms of their functional sustainability and failure.

However, conceptually the flapping-wing flight problem
shares the requirement of generating optimal oscillatory
dynamics for desired flight behavior; with the hexapod
walker problem, the former has inherent instability in its
body dynamics, introduced by virtue of the medium of
its flight (i.e., in three, dimensional space with constantly
varying center of mass). This possible inherent instable
body dynamics present in flapping-wing vehicles might
make the CTRNN-EH based learning more challenging to
be effective than when applied to the hexapod walkers, to
generate optimal actuator dynamics. Further, the dynamical
module analysis [6, 16] that was successful to understand the
evolved locomotion controllers might not be applicable for
the possible CTRNN-EH flight controllers. Nonetheless, the
capabilities of CTRNN-EH controllers to produce smooth
dynamics and provide provisions to adapt and modulate
those produced dynamics observed in the previous work
[5] sufficiently justifies the needed efforts presented in the
authors published paper [4, 7–9] to evolve flapping flight
controllers. Although providing the indetail description
of varied possible modes of the CTRNN-EH controllers
is beyond the scope of this paper, two basic modes are
defined below, which are more pertinent to understand the
experiments presented here in the paper.

Autonomous Controllers. These are neural network configu-
rations that produce oscillatory signals without any external
sensory inputs [3, 5]. As shown in the concept illustrative
Figure 2(a), these configurations can generate autonomous
and periodic dynamics in the neural network without any
external triggers/sensor inputs; thus these would be referred

to as autonomous neuromorphic controllers in the later
sections.

Nonautonomous Controllers. These are neural network con-
figurations that can produce appropriate oscillatory patterns
only when coupled to some other oscillatory system. They
are more completely discussed in [8]. As shown in the
concept illustrative Figure 2(b), these configurations can
generate varied dynamics in the neural network only in
sync with specific external triggers/sensor inputs provided
to them, thus these would be referred as nonautonomous
neuromorphic controllers in the later sections.

3. Evolved Flapping Wing Flight Controllers

This section describes authors’s successful efforts aimed at
evolving autonomous and non-autonomous CTRNN-EH
controllers for a number of flapping-wing vehicle flight
modes [4, 7, 9]. The section will begin with a brief descrip-
tion of the microlevel flapping winged robot (MFWR)
model employed, followed by description of MFWR-specific
CTRNN-EH control architecture and the evolution strategy
applied at evolving different flight controllers.

3.1. Microlevel Flapping Winged Robot (MFWR). Microme-
chanical flying insect model was developed by MFI team
at UC Berkeley [2] to facilitate the investigative study to
build a real flapping wing robot with a 100 mg mass and
a 25 mm wings span. Based on the available MFI literature
on that robot’s wing aerodynamics and body dynamics, we
reconstructed a model with linear actuator dynamics called
Microlevel Flapping Winged Robot (MFWR) [4]. Our model
was verified in simulation and found to be a match for the
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Figure 3: Schematic of the simulated Microlevel Flapping Winged Robot (MFWR).

Berkeley model in that we could reproduce their published
flight envelopes and behaviors. The Wing Aerodynamics
(WA) module of model is based on the mathematical model,
developed from empirical study conducted on the Robofly
[17]. The WA module generates the aerodynamic forces
and torques for given wing kinematics. The Body Dynamics
Module takes the aerodynamics forces and torques generated
by the wing kinematics and integrates them along with the
dynamical model of the MFI body, thus computing the
body’s position and the attitude as a function of time. The
readers are directed to [18] for detail descriptions of these
modules.

In brief, the implemented MFWR model takes wing
(left and right) actuation parametric inputs like stroke and
rotation trajectories and produces the position and attitude
information of the MFWR in the world coordinate system
as shown in Figure 3. Additionally, the model also takes
the body linear velocity and angular velocity from the
previous simulation step making it an internal feedback
system. The MFWR model has been simulated with realistic
and envisioned physical and environmental parameters like
robot’s mass of 100 mg, envisioned wing length of 25 mm,
acceleration due to gravity value of 9.8 m/sec2, air dampen-
ing coefficient of 62.3 × 10−6 N-sec/m, stroke angle range
of −60 to +60, rotational angle range of −90 to +90, and
with some constant parameters derived and mentioned in
[2, 17]. Further, the differential equations characterizing the
internal dynamics of the robot model have been computed
using Runge-Kutta (RK4) numerical method.

3.2. Control Architecture and Evolutionary Algorithm Specifi-
cations. After some preliminary experimentation conducted
with the MFWR model, the custom CTRNN-EH control
architecture shown in Figure 4 was chosen to be less-
redundant architecture and with enough flexibility to embed
into its dynamics the optimal control laws required for
different flight modes [4]. The actuation dynamics modeled

for each wing can presently control the stroke and rotational
parameters of the wing, and the stroke plane of the wing
is fixed at a constant angle. This distributed CTRNN
architecture shown in Figure 4 has a central core network
block that can produce signals, which are delivered to
each wing trajectory actuation after being processed by a
delay network block. Figure 4 shows the interfacing of the
controller architecture with the MFI wing parameters. The
delay networks are placed to produce asymmetric/symmetric
actuations of left wing with respect to right wing or vice
versa to produce net nonzero/zero torques and forces in
Y-direction [2, 4]. For the set of experiments and results,
being described in this paper, a fullyconnected eight neuron
network is chosen for the central core network block and the
evolutionary algorithm is employed to evolve the central core
network and/or the delay duration in outer delay networks
[4]. Further, the central core can accept sensory input, from
the MFWR’s status or external command, which is feed to
each neuron in the core. The next subsection provides the
details of the evolutionary algorithm employed in the present
experiments.

As mentioned earlier, each individual CTRNN neuron
is specified by one bias, one time constant, and eight
weighted connections from all neurons in the network (seven
connections to other neurons, one self-connection, and one
sensor). Thus, the central core network, with eight-neurons,
is fully specified by the numeric value settings of eighty-eight
parameters, with eleven parameters for each neuron in a
fully connected eight-neuron network. The aforementioned
minipop EA is implemented with a population size of 4
and a mutation rate of 0.005. The genome length chosen
was equal to total number of bits employed to encode a
given CTRNN configuration. Each neuron parameter in the
configuration is encoded in eight bits, which aggregates
to a genome length of 704 bits to represent the central
core network. The delay input interval duration for gate
networks is encoded in an eight-bit string. Employing the
aforementioned architecture and algorithm specifications
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the next sections provide the details of the evolutionary runs
and evaluation criterion applied to evolving autonomous
and nonautonomous controllers.

3.3. Evolved Autonomous Flight Controllers. Three kinds of
autonomous flight controllers, namely, cruising, altitude
gain, and steering, were successfully evolved using the
aforementioned architecture and algorithm, but with type-
specific fitness evaluation criterion. For example, an accept-
able behavior of MFWR under an evolved cruise mode
controller is to produce motion in a forward direction that
is greater than the motion in altitude or sideward directions.
Moreover, it should also maintain zero angular velocity along
the three vehicle frame axes (zero pitch, roll, and yaw).
The later criteria of the expected controller can be met
by employing preevolved CTRNN-EH gate networks with
symmetric delays. But the first and primary criteria of the
controller should be evolved in central core, since this is
the only module capable of generating any dynamics to
drive the wings. Thus, an evaluation function to capture
this established cruise criteria should observe the motion
of the MFWR under the control of the potential controller
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Figure 5: The figure shows the relation between the expected cruise
behavior of MFWR and the fitness evaluation function employed
to evolve the CTRNN-EH controllers to achieve the same behavior
under control. An acceptable cruise controller has to propel the
MFWR in forward direction and minimize the variation in the
altitude. Thus, the fitness score employed to evolve the cruise
controllers should reward any forward motion (in x-direction) and
penalize any variations in altitude (in z-direction).

and reward the controller on generation of the forward
motion and penalize it on generation of altitude variations.
A pictorial representation of the expected autonomous
cruise behavior and the established relation to its potential
evaluation function is shown in Figure 5. Thus, the below
evaluation function is designed with a minimizing fitness
strategy [4], to capture the expected cruise behavior in
MFWR:

∑i=N
i=0

(
|Pzi| −

∣∣∣Pyi

∣∣∣− Pxi
)

N
, (2)

where Pzi, Pxi, and Pyi are the instantaneous positional
data of MFWR moment in Z(altitude), X(forward), and
Y(sideward) directions under the control of the wing
kinematics generated by the controller and N is the total
number of time steps present in each evaluation period.

It can be observed that the above evaluation function
captures the expected forward motion by placing constraints
on the controller to maximize Pxi term, because it is a
negating summation variable in the above minimizing
fitness strategy function. Further, the altitude sustainability
constraint is enforced by |Pzi| term, which captures the
averaging absolute measure of the variation in the altitude
across the evaluation time, and evolved cruising controller’s
fitness should minimize this factor so as to favor the overall
fitness value contributed by the Pxi term. Thus, at least
theoretically, the established fitness evaluation function for
evolving cruising mode controllers rewards the forward
motion of the MFWR and penalizes the variations in its
altitude, when placed under the control. Figure 6 shows the
behavior of the MFWR under an evolved cruise controller,
which has successfully evolved to produce appropriate stroke
and rotation kinematics in the wings of the MFWR. Based
on the above-mentioned fitness evaluation strategy, that
is, to capture the flight mode behavior in terms of the
positional information of the MFWR over a specified period
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Figure 6: The motion of the MFWR in three dimensions (shown in (a)) controlled by a Cruise Mode Controller actuated wing kinematics
(shown in (b)). Here the stroke kinematics has relatively higher beats rate than that of the rotation for the above controller shown in the
figure, thus the oscillation cycles are cluttered, making it hard to visualize them with respect to the rotation kinematics.

of control, other two autonomous controllers, Altitude-gain
and Steer, were also evolved successfully [8, 9]. Further details
of the autonomous flight mode controller experiments can
be found in [7–9].

3.4. Evolved Nonautonomous Flight Controllers. Two kinds of
non-autonomous flight controllers were successfully evolved,
namely, adaptive cruise mode controllers and polymorphic
controllers [7, 8]. The adaptive cruise mode controllers were
similar to their autonomous counterpart except that they
were forced to sense the altitude of the MFWR and adapt
accordingly during the evolution. The polymorphic con-
trollers on the other hand were forced to change the behavior
of the core central CTRNN module between autonomous
altitude-gain controllers and autonomous cruise mode con-
trollers, based on the external command. Both of these
controllers employed the same fitness evaluation criterion,
which was mentioned in the context of the autonomous
controllers, on a varied range of the sensory inputs. An
evolved nonautonomous cruise mode controller’s effect on
the wing kinematics of the MFWR is shown in Figure 7(a),
along with the corresponding positional data of the MFWR
and the sensory input. Also, one of the evolved CTRNN-EH
polymorphic flight controller’s effects on the wing kinemat-
ics is shown in Figure 7(b), along with the corresponding
positional data of the MFWR robot and the external sensory
input for invoking the desired modes.

4. Analysis of the Evolved Flight Controllers

The evolved CTRNN-EH flight controllers would be better
accepted for practical deployment, at least for engineers, if
their functionality can be explained using known general
principles of engineering. As with all evolvable hardware-
based methods, there exists a possibility that the acceptance
of the evolved flight controllers, merely in terms of fitness
score value (which is based on closely approximating the

acceptable overall body trajectory behavior), could have
been exploited the possible underlying noise in the MFWR
model to gain optimal controller status. Thus, the first
possible analysis to accept the evolved flight controller is to
diligently observe and validate the insect’s temporal behavior
when coupled with the evolved controller’s dynamics and
determine if they satisfy the known principal physical
characteristics of the MFWR model flight behavior. Further,
it would be of interest to explain the evolved controllers
by possible decomposition of the CTRNN-EH layer in
terms of logical control blocks. The next subsections deal
with analyzing the evolved controllers with two deduced
approaches mentioned below.

4.1. Acceptability Analysis. During the course of this work, it
was deduced that the acceptability of the physical behavior of
the MFWR flight, produced by the evolved flight controllers
could be readily understood by qualitatively contrasting
them, with the information discerned from the empirical
study conducted on the MFI insect model [2, 18]. During
the mentioned empirical study, it was demonstrated that
an appropriately parameterized wing’s rotational trajectory
(the parameters being frequency, amplitude, and phase) can
produce thrust in the wing motion plane that can counter air
damping and drag on the insect’s body, which in turn leads
to proportional motion of the robot in forward direction.
Additionally, it has been deduced that an appropriate and
steady stroke trajectory envelope in the wing kinematics,
at positive rotational position and rate of the wing (i.e.,
upstroke of the wing), can produce positive lift in MFI
(which would counter the gravitational forces and leads to
rise in the altitude), and the same stroke envelope at negative
rotational position and rate would generate antilift (which
leads to drop in the altitude). Thus, any designed or evolved
controllers for MFWR model should at least qualitatively
satisfy this empirically deduced criterion, established for the
MFI insect model flight behavior.
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Figure 7: (a) shows the Wing Kinematics generated by the Central Core network of a Non-Autonomous Cruising Controller and the
corresponding insect motion and sensory update (the stroke kinematics relatively has higher beats rate than that in rotation for the above
controller). (b) shows the Wing Kinematics generated by the Central Core network of a Polymorphic flight Controller and the corresponding
insect motion, when acted upon by external sensory inputs. One can see the initial cruising behavior is been switched to Alt. Gain behavior
(with brief switching delay in wing kinematics).

It was demonstrated that the autonomous and nonau-
tonomous controllers, evolved merely based on simple
fitness evaluation functions, produced an acceptable physical
behavior in the MFWR model in terms of overall body trajec-
tory [8, 9]. Furthermore, when diligently observed, the wing
trajectory (rotational and stroke) produced by the evolved
flight controllers (for a given fitness criteria) seems to abide
with the empirically established wing trajectory criterion
(from MFI insect model flight behavior study). A detailed
description of acceptability analysis is not in the scope of
this paper and readers are directed to [8, 9] for more
details on this analysis performed on individual flight mode
controllers.

4.2. Qualitative Functional Decomposition Analysis. It would
be of interest to interpret the evolved controllers by possible
decomposition into easily explainable logical control blocks,
and there exists a previous work [5, 16, 19] that relies on
identifying the internal dynamics of the CTRNN-EH con-
troller into Central Pattern Generators (CPGs) and Reflexive
Pattern Generators (RPGs). To summarize succinctly, one
can perceive the CPG patterned CTRNN controller as the
collection of neuron modules that have been evolved appro-
priately at individual neuron level, to produce autonomous
oscillatory dynamics, without any external oscillations or
bias. The possibility of a two-neuron CTRNN-EH control-
ler producing autonomous oscillatory dynamics has been
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demonstrated in [16, 19], and further the later work in the
same realm [5, 6] provided a logical CPG template, in which
neurons inhibit each other with a time delay, which further
leads to continuously destabilizing each other to generate
oscillatory dynamics. Further, an RPG patterned CTRNN-
EH controllers can be perceived as the collection of neuron
modules that have been evolved appropriately to produce
oscillatory dynamics in presence of the external oscillations
or bias.

The evolved autonomous altitude gain, cruising, and
steering and controllers are suspected to fall under the CPG
template and could be decomposed into a collection of
explainable oscillatory and nonoscillatory neuron groups
that produced desired control of the evolved flight behaviors.

On other hand, the nonautonomous cruising mode con-
trollers and polymorphic mode controller (as a whole) are
likely to fall under the RPG template and could be decom-
posed into a collection of sensor-dependent or -independent
oscillatory neuron groups. Thus, it would be necessary to
find and separate the possible independent and dependent
oscillatory control modules in an evolved controller that
could aid in characterizing a given controller using known
CPG or RPG templates. Further this decomposition process
could provide a qualitative view and human understandable
structure of the lower-level coordination among these sep-
arated modules, which primarily govern the behavior of a
given evolved controller. In this vein, a three-step frequency-
based analysis procedure is proposed to qualitatively decom-
pose the evolved controllers.

Dynamics-Deprived Neuron Elimination. To simplify the
process of decomposing, the evolved controllers into a
group of functional units, a step-by-step neuron elimina-
tion technique, shown in Figure 8, has been employed to
possibly reduce the size of the existing 8-neuron CTRNN-
EH controllers. As shown in Figure 8, one can assign a role
to individual neurons in a given CTRNN-EH controller
architecture, based on their functional value. The neurons
that are connected directly to the effectors module of the
MFWR can be designated as primary neurons, and others
can be designated as secondary neurons. It is obvious that
primary neurons cannot be dynamics-deprived neurons, but
some of the secondary neurons that saturate to minimum
or maximum of neuron output level during flight controller
period qualify to be dynamics-deprived neurons. These
detected dynamics-deprived neurons can be folded into
the existing neurons by modifying the biases appropriately
(i.e., “Bias-Forwarding”). Once the reduced architecture’s
dynamics qualitatively match the dynamics of the original
complete network, the reduce network can be employed for
further decomposition process.

Frequency-Based Grouping. Based on the previously men-
tioned general principle of acceptable controller dynamics,
it was deduced that the steady oscillatory dynamics in the
wing (stroke or rotation) dictate the flight behavior. Thus,
based on this controller acceptability knowledge, it would be
appropriate to group the neurons in the reduced network,

based on their individual time constants, into no more than
two groups (one each for rotation and stroke). As shown in
the Figure 9, the clustering criteria are based on the idea that
the neurons with relatively lower time constants (i.e., higher
frequency) are separated from the neurons with relatively
higher time constants (i.e., lower frequency). As shown
in Figure 9, the grouping of the neurons will simplify the
decomposition process in the way that one can logically relate
the individual wing kinematics (stroke or rotation) to the
individual neuron groups (clustered) based on the qualitative
difference in the frequency and phase of the wing kinematics.

Lesion Study . Once the frequency clustered neuron control
modules are obtained for a given controller, it is necessary
to understand the interactions of the individual neurons
within those control modules and with the other existing
control modules to qualitatively deduce the underlying
governing principle of the controller functionality. Thus, in
this lesion study, a general method of diligently observing
the variations in the dynamics of an individual or group
of neurons, while some of its connections are amputated
from rest of the network, has been adopted. Though the
number of lesion operations cannot be quantified and will
vary depending on the complexity of the evolved controller,
but as shown in Figure 10, the initial intuitive regions of
the amputations across all the evolved controllers would be
between the frequency clustered neuron groups to verify
their interdependency followed by a series of further lesions,
like intragroup lesion study, wherever deemed appropriate
for the controller in the context. Employing the above-
mentioned qualitative decomposition process; the best five of
every evolved controller in each category have been analyzed
as discussed below.

4.3. Analysis of Autonomous Controllers

4.3.1. Autonomous Cruise Mode Controllers. This section
provides the detailed qualitative decomposition process for
one of the best evolved autonomous cruise mode control-
lers, using the above-mentioned three general steps. For
qualitative comparisons and to better understand the con-
troller decomposition an unaltered original eight-neuron
architecture of the controller to be analyzed is shown in
Figure 11. The architecture has two primary neurons 0 and
1, which are directly connected to the stroke and rotation
effectors of the MFWR and the neurons from 2 to 7 are the
secondary neurons of the controller, whose role in governing
the controller behavior would be determined as part of
this decomposition process. The original outputs of each
neuron in the controller’s architecture, which are responsible
for producing the desired cruising behavior in MFWR, are
shown in Figure 12.

Moreover, the flight trajectory of the MFWR under the
control of the original controller in the context is shown in
Figure 13, which would be useful for qualitative comparisons
that would be performed later when the original architecture
of the controller has been simplified for analysis. As shown
in Figure 12, it can be observed that the secondary neurons
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Figure 8: A pictorial representation of the “dynamics-deprived neuron elimination” process. The primary neurons are labeled as “P” and
subsidiary neurons are labeled as “S”. A three step process is adopted here, starting with eliminating the neurons with saturated dynamics in
them as shown in (a), followed by folding the saturated output of the eliminated neurons as bias into the survival neurons as shown in (b).
The final step shown in (c) is to verify the qualitative match of the dynamics produced by the bias modified (labeled with “∗”) individual
neurons to their counterparts in the original architecture.

3, 5, and 6 seem to be saturated at constant output value
during the flight control. Though it can be deduced, at
least, from observations that these three neurons may not
have contributed to the overall output dynamics produced
by the controller, a detailed step-by-step process mentioned
in the “Dynamics-deprived Neuron Elimination” procedure
is necessary to rule out the possibility that these neurons
might have played a critical role during the initialization
of the controller by providing transient dynamics before
saturating in the steady state. The obvious neurons that
are contributing to the controller dynamics are 0, 1, 2, 4,
and 7, but there exist distinct differences in the output

envelope and frequency characteristics of 0 and 1 neurons
from 2, 4, and 7, which could be used for “frequency-
based grouping” process later on the successful reduction
of the architecture size, as shown in Figure 17. Since, the
candidate dynamics-deprived neurons are determined by the
neuron output state observations; the biases of the neurons
0, 1, 2, 4, and 7 are modified appropriately, as pictori-
ally represented in Figure 8(b), by treating the individual
input weight of the survival neuron from each eliminated
neuron as an additional bias value to its output state. The
resultant reduced neuron architecture of five neurons in
it is pictorial represented in Figure 14. To further validate
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Figure 9: A pictorial representation of the “frequency-based grouping” process. The first step of the process, as shown in (a), is to determine
a relative threshold time constant (Tau) for the reduced network, reduced by “dynamics-deprived neuron elimination” process, followed by
grouping the neurons in the architecture based on the frequency of the output produced by individual neuron (i.e., the neurons with time
constant less than the relative threshold are clustered into high frequency group, and neurons with time constants more than the relative
threshold are clustered into low frequency group) as shown in (b).
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Figure 10: A pictorial representation of the “lesion study” process. The lesion study is based on the idea that it is possible to determine the
underlying governing functional principle of the network with rigorously observing the behavior changes in the network for appropriate
combinations of the amputations. Based on the complexity of the controller, the lesion study can be performed between neurons in distinct
frequency groups, which is performing intergroup amputations, shown in (a), or between the neurons in the same frequency group, that is,
intragroup amputations shown in (b).

that the dynamics-deprived neuron elimination process is
applicable for this controller, two qualitative comparisons are
necessary, primarily the architecturally reduced controller
should at least qualitatively control the MFWR trajectory
behavior that was intended by the original controller, and,
moreover, the survival neuron output state envelopes during
the flight control should match their output state envelopes
from the original architecture.

The later condition eliminates the possibility that the
reduced architecture could have changed dramatically and
lost its internal dynamics, although it could have satisfied the
primary condition to produce the desired cruise behavior in
MFWR. Thus, the reduced five neuron controller is evaluated

against the MFWR, and the individual neuron output state
envelope of the five-neurons is captured and shown in
Figure 15, and accordingly the trajectory of MFWR under the
control of the reduced controller is shown in Figure 16. It can
be observed that there exists an acceptable qualitative match
between the produced neuron outputs in the reduced five-
neuron controller to its counterparts original eight neuron
controller, including the in sync variations of the frequency
and amplitude in the primary stroke neuron and the neuron
4 (of original architecture) to its new neuron position
3.

Moreover, the most convincing evidence that the reduced
controller qualitatively controls the MFWR trajectory to
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Figure 11: A pictorial representation of the fully connected eight
neuron architecture of the autonomous cruise mode controller
chosen for qualitative decomposition analysis. As mentioned earlier,
the stroke and rotation neurons are marked “P” as primary and “S”
as secondary for the other neurons and numbered accordingly from
0 to 7.

produce desired cruise behavior justifies that the dynamics-
deprived neuron elimination process is applicable for this
controller. Thus, moving forward with the reduced five-
neuron architecture, applying frequency-based grouping
would be uncomplicated, since it can be observed from the
five neuron output envelopes that the primary stroke neuron
and third secondary neuron seem to share a peculiar in sync
frequency and amplitude variations, intuitively belonging to
high frequency group. Moreover, the evolved time constant
for both of these neurons is same and is 0.010000 units and
on other hand, the neurons 1 and 4 along with the rotation
primary neuron can be allocated to low frequency group
with corresponding time constants 10.546157, 9.558393, and
20.176863, respectively. Thus, if a relative time constant
threshold of 9 units is chosen, then there exist two distinct
frequency-based groups as shown in Figure 18. After the
grouping of the primary stroke neuron and third secondary
neuron in a comparable frequency group, further interpre-
tation on their interconnection weight revealed that there
strongly inhibit each other, and further there exists a strong
possibility that these two neurons can form a two-neuron
(high frequency) oscillator with any other input dynamics
from the low frequency group (consists of rotation primary
neuron, fourth secondary neuron, and second secondary
neuron). Thus, an intergroup lesion study, as shown in
Figure 10(a), to amputate the neuron connections between
the high frequency group neurons and the low frequency
group neurons is performed. When this amputated net-
work is evaluated, the above intuitive possibility of two-
neuron oscillator formation in the high frequency group was
validated along with a revelation of two-neuron oscillator
formation in a low frequency group, as shown in Figure 18.
It can observed that the primary stroke neuron and the third
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Figure 12: The above figure shows the neuron output state
dynamics of each neuron in the fully connected original eight
neuron controllers produced during the flight control of the MFWR
to provide optimal cruise behavior.

secondary neurons oscillate at same frequency consistently,
and their output amplitude is more than the lower frequency
group consisting of primary rotation neuron and second
secondary neuron along with a saturated fourth secondary
neuron during the amputated evaluation. It is evident that
the fourth secondary neuron’s dynamics are not completely
isolated from the high frequency stroke oscillator group
(primary stroke neuron and third secondary neuron) since
this fourth neuron has shown perfect oscillatory behavior
when the reduced network was fully connected through this
neuron. Moreover, when this amputated network controller
is coupled to the MFWR, it has been observed that the
controller was able to control the MFWR trajectory in an
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Figure 14: A pictorial representation of the reduced five-neuron
architecture of the cruise controller referred in Figure 12. It should
be noticed that the primary neurons and secondary neurons retain
their position in the network, but neurons 4 and 7 from the original
network are positioned in 3rd and 4th locations respectively. The
“∗” indicates that the neurons in this “dynamics-deprived neuron
elimination” process-based architecture differ from the original
neuron in the way that, their bias has been accounted for the
eliminated neuron’s saturated output effect on them. So, at least
in steady state this reduced network should perform functionally
equivalent to the original architecture.

acceptable cruise mode behavior template seen before in
Figures 16 and 15, but gradually it drifted from the acceptable
behavior and resulted in significant rise in MFWR’s altitude,
with a rise rate proportional to the MFWR forward motion
rate, as shown in Figure 19. It would of interest to do a
diligent comparison of the dynamics of the fully connected
reduced five-neuron controller to that of the amputated
controller shown in Figures 18 and 15 from behavior change
perspective in each neuron output states during the flight
evaluations. Though one might argue that quantitatively the
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Figure 15: The above figure shows the neuron output state
dynamics of each neuron in the reduced five-neuron architecture
of the cruise controller architecture shown in Figure 12. It can
be noticed that qualitatively the output dynamics of each neuron
do not differ significantly from their original behavior shown in
Figure 13.

dynamics of neurons 0 to 3 (includes primary stroke and
rotation neurons and two secondary neurons) are different
in both the scenarios, for qualitative analysis purposes these
neurons do project similar oscillatory dynamics, but the
drastic difference of the dynamics is observed in the fourth
secondary neuron, which seized to oscillate when amputated
from the high frequency neuron group indicating a strong
connection to the controller’s performance degradation
noticed in the Figure 24. When analyzing the neuron outputs
of the fully connected controller, the dynamics of stroke neu-
ron group (high frequency group) were altered periodically
by a slow moving signal, with a period equivalent to the
rotation neuron group (low frequency group). Moreover,
it was already demonstrated that there exists the fourth
secondary neuron in this low frequency group (rotation)
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Figure 16: The MFWR trajectory produced by the reduced five
neuron controller. It can be observed that the architectural reduced
controller was successful in producing qualitatively same cruise
behavior possible by the fully connected eight neuron network. The
MFWR trajectory produced by the eight-neuron network is shown
in Figure 14.

that is susceptible and depends on the dynamics of the
high frequency group (stroke), and though both groups
were capable of producing independent oscillatory dynamics
to control the MFWR trajectory, the control lasted for a
short period of time in absence of the possible dynamics
modification by the fourth secondary neuron. Further, an
optimal control behavior was only possible with inclusion
of this fourth secondary neuron, which now can be treated
as a monitoring neuron, that was evolved appropriately
to take the responsibility of performing complex dynamics
computation across both the oscillator groups and provide
the high frequency group with periodic signals to alter its
amplitude and frequency to satisfy the cruise behavior in
the MFWR. Additionally, it was mentioned earlier that the
fourth neuron has an intermediate time constant value of
9.558, which makes it have enough temporal summation
ability, the ability which could have possiblely made it an
observer (sink in the dynamics of the other neurons) of the
other neurons and further have sufficient internal dynamics
(sufficient firing rate to generate spikes) to modify their
dynamics at slower but in a strong way thus modifying their
frequency and amplitude periodically.

Based on the above analysis, it can be deduced that the
evolved autonomous cruise mode controllers can be qualita-
tively explained as a composition of two steady and indepen-
dent frequency oscillators, one governing the stroke kinemat-
ics of the wing with higher beat rate and another it is rotation
with lower beat rate, in presence of a monitoring neuron
which periodically tunes the amplitude and frequency of the
stroke oscillator, which periodicity synchronized with the
rotation oscillator. A pictorial representation of the above
deduced compositional template is shown Figure 20. All of
the 5 best evolved autonomous cruise mode controllers were
reducible from an eight neuron to a five-neuron architecture
using the “dynamics-deprived neuron elimination” process.

Further, four of them had distinct frequency features in
their architecture that could be exploited by the “Frequency-
based Grouping” process and were successfully reduced to
two kinematics control modules. Only three of the best
five controllers complied with the decomposed template
discussed above, with steady independent oscillator blocks
and a monitoring neuron, and others performed the same
functionality with closely dependent oscillator blocks that
were not complaint with frequency-based clustering criteria.
Nonetheless, the rigorous intragroup lesion study on them
exhibited the presence of monitor neuron, which aided
in controlling the amplitude of the rotation dynamics for
acceptable cruise behavior.

4.3.2. Autonomous Altitude Gain Mode and Steer Mode Con-
trollers. The above decomposition analysis mentioned in the
context of the cruise mode controllers is performed on the
entire best five autonomous altitude gain mode and steer
mode controllers. The individual controller architectures
were reducible from an 8-neuron to 4-neuron architecture
using “Dynamics-deprived Neuron Elimination” process in
both categories. Only some of the best altitude gain con-
trollers were complaint with clustering criteria and thus
two functional templates were derived using the lesion
study performed on the individual neurons in the reduced
network. As shown in Figure 21(a), this derived functional
template employed single oscillatory control group encom-
passing both the primary neurons in it, performing close-
looped oscillations required for wing kinematics, with aid of
two subsidiary neurons in the network resembling a typical
CPG-like control module described earlier in the section.
This decomposition template is applicable for the steer
controller’s entire central core and only for two of the altitude
gain controllers. The other template, shown in Figure 21(b),
had only the stroke primary neuron in an oscillatory control
group with a saturated rotation kinematics in separate
control module, which is applicable for only altitude gain
controllers.

4.4. Analysis of Nonautonomous Controllers

4.4.1. Nonautonomous Cruise Mode Controllers. This section
provides the detailed qualitative decomposition process for
one of the best evolved non-autonomous cruise mode
controllers. The applicability of the established three-step
decomposition using Dynamics-Deprived Neuron Elimina-
tion, Frequency-based grouping, and Lesion Study methods
will be presented and possible oscillatory level decomposi-
tion will be deduced. For qualitative comparisons and to
better understand the controller decomposition, an unal-
tered original eight-neuron architecture of the controller
to be analyzed is shown in Figure 22. The architecture has
two primary neurons 0 and 1, which are directly connected
to the stroke and rotation effectors of the MFWR and the
neurons from 2 to 7 are the secondary neurons of the
controller, whose role in governing the controller behavior
would be determined as part of this decomposition process.
Apart from the interconnections among the neurons, every
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Figure 17: A pictorial representation of the “frequency-based grouping” process for the cruise mode controller shown in Figure 12. The first
step of the process, as shown in (a), is to compare each neuron’s time constant with determined relative threshold of 9.0 units, followed by
grouping the neurons in the architecture based on the frequency of the output produced by individual neuron (i.e., the neurons with time
constant less than the relative threshold are clustered into high frequency group and neurons with time constants more than the relative
threshold are clustered into low frequency group) as shown in (b).

neuron is connected to an external altitude sensor, which is
modeled to provide a relative altitude status of the MFWR
from its initial altitude during the evaluation. The original
outputs of each neuron in the controller’s architecture,
which are responsible for producing the desired cruising
behavior in MFWR, along with the altitude sensor output,
are shown in Figure 23. Moreover, the flight trajectory of the
MFWR under the control of the original controller in the
context is shown in Figure 24, which would be useful for
qualitative comparisons that would be performed later when
the original architecture of the controller has been simplified
for analysis. As shown in the Figure 23, it can be observed
that the secondary neurons 3 and 6 seem to be saturated at
constant output value during the flight control. Though it
can be deduced, at least, from observations that these three
neurons, may not have contributed to the overall output
dynamics produced by the controller, a detailed step-by-
step process mentioned in the “dynamics-deprived neuron
elimination” procedure is necessary to rule out the possibility
that these neurons might have played a critical role during
the initialization of the controller by providing transient
dynamics before saturating in the steady state. The obvious
neurons that are contributing to the controller dynamics are
0, 1, 2, 4, 5, and 7, but there exist distinct differences in
the output envelope and frequency characteristics of 0, 2,
5, and 7 neurons from 1 and 4, which could be used for
“frequency-based grouping” process later on the successful
reduction of the architecture size. Moreover, as mentioned
during the initial physical validation step of the evolution
process, there exists an entrainment of the primary rotation
neuron output state in amplitude and frequency with that of

the sensor status output characteristics. Since the candidate
dynamics-deprived neurons are determined by the neuron
output state observations, the biases of the neurons 0, 1, 2, 4,
5, and 7 are modified appropriately, by treating the individual
input weight of the survival neuron from each eliminated
neuron as an additional bias value to its output state. The
resultant reduced neuron architecture of six neurons in it
is pictorially represented in Figure 25. To further validate
that the dynamics-deprived neuron elimination process is
applicable for this controller, two qualitative comparisons are
necessary; primarily the architecturally reduced controller
should at least qualitatively control the MFWR trajectory
behavior that was intended by the original controller, and,
moreover, the survival neuron output state envelopes during
the flight control should match their output state envelopes
from the original architecture. As mentioned earlier, the later
condition eliminates the possibility that the reduced archi-
tecture could have changed dramatically and lost its internal
dynamics, although it could have satisfied the primary
condition to produce the desired cruise behavior in MFWR.

Further, the interesting entrainment behavior between
the sensor output and the rotation neuron output (and if
possible the third (old designated position-fourth) secondary
neuron output) should be maintained, at least qualitatively.
Thus, the reduced six-neuron controller is evaluated against
the MFWR, and the individual neuron output state envelope
of the six neurons and the sensor status are captured and
shown in Figure 26, and accordingly the trajectory of MFWR
under the control of the reduced controller is shown in
Figure 27. It can be observed that there exists an acceptable
qualitative match between the produced neuron outputs in
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Figure 18: The output state dynamics of each neuron in the
interfrequency group amputated network, amputated as part of
the lesion study on the reduced five-neuron network. It can be
observed that the primary stroke neuron and the third secondary
neuron produced perfect in sync oscillations forming a two-neuron
independent oscillator. On the other hand, the primary rotation
neuron with second neuron formed a feeble two neuron oscillator.
It should be noticed that the fourth neuron dynamics are saturated,
in the amputated network, compared to its original oscillatory
behavior seen in Figure 16 of the fully connected reduced controller.

the reduced six-neuron controller to its counterparts in the
original eight-neuron controller, including the in entrain-
ment behavior between the primary stroke neuron and the
sensor status.

Thus, moving forward with the reduced six-neuron
architecture, applying frequency-based grouping would be
complicated, since it can observed from the six-neuron
output envelopes that the primary stroke neuron, along with
second, fourth, and fifth secondary neurons, seems to share
the same frequency bandwidth, intuitively belonging to high
frequency group.

Moreover, the evolved time constants for these neurons
are in the range of 0.010000 to 0.05000 units. But, on the
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Figure 19: The trajectory of MFWR produced under the control of
the amputated cruise controller. It can be noticed that the controller,
with two independent oscillators for stroke, and rotation produces
an acceptable cruise behavior during initial phases of the flight,
but immediately loose its ability to control and reduce the altitude
variations, in absence of the monitor neuron.
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Figure 20: The Qualitative functional decomposition template
derived for the autonomous cruise mode. Most of the autonomous
cruise mode controllers can be decomposed into the above-shown
template with a high frequency stroke control oscillator module
and a low frequency rotation control oscillator along with an
intermediate neuron called monitor neuron, which is responsible
to coordinate and fine-tune the amplitude and frequency of the
stroke oscillator with a period derived from the rotation oscillator.
This functional template explains the general evolved behavior of
the amplitude and frequency modulation of the stroke kinematics
with rotation period for optimal cruise control of MFWR.

other hand, the rotation primary neuron and the third
secondary neuron can be allocated to low frequency group
with corresponding time range of 10.034 to 16.532 units.
Moreover, since the sensor module output can be treated as
a pseudoneuron (with dynamics equivalent to the MFWR
model and with interneuron connections to the primary
neurons only), there exist two options to decompose the
architecture further. The first approach is to group the sensor
pseudoneuron into the low frequency group and perform
the intergroup lesion study, which will provide the insight
into the high frequency group oscillator’s (if at all the group
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Figure 21: The qualitative functional decomposition derived for the evolved autonomous altitude gain controllers and steer controllers.
Most of the steer controller’s wing kinematics can be decomposed with a typical CPG-like functional template shown in (a) as a closely
coupled stroke and rotation oscillators with steady beat rate and steady amplitude. Most of the altitude gain controllers can be decomposed
with the functional template shown in (b), with a dedicated stroke oscillator along with a saturated rotation control module.
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Figure 22: A pictorial representation of the fully connected eight-
neuron architecture with a single altitude sensor, of the nonauto-
nomous cruise mode controller chosen for qualitative decompo-
sition analysis. Following the general neuron representation, the
stroke and rotation neurons are marked with “P” as primary and
“S” as secondary for the other neurons and numbered accordingly
from 0 to 7.

exhibits independent oscillatory nature) dependency on the
sensor state and further the same dependency can be derived
by performing intragroup lesion study on the low frequency
group by amputating the sensor pseudoneuron. The second
approach is to group only the real neurons by completely
ignoring the sensor signal (i.e., amputating the sensor

signal) into a high and low frequency groups and study
their behavior independently, checking for independent
oscillatory behavior, in the absence of the external sensor
signal, followed by introducing the sensor signal to detect
any significant behavior changes for deducing any possible
independent control modules. Though both approaches
would yield the same conclusions, the second approach is
chosen since the sensor dynamics of the MFWR can be
treated separately from the actual neuron dynamics, in two
easy steps of complete sensor-independent neuron dynamics
decomposition (frequency grouping and intragroup lesion
study) followed by the sensor status injection into the
possible neuron-level decomposed modules. Thus, moving
forward, the six-neuron architecture is disconnected from
the external sensor and a frequency-based grouping, with
groups mentioned earlier is performed as shown in the
pictorial representation Figure 28. Further, an intergroup
lesion study is performed, as described earlier (shown in
Figure 10(a)), and the outputs of the each neuron in the two
groups are presented in Figure 29. It can be noticed that these
two frequency groups have indeed self-sufficient dynamics
in them to be independent oscillators, with two frequency
groups, the high-frequency group and the low-frequency
group as demosntrated in above analysis. Moreover, the
outputs of each neuron in the high-frequency group match
their original output envelope from the reduced six-neuron
architecture suggesting that this group’s internal dynamics is
immune to the external sensor dynamics. But the same can-
not be deduced for the low-frequency group, which has high
time constants and have already shown its affinity to entrain
with the sensor signal. Moreover, this intragroup amputated
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Figure 23: The above figure shows the neuron output state dynam-
ics of each neuron in the fully connected original eight-neuron
controller and the external altitude sensor, produced during the
flight control of the MFWR to provide optimal cruise behavior. It
can be observed that the output states of neurons 1 and 4 entrain
with altitude sensor in phase and out of phase, respectively.

stroke and rotation neuron group independent oscillators
have been partially successful in controlling the MFWR’s
expected cruise behavior as shown in Figure 30, in which it
can be observed that the altitude of the MFWR is lost with
the progression of the time, though the rate of the altitude
drop is very much less than the rate of forward motion gain.
The next step in this process to deduce any possible modular
control structure is to inject the sensor signal dynamics
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Figure 24: The MFWR trajectory produced by the original fully
connected eight-neuron nonautonomous controller. It can be
observed that the evolved controller was successful in producing
forward motion in the MFWR without any overall gain in the
altitude.
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Figure 25: A pictorial representation of the reduced six-neuron
architecture of the cruise controller referred in Figure 22. It should
be noticed that the primary neurons and second secondary neuron
retain their position in the network but the neurons 4, 5, and 7 from
the original network are positioned in 3rd, 4th, and 5th locations
respectively. The “∗” indicates that the neurons in this “dynamics-
deprived neuron elimination” process-based architecture differ
from the original neuron in the way that, their bias has been
accounted for the eliminated neuron’s saturated output effect on
them. So, at least in steady state, this reduced network should
perform functionally equivalent to the original architecture.

into the established two frequency groups and check for
the entrainment behavior and controller’s expected cruise
mode acceptability on MFWR. While performing the agreed
final step in the decomposition process, it was deduced that
injecting the sensor signal dynamics only into low-frequency
group is sufficient to produce qualitatively acceptable cruise
mode behavior in MFWR. Thus, a general qualitative func-
tional decomposition template shown in Figure 31 is derived
explaining the evolved non-autonomous cruise mode con-
trollers, as a combination of two independent oscillators,
of which the high-frequency oscillator controlled the stroke



18 Applied Computational Intelligence and Soft Computing

−2

−1

0

0

0

0.2

0.4

0.5

0.6

0.6

0.2

0.4

0.6

0.7

0.8

1

1

0

0.5

1

0

0.5

1

2

Neuron 0 (primary-stroke)

Neuron 1 (primary-rotation)

Neuron 2 (secondary)

Neuron 3 (secondary)

Neuron 4 (secondary)

Neuron 5 (secondary)

Altitude status sensor

Figure 26: The above figure shows the neuron output state dynam-
ics of each neuron in the reduced six neuron architecture of the
cruise controller architecture shown in Figure 22. It can be noticed
that the qualitative output dynamics of each neuron do not differ
significantly from their original behavior shown in Figure 23. More-
over, It can be observed that the output states of neuron 1 and 3
entrain with altitude sensor in phase and out of phase, respectively.

kinematics of the wing with steady amplitude and frequency
and the low-frequency oscillator, which was evolved to
monitor the altitude variations in the MFWR, through
the available external sensor module, altered the rotation
dynamics continuously to limit the variations in the altitude
of the MFWR and simultaneously provided the forward
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Figure 27: The MFWR trajectory produced by the reduced six-
neuron controller. It can be observed that the architectural reduced
controller was successful in producing qualitatively same cruise
behavior possiblely by the fully connected eight-neuron network.
The MFWR trajectory produced by the eight-neuron network is
shown in Figure 24.

X X
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Stroke control module
(high frequency group)

Rotation control module
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Figure 28: A pictorial representation of the “frequency-based
grouping” process combined with intergroup lesion study in
absence of the external sensor input for the nonautonomous cruise
mode controller shown in Figure 22.

motion in it, by generating required lift and antilift with the
behavior verified by the general principles of the empirical
study (mentioned in the acceptability analysis). Three of the
best five evolved controllers followed the deduced template,
and the other two followed more closed template that is only
different from the predominant one in that the stroke fre-
quency group has a dependency on the external sensor status.

4.4.2. Nonautonomous Polymorphic Controllers. Since the
polymorphic controllers embed in their architecture both
the autonomous altitude gain and cruise mode controllers,
which can be invoked as a separate controllers in isolation
with a static external signal not a continuous dynamic
signal, the qualitative functional decomposition templates
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Figure 29: The above figure shows the neuron output state
dynamics of each neuron in the low frequency group (1 and 3) and
high frequency group (0, 2, 4, and 5) after intergroup amputation is
performed and evaluated in absence of the external altitude sensor
signal (represented in Figure 28). It can be noticed that each qualita-
tive group is self-sufficient to generate internal dynamics to sustain
steady oscillations independent of the external sensor signal. But,
nonetheless low frequency group neurons seem to be susceptible to
external sensor signal due to their high time constants.

presented for the autonomous cruise and altitude gain
controllers in the previous section would be applicable for
decomposing the polymorphic controllers into two isolated
general templates pictorial represented in Figure 21. To
further validate the above presented templates, an evolved
polymorphic controller’s neuron outputs have been eval-
uated in isolation for cruise and altitude gain command
(external sensor value of “0” and “1”, resp.) and presented
in Figure 32(a) and Figure 32(b), respectively. It can be
observed from Figure 32(a) that there exist neurons 2, 3, 6,
and 7 which meet dynamics-deprived criteria, and further
when their saturated outputs are bias folded into neurons
0, 1, 4, and 5, the dynamics of the reduced four neuron
network and its effect on MFWR behavior, namely, cruising
behavior, matched the original eight-neuron network’s gen-
erated behavior. Moreover, as anticipated, the reduced four-
neuron network with same output dynamics frequency for
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Figure 30: The MFWR trajectory produced by the controller
during the lesion study performed with the techniques shown in
Figure 28. It can be observed that the amputated two independent
stroke and rotation oscillators, in absence of the external sensor,
were partially successful in controlling the MFWR to have accept-
able cruise behavior in it, suggesting the requirement of the external
sensor ingestion to achieve the acceptable cruise control.

SE
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Rotation control module
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Rotation kinematics
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(sensor dynamics)
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Figure 31: The Qualitative functional decomposition template
derived for the non-autonomous cruise mode controllers. Most of
the nonautonomous cruise mode controllers can be decomposed
into the above-shown template, as a combination of two indepen-
dent oscillator, of which the high-frequency oscillator, controlled
the stroke kinematics of the wing with steady amplitude and
frequency and the low-frequency oscillator which was evolved to
monitor the altitude variations in the MFWR, through the available
external sensor module, altered the rotation dynamics continuously
to limit the variations in the altitude of the MFWR and simultane-
ously provided the forward motion in it, by generating required lift
and anti-lift with the behavior verified by the general principles of
the empirical study.

all the neurons falls under the composite stroke and rotation
control module template presented in Figure 21(a).

Moving forward, it can be observed from Figure 32(b),
that there exist neurons 1, 2, 3, 4, and 7, which meet
dynamics deprived criteria, and further when their saturated
outputs are bias folded into neurons 0, 5, and 6, the dynamics
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Figure 32: (a) shows the neuron output state dynamics of each neuron in the polymorphic controller when presented with a cruise
command, whose the external sensor signal is “0.” It can be seen that the neurons 0, 1, 4, and 5 form a composite module with same
frequency and would not comply with established criteria for frequency-based grouping. But, the cruise mode controller has been verified to
form a single frequency composite stroke and rotation control module as shown in Figure 21(a) and generating appropriate cruise behavior
in the MFWR. (b) shows the neuron output state dynamics of each neuron in the polymorphic controller when presented with an altitude
gain command whose external sensor signal is “1.” It can be seen that the neurons 0, 5, and 6 forms same frequency group for stroke control
and a constant rotation produced by saturated neuron 1. The altitude gain mode controller form a two separate independent stroke and
rotation control blocks template as shown in Figure 21(b) and generates appropriate altitude gain behavior in the MFWR.

of the reduced four-neuron network and its effect on MFWR
behavior, namely, altitude gain behavior, matched the orig-
inal eight-neuron network’s generated behavior. Moreover,
as anticipated, the reduced four-neuron network with two
independent stroke and rotation control module template
presented in Figure 21(b). Thus, when presented with an
appropriate external command (sensor) value, the static
command would be folded into the exiting neurons in
the polymorphic controller architecture, as an appropriately
evolved external bias that is responsible to shift the dynamics
of the rotation and stroke neurons between autonomous alti-
tude gain and cruise mode controllers, generating appropri-
ate wing kinematics in the MFWR as shown in Figure 7(b).
Further, it can be observed by comparing the output neuron
dynamics of the cruise mode (shown in Figure 32(a)) and
the altitude gain mode (shown in Figure 32(b)) that the
external sensor’s dynamics modification process is evidently

observed when the dynamically active neuron 4 in cruise
mode saturates in altitude gain mode, and vice versa for
dynamics of output of the neuron 6.

5. Conclusion

In this paper, we have summarized author’s prior efforts
using the Neuromorphic Evolvable Hardware (CTRNN-EH)
framework to successfully evolve locomotion and different
flight mode controllers, with detailed emphasis on the
flight mode controllers. Further, a new frequency-based
analysis procedure has been introduced to analyze the dif-
ferent evolved flight mode controllers, besides providing
a brief qualitative analysis suggesting the acceptability of
the evolved controllers for the given flight mode in the
context. Moreover, the proposed frequency-based analysis
methodology has been successfully applied to the evolved
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autonomous and nonautonomous controllers, and it has
been demonstrated that the methodology can be indeed used
to decompose the evolved controllers into logically explain-
able control blocks for further control analysis. Finally, it can
be perceived from the presented results and discussion that
the proposed Neuromorphic Evolvable Hardware (CTRNN-
EH) and frequency-based analysis methodologies can be
employed to control problems that are similar to the flapping
flight domain, using tabularasa approach. Though, it is not
always an appropriate recommendation to employ a tabula-
rasa approach to the control problems at hand; it can serve
as an only approach where a suitably impressive closed-form
traditional controller does not exist. Moreover, the above-
proposed CTRNN-EH methodologies have also been suc-
cessfully employed to design and evolve hybrid controllers,
with evolvable module in the base traditional controller
being evolved to supplement the control characteristics of
the traditional controllers with rich dynamics of CTRNNs
[20]. These CTRNN-EH-based hybrid controllers have been
shown to increase the overall robustness and efficacy of the
base traditional controllers to handle unforeseen changes in
the assumed environment of the controller and the con-
trolled vehicle [21].
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