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Drought forecasts can be an effective tool for mitigating some of the more adverse consequences of drought. Data-driven models
are suitable forecasting tools due to their rapid development times, as well as minimal information requirements compared to the
information required for physically based models. This study compares the effectiveness of three data-driven models for forecasting
drought conditions in the Awash River Basin of Ethiopia. The Standard Precipitation Index (SPI) is forecast and compared using
artificial neural networks (ANNSs), support vector regression (SVR), and wavelet neural networks (WN). SPI 3 and SPI 12 were
the SPI values that were forecasted. These SPI values were forecast over lead times of 1 and 6 months. The performance of all the
models was compared using RMSE, MAE, and R?. The forecast results indicate that the coupled wavelet neural network (WN)
models were the best models for forecasting SPI values over multiple lead times in the Awash River Basin in Ethiopia.

1. Introduction

Droughts, a natural occurrence in almost all climatic zones,
are a result of the reduction, for an extended period of time,
of precipitation from normal amounts. Extended periods
of drought can lead to several adverse consequences, which
include a disruption of the water supply, low agricultural
yields, and reduced flows for ecosystems. Consequently,
the ability to forecast and predict the characteristics of
droughts, specifically their initiation, frequency, and severity,
is important. Effective drought forecasts are an effective tool
for water resource management as well as an effective tool for
the agricultural industry.

Currently, drought monitoring in Ethiopia is conducted
by the National Meteorological Services Agency (NMSA).
The NMSA regularly produces a 10-day bulletin that gives
an analysis of rainfall based on the long-term average or
normal. This bulletin is then circulated to a wide range of
users, ranging from local development agents to decision

makers at a national level. In addition to rainfall analysis,
the normalized vegetation index (NDVI) is provided, which
is a satellite-based index widely used to monitor vegetation
and drought conditions. The NMSA produces a regular 10-
day bulletin regarding NDVI variation that compares the
current vegetation condition with normal or conditions of
the previous year [1]. However, the NDVI is sensitive to
changes in vegetative land cover and may not be effective in
areas where vegetation is minimal. In addition, the NMSA
of Ethiopia produces medium and seasonal forecasts of
precipitation using the aforementioned NDVI.

Unlike other natural hazards, droughts have a slow
evolution time [2]. The consequences of droughts take
a significant amount of time to come into effect with
respect to their inception, and when they are perceived by
ecosystems and hydrological systems. Due to this feature,
effective mitigation of the most adverse drought impacts is
possible, more than in the case of other extreme hydrological
events such as floods, earthquakes, or hurricanes, provided



a drought monitoring system, which is able to promptly warn
of the onset of a drought and to follow its evolution in space
and time, is in operation [3].

A common tool utilized to monitor current drought
conditions is a drought index. Several drought indices can
be used to forecast the possible evolution of an ongoing
drought, in order to adopt appropriate mitigation measures
and drought policies for water resources management [4].
This is because a drought index is expressed by a numeric
number, which is believed to be far more functional than raw
data during decision-making [2]. Several drought indices
have been developed around the world in the past based
on rainfall as the single variable, including the widely used
Deciles [5], Standardized Precipitation Index (SPI) [6], and
Effective Drought Index (EDI) [7]. There is also the well-
known Palmer Drought Severity Index (PDSI) [8], which
considers temperature along with rainfall. The SPI drought
index was chosen to forecast drought in this study due to
its simplicity, its ability to represent droughts on multiple
time scales, and because it is a probabilistic drought index.
In addition, the study by Ntale and Gan [9] determined
that the SPI is the most appropriate index for monitoring
the variability of droughts in East Africa because it is easily
adapted to local climate, has modest data requirements, and
can be computed at almost any time scale.

Forecasting any hydrologic phenomena can be done
using either a physical, conceptual, or data-driven approach.
The latter approach is widely used in hydrologic forecasting
because data-driven models have low information require-
ments with respect to the number of variables required
for inputs compared to physically based models. Data-
driven models also have rapid development times. Unlike
physical and conceptual models, data-driven models are
not difficult to implement for the purposes of real-time
forecasting. Artificial neural networks (ANNs) have been
used in several studies as a drought-forecasting tool [10-
16]. The most popular type of ANN used for the purposes
of drought forecasting is the multilayer perceptron (MLP)
that is usually optimized with a back propagation algorithm.
However, ANNs are limited in their ability to deal with
nonstationarities in the data, a weakness also shared by mul-
tiple linear regression (MLR) and autoregressive integrated
moving average (ARIMA) models.

This limitation with nonstationary data has led to
the recent formation of hybrid models, where data is
preprocessed for nonstationary characteristics and then run
through a forecasting method such as ANNs to cope with the
nonlinearity. Wavelet analysis, an effective tool to deal with
nonstationary data, has recently been applied in hydrological
forecasting to examine the rainfall-runoff relationship in a
Karstic watershed [17], to characterize daily streamflow [18,
19] and monthly reservoir inflow [20], to evaluate rainfall-
runoff models [21], to forecast river flow [22-24], to forecast
future precipitation values [25], and for the purposes of
drought forecasting [26]. The study conducted by Kim and
Valdes [26] is the only study that has explored the ability of a
wavelet-neural network conjunction model (WN) to forecast
a given drought index. However, no studies that assess the
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ability of WN models to forecast the SPI drought index in
particular have been explored.

Support Vector Machines (SVMs) are a relatively new
form of machine learning that was developed by Vapnik
[27]. The term SVM is used to refer to both classification
and regression methods as well as the terms Support Vector
Classification (SVC) and Support Vector Regression (SVR),
which refer to the problems of classification and regression,
respectively [28]. There are several studies where SVRs were
used in hydrological forecasting. Khan and Coulibaly [29]
found that an SVR model was more effective at predicting 3—
12 month lake water levels than ANN models. Rajasekaran et
al. [30] used SVR successfully for storm surge predictions,
and Kisi and Cimen [31, 32] used SVR to estimate daily
evaporation and daily streamflow, respectively. Finally, SVR
have been successfully used to predict hourly streamflow by
Asefa et al. [33] and were shown to perform better than ANN
and ARIMA models for monthly streamflow prediction by
Wang et al. [34] and Maity et al. [35], respectively. Yuan and
Tan [36] used SVRs as a screening tool to test for drought
resistance of rice. However, to date SVRs have not been
applied to forecast a given drought index.

This study compared the effectiveness of three data-
driven models for forecasting drought conditions in the
Awash River Basin of Ethiopia. The Standard Precipitation
Index (SPI) was forecasted and compared using artificial
neural networks (ANNs), support vector regression (SVR),
and wavelet networks (WN). SPI 3 and SPI 12 were forecast
over lead times of 1 and 6 months. The forecast lead
times were chosen because a 1-month lead time is a typical
short-term lead time and a 6-month lead time is represen-
tative of the bimodal rainfall pattern in the Awash River
Basin. Forecast results of this study are useful for the agri-
cultural water management sector and have the potential to
be applied by water resources managers to effectively manage
water resources in the region. In addition, accurate forecasts
using these data-driven models can complement the fore-
casts already being used by the NMSA of Ethiopia.

2. Theoretical Development

In the following section, the computation of the SPI is briefly
described. In addition to the description of the SPI, this
section also describes the data-driven models that were used
to forecast the SPI.

2.1. The Standard Precipitation Index (SPI). The Standard
Precipitation Index (SPI) was developed by McKee et al. [6].
As mentioned in the previous section, one of the main advan-
tages of the SPI is that it only requires precipitation data as an
input, which makes it ideal for areas where data collection is
not as extensive (such as in Ethiopia). The fact that the SPI is
based solely on precipitation makes its evaluation relatively
easy [37]. The SPI is a standardized index. Standardization
of a drought index ensures independence from geographical
position as the index in question is calculated with respect to
the average precipitation in the same place [37].
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TasLE 1: Drought classification based on SPI [6].

SPI values Class

>2 Extremely wet
1.5-1.99 Very wet
1.0-1.49 Moderately wet
—0.99 t0 0.99 Near normal
—1to—1.49 Moderately dry
—1.5to0 —1.99 Very dry
<=2 Extremely dry

The computation of the SPI drought index for any
location is based on the long-term precipitation record (at
least 30 years) cumulated over a selected time scale [38]. This
long-term precipitation time series is then fitted to a gamma
distribution, which is then transformed through an equal
probability transformation into a normal distribution [38,
39]. Positive SPI values indicate wet conditions with greater
than median precipitation, and negative SPI values indicate
dry conditions with lower than median precipitation [38].
Table 1 below indicates SPI drought classes.

In most cases, the probability distribution that best
models observational precipitation data is the Gamma dis-
tribution [37]. The density probability function for the
Gamma distribution is given by the expression [37]:

a—le—x/,B)

glx) = /5“1“1(oc)x forx > 0, (1)
where & > 0 is the shape parameter, 5 > 0 is the scale
parameter, and x > 0 is the amount of precipitation. I'(«x)
is the value taken by the standard mathematical function
known as the Gamma function, which is defined by the
integral [37]:

I'(a) = Loo y*leVdy. (2)

In general, the Gamma function is evaluated either numer-
ically or using the values tabulated depending on the value
taken by parameter a.

In order to model the data observed with a gamma
distributed density function, it is necessary to estimate para-
meters o and f appropriately. Different methods have been
suggested in the literature for the estimate of these two
parameters. For example, the Thom [40] approximation is
used for maximum probability in Edwards and McKee [41]:
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The estimate of the parameters can be further improved by
using the interactive approach suggested in Wilks [42].

After estimating coefficients « and f the density of prob-
ability function g(x) is integrated with respect to x and we
obtain an expression for cumulative probability G(x) that a
certain amount of rain has been observed for a given month
and for a specific time scale [37]:

1 p—
Pr(a)
The Gamma function is not defined by x = 0, and since there

may be no precipitation, the cumulative probability becomes
[37]

G(x) = I:g(x)dx = j: e By, (5)

H(x) = q+ (1 - q)G(x), (6)
where ¢ is the probability of no precipitation. H(x) is the
cumulative probability of precipitation observed. The cumu-
lative probability is then transformed into a normal stan-
dardized distribution with null average and unit variance
from which we obtain the SPI index.

The above approach, however, is neither practical nor nu-
merically simple to use if there are many grid points of many
stations on which to calculate the SPI index. In this case, an
alternative method is described in Edwards and McKee [41]
using the technique of approximate conversion developed in
Abramowitz and Stegun [43] that converts the cumulative
probability into a standard variable Z. The SPI index is then
defined as

Z = SPI
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where x is precipitation, H (x) is the cumulative probability of
precipitation observed, and ¢y, ¢1, ¢2, do, d1, da are constants
with the following values:

¢o = 2.515517, c; = 0.802853, c; = 0.010328,

dy = 1.432788, dy = 0.189269, d, = 0.001308.

)

2.2. Artificial Neural Networks (ANNs). Artificial neural
networks (ANNs) are flexible computing frameworks that re-
semble the structure of a nerve system. ANNs have been used
to model a broad range of hydrologic time series over the past
two decades. The main advantage of using ANNGs is that there
is no need to define the physical processes between the inputs



and outputs [11]. This feature makes ANNs suitable for the
purposes of drought forecasting, where all the variables that
may cause a drought are not fully understood.

In this paper, the multilayer perceptron (MLP) feed-
forward network was used to forecast the SPI time series.
Figure 1 is an illustration of a typical feed-forward neural
network. ANN models in this study were trained with the
Levenberg Marquardt (LM) back propagation algorithm.
MLPs have been used extensively in hydrologic forecasting
studies [10, 12, 23, 26, 44, 45] due to their simplicity. In terms
of their architecture, MLPs consist of an input layer, one or
more hidden layers, and an output layer. The hidden layer
contains the neuron-like processing elements that connect
the input and output layers and is given by [26]

yi(ts) = fo[z Wkj. fn (Z wiixi(ts) + (W]o)) + Wk0:|»
=1 i=1
] (10)

where 7 is the number of input variables; m is the number of
hidden neurons; x;(t) = the ith input variable at time step t;;
wj; = weight that connects the ith neuron in the input layer
and the jth neuron in the hidden layer; wj, = bias for the
jth hidden neuron; f, = activation function of the hidden
neuron; wy; = weight that connects the jth neuron in the
hidden layer and kth neuron in the output layer; wyy = bias
for the kth output neuron; f; = activation function for the
output neuron; y; () is the forecasted kth output at time step
ts [26].

2.3. Support Vector Regression. Support vector machines
(SVM) were developed by Vapnik [27] as a tool for
classification and regression. SVMs embody the structural
risk minimization principle, while neural networks embody
the empirical risk minimization principle. In contrast to
ANNGs that seek to minimize training error, SVMs attempt
to minimize the generalization error. SVMs have two compo-
nents: support vector classification (SVC) and support vector
regression (SVR). Since the main objective of this study is to
forecast the SPI, the SVR was used.

Support vector regression (SVR) is used to describe
regression with SVMs [27]. In regression estimation with
SVR, the purpose is to estimate a functional dependency f(x)
between a set of sampled points X = {X},%5,...,%} taken
from R" and target values Y = {y1, y2,..., y1} with y; € R (the
input and target vectors (x;’s and y;’s) refer to the monthly
records of the SPI index). Assuming that these samples have
been generated independently from an unknown probability
distribution function P(x, y) and a class of functions [27]:

={f1f&®=(W,%)+B:WeRr,R"—R}, (11)
where W and B are coefficients that have to be estimated

from the input data. The main objective is to find a function
f(xX) € F that minimizes a risk functional [46]:

RIF)] = [1y- F@.AdPEY,  (2)
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where [ is a loss function used to measure the deviation
between the target, y, and estimate f(x), values. As the
probability distribution function P(x,y) is unknown, one
cannot minimize the risk functional directly, but can only
compute the empirical risk function as [46]

emP[f(f)] ()’1 _f(;él))’ (13)

uMz

where N is the number of samples. This traditional empirical
risk minimization is not advisable without any means of
structural control or regularization. To avoid this issue a reg-
ularized risk function with the smallest steepness among the
functions that minimize the empirical risk function can be
used as [46]

(14)

Reeg[ f(x)] = Remp[ f ()]

where y is a constant (y > 0). This additional term reduces
the model space and thereby controls the complexity of the
solution resulting in the following form of this expression
(46, 47]:

Reeg[f(%)] = C. Z I (

fxi )+ (15)

where C. is a positive constant that has to be selected
beforehand. The constant C. that influences a trade-off
between or an approximation error and the regression
(weight) vector || W || is a design parameter. The loss function
in this expression, which is called an e-insensitive loss
function (I), has the advantage that it will not need all the

input data for describing the regression vector || Wland can
be written as [46]

— )] <e

otherwise.

0, for | Y1

Y1 _f(-fz)) (16)
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This function behaves as a biased estimator when it is

combined with the regularization term (y|| WII ). The loss is
equal to 0 if the difference between the predicted and
observed value is less than e. The nonlinear regression
function is described by the following expression [27, 46, 48]:

N

flx) =>(

i=1

af —a;)K(x,x;) + B, (17)

where a;,af > 0 are the Lagrange multipliers, B is a bias
term, and K(x,x;) is the Kernel function which is based
upon Reproducing Kernel Hilbert Spaces [32]. The Kernel
function enables operations to be performed in the input
space as opposed to the potentially high-dimensional feature
space. Several types of functions are treated by SVR such
as polynomial functions, Gaussian radial basis functions,
exponential radial basis functions, multilayer perception
functions, and functions with splines and so forth [32].
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FiGurek 1: Typical Feed-forward Neural Network.

2.4. Wavelet Transforms. Wavelet transforms are mathemati-
cal functions that can be used for the analysis of time-series
that contain nonstationarities. Wavelet transforms allow for
the use of long time intervals for low frequency information
and shorter intervals for high frequency information. They
are capable of revealing aspects of data like trends, break-
down points, and discontinuities that other signal analysis
techniques might miss [26]. Another advantage of wavelet
analysis is the flexible choice of the mother wavelet according
to the characteristics of the investigated time series [45].

An important step in the use of wavelet transforms is
the choice of a mother wavelet (y). The continuous wavelet
transform (CWT) is defined as the sum over all time of the
signal multiplied by scale and shifted versions of the wavelet
function v [26]:

Wi(r,s) = \/% fw (D" (t: T)dt, (18)

where s is the scale parameter; 7 is the translation and * cor-
responds to the complex conjugate [26]. The CWT produces
a continuum of all scales as the output. Each scale corre-
sponds to the width of the wavelet; hence, a larger-scale
means that more of a time series is used in the calculation
of the coefficient than in smaller scales. The CWT is useful
for processing different images and signals; however, it is not
often used for forecasting because its computation is com-
plex and time consuming. As an alternative, in forecasting
applications, the discrete wavelet transform (DWT) is used,
due to its simplicity and shorter computation time. DWT
scales and positions are usually based on powers of two
(dyadic scales and positions). This is achieved by modifying
the wavelet representation to [49]

o
1 Z‘V<k TTOSO)"(")’ (19)

V/J\m(m) = m - J

where j and m are integers that control the scale and tran-
slation, respectively, while sp > 1 is a fixed dilation step and

7o is a translation factor that depends on the aforementioned
dilation step. The effect of discretizing the wavelet is that the
time-space scale is now sampled at discrete levels. The DWT
operates two sets of functions: high-pass and low-pass filters.
The original time series is passed through high-pass and
low-pass filters, and detailed coefficients and approximation
series are obtained.

One of the inherent challenges of using the DWT for
forecasting applications is that if we change values at the be-
ginning of our time series, all of the wavelet coefficients will
subsequently change. To overcome this problem, a redundant
algorithm, known as the a trous algorithm can be used, given
by [50]

Cin(k) = > h(Dci(k+21), (20)

=0

where / is the low pass filter and the finest scale is the original
time series. To extract the details, w;(k), that were eliminated
in (21), the smoothed version of the signal is subtracted from
the coarser signal that preceded it, given by [51]

wi(k) = ci-1(k) = ci(k), 21

where ¢;(k) is the approximation of the signal and ¢;_; (k) is
the coarser signal. Each application of (20) and (21) creates a
smoother approximation and extracts a higher level of detail.
Finally, the nonsymmetric Haar wavelet can be used as the
low pass filter to prevent any future information from being
used during the decomposition [52].

3. The Awash River Basin

This study forecasted the SPI in the Awash River Basin of
Ethiopia. The mean annual rainfall of the basin varies from
about 1,600 mm in the highlands north east of Addis Ababa,
to 160 mm in the northern point of the basin [53]. The
total amount of rainfall also varies greatly from year to year,
resulting in severe droughts in some years and flooding in



others. The total annual surface runoff in the Awash Basin
amounts to some 4,900 x 106 m? [54].

The Awash River Basin (Figure 2) was separated into
three smaller basins for the purpose of this study on the basis
of various factors such as location, altitude, climate, topog-
raphy, and agricultural development. A study conducted by
Edossa et al. [54] separated the Awash Basin in a similar
fashion. The subbasins were called the Upper, Middle, and
Lower Awash Basins, respectively. The reasoning behind the
use of these three subbasins was to ensure the methods used
in this study were effective in forecasting short-term drought
in different conditions. The characteristics of each sub-basin
are briefly described in the following sections.

3.1. Upper Awash Basin. The Upper Awash Basin has a
temperate climate with annual mean temperatures ranging
between 15-22°C and an annual precipitation of between
500-2000 mm [54]. Rainfall distribution in the Upper Awash
Basin is unimodal. Seven rainfall gauges located in the Upper
Awash River Basin were chosen for this study (Table 2). These
stations were chosen because their precipitation records from
1970-2005 were either complete or relatively complete. Any
station, which had over 10% of their records missing was not
selected.

3.2. Middle Awash Basin. The Middle Awash Basin is in the
semiarid climatic zone with a long hot summer and a short
mild winter. Annual rainfall varies between 200-1500 mm
[54]. The rainfall distribution is bimodal in this subbasin.
Minor rains normally occur in March and April and major
rains from July to August. Fight rainfall gauges located in the
Middle Awash Basin were selected using the same criteria as
in the Upper Awash Basin and are shown in Table 2.

3.3. Lower Awash Basin. The Lower Awash River Basin has
a hot, semi-arid climate. The annual mean temperature of
the region ranges between 22 and 32°C with average annual
precipitation between 500 and 700 mm [54]. Five rainfall
gauges were selected form the Lower Awash Basin using the
same criteria used in the two other sub-basins and are shown
in Table 2.

4. Methodology

The methodology section of this paper describes how the SPI
was calculated and then forecast over two separate lead times
using ANN, WN, and SVR models.

4.1. SPI Calculation. In order to calculate the SPI, a proba-
bility density function that adequately describes the precip-
itation data must be determined. The gamma distribution
function was selected to fit the raw rainfall data from each
station in this study. The SPI is a z-score and represents
an event departure from the mean, expressed in standard
deviation units. The SPI is a normalized index in time and
space. SPI values can be categorized according to classes.
In this study, the near normal class is established from the
aggregation of two classes: —1 < SPI < 0 (mild drought)
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and 0 < SPI < 1 (slightly wet). The departure from the
mean is a probability indication of the severity of the wetness
or drought that can be used for risk assessment. The time
series of the SPI can be used for drought monitoring by
setting application-specific thresholds of the SPI for defining
drought beginning and ending times. Accumulated values of
the SPI can be used to analyze drought severity. In this study,
the SPI_SL_6 program developed by the National Drought
Mitigation Centre, University of Nebraska-Lincoln, was used
to compute time series of drought indices (SPI) for each
station in the basin and for each month of the year at
different time scales.

In each sub-basin, for each station, SPI 3 and SPI 12 were
computed. These SPI values were subsequently forecast over
lead times of 1 and 6 months. A 3-month SPI compares the
precipitation for that period with the same 3-month period
over the historical record. For example, a 3-month SPI at
the end of September compares the precipitation total for
the July—September period with all the past totals for that
same period. A 3-month SPI indicates short and medium
term trends in precipitation and is still considered to be more
sensitive to conditions at this scale than the Palmer Index.
A 3-month SPI can be very effective in showing seasonal
trends in precipitation and is a good indicator of agricultural
drought. SPI 12 reflects long-term precipitation patterns. SPI
12 is a comparison of the precipitation for 12 consecutive
months with the same 12 consecutive months during all the
previous years of available data and is a good indicator of
long-term drought conditions. Because these time scales are
the cumulative result of shorter periods that may be above
or below normal, the longer SPIs tend toward zero unless a
specific trend is taking place. Forecast lead times of 1 and 6
months were chosen because 1 month is the shortest possible
monthly lead time and 6 months is representative of the
bimodal rainfall pattern in parts of the Awash River Basin
discussed in Section 3.2.

4.2. Wavelet Decomposition. In the proposed WN model, the
SPI data for each of the rainfall stations was decomposed into
subseries of approximations and details (DWs). The process
consists of a number of successive filtering steps. The original
SPI time series is first decomposed into an approximation
and accompanying detail signal. The decomposition process
is then iterated, with successive approximation signals being
decomposed in turn. As a result the original SPI time series
is broken down into many lower resolution components.

When conducting wavelet analysis, the number of de-
composition levels that is appropriate for the data must be
chosen. A commonly used method to determine the number
of decomposition levels is based on the signal length [55]
and is given by L = int[log(N)], where L is the level of
decomposition and N is the length of the signal. The training
set in this study comprised between 1290 and 3017 samples
(samples varied depending on the number of inputs for each
rainfall station). Thus, the decomposition level was selected
asL = 3.

As discussed in Section 2.4, the “a trous” wavelet
algorithm with a low pass Haar filter was used to create four
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TaBLE 2: Descriptive statistics for the Awash River Basin.

Mean annual precipitation Max annual (1970-2005) precipitation  Standard deviation

Basin Station (mm) (mm) (mm)
Bantu Liben 91 647 111
Tullo Bullo 94 575 114
Ginchi 97 376 90
Upper Awash Basin Sebeta 111 1566 172
Ejersalele 67 355 75
Ziquala 100 583 110
Debre Zeit 73 382 81
Koka 97 376 90
Modjo 76 542 92
Nazereth 73 470 85
Middle Awash Basin Wolenchiti 76 836 95
Gelemsso 77 448 75
Hirna 78 459 86
Dire Dawa 51 267 54
Meisso 61 361 61
Dubti 15 192 23
Eliwuha 44 374 57
Lower Awash Basin Mersa 87 449 89
Mille 26 268 40
Bati 73 357 80

Awash River Basin

A w

AV Dubti‘\}

oW
| el
@&”?ﬁ

Melka Werer

200 (Kilometers)

A Rainfall stations

@ Stream gage stations
[] Lakes

/\/ Tributaries
/\V/ Awash River

F1GURE 2: Awash River Basin (Source: [54]).



sets of wavelet subseries. These four sub-series included a low
frequency component (the approximation) used to uncover
the trend of each signal and a set of three high frequency
components (the details) used to uncover the periodicity of
the signal. All decomposed sub-series were added together to
generate one time series and used as an input to the ANN
models. Using the sum of all the sub-series as an input in this
study provided more accurate results than using certain sub-
series or sub-series that exhibited the highest correlations
with the original time series.

4.3. ANN Models. All the ANN models were created with the
MATLAB (R.2010a) ANN toolbox. The hyperbolic tangent
sigmoid transfer function was the activation function for the
hidden layer, while the activation function for the output
layer was a linear function. All the ANN models in this study
were trained using the LM back propagation algorithm.
The LM back propagation algorithm was chosen because of
its efficiency and reduced computational time in training
models [45].

In this study, there were between 4-8 input neurons for
each ANN model. The optimal number of input neurons for
each station was selected using a trial and error procedure.
The data-driven models were recursive models, where a
model is forecast one lead time ahead, and the subsequent
forecasts include the output from the previous forecast as
an input. Hence, a forecast of 6 months lead time will have
the outputs from forecasts of lead times of 1-5 months.
Recursive models were used because it was determined that
it would be simpler to use an ANN with one output neuron.
Mishra and Desai [10] compared recursive ANN models and
ANN models with more than one output neuron (direct
ANN models) and found the results to be comparable for
forecasting the SPI. The inputs and outputs were normalized
between 0 and 1. A study by Wanas et al. [56] empirically
determined that the best performance of a neural network
occurs when the number of hidden nodes is equal to log(T),
where T is the number of training samples. Another study
conducted by Mishra and Desai [10] determined that the
optimal number of hidden neurons is 2n + 1, where # is the
number of input layers. In this study the optimal number
of hidden neurons was determined to be between log(T)
and (2n + 1). For example, if using the method proposed
by Wanas et al. [56] gave a result of 4 hidden neurons and
using the method proposed by Mishra and Desai [10] gave
6 hidden neurons, the optimal number of hidden neurons
was between 4 and 6, thereafter the optimal number was
determined using trial and error. These two methods helped
establish an upper and lower bound for the number of
hidden neurons.

For all the ANN models the cross validation technique
[57] was used to partition the data sets; 80% of the data
was used to train the models, while the remaining 20%
of the data was used to test and validate the models, with
10% used for testing and 10% used for validation. The
training set was used to compute the error gradient and to
update the network weights and biases. The error from the
validation set was used to monitor the training process. If
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the network overfits the data, the error in the validation set
will begin to rise. When the validation error increases for a
specified number of iterations, the training is stopped, and
the weights and biases at the minimum of the validation error
are returned. The testing data set is an independent data set
and is used to verify the performance of the model.

4.4. WN Models. The WN models were trained in the same
way as the ANN models, with the exception that the inputs
were made up from the wavelet decomposed subseries. In
this study, the significant wavelets (approximation and
detail series) were summed together once the insignificant
coefficients were excluded, similar to what was done by Partal
[58] and Kisi and Cimen [32]. In this study, the summed
sub-series provided better results than using the individual
wavelet coefficients as inputs.

For WN models, an input layer with 4-8 neurons, a
single hidden layer composed of 4-6 neurons, and one
output layer consisting of one neuron were developed. The
number of neurons was determined in the same way as
for the traditional ANN models. All the ANN models that
had wavelet decomposed subseries as their inputs were also
partitioned in a similar manner to the traditional ANN
models.

4.5. SVR Models. All SVR models were developed using the
OnlineSVR software created by Parrella [59]. OnlineSVR
is a technique used to build support vector machines for
regression. The OnlineSVR software partitions the data into
only two sets: a training set and a testing set. The SVR models
were partitioned in a similar manner to the ANN and WN
models.

All SVR models used the nonlinear radial basis function
(RBF) kernel. As a result, each SVR model consisted of three
parameters that were selected: gamma (y), cost (C), and
epsilon (¢). The y parameter is a constant that reduces the
model space and controls the complexity of the solution, C
is a positive constant that is a capacity control parameter,
and ¢ is the loss function that describes the regression vector
without all the input data [32]. These three parameters
were selected based on a trial and error procedure. The
combination of parameters that produced the lowest RMSE
values for the training data sets was selected.

4.6. Performance Measures. The performance of the forecasts
resulting from the data-driven models was evaluated by the
following measures of goodness of fit:

Zi\i Vi—7.
The coefficient of determination (R?) = . 1(}/ 4 )2 ,
Zzzl (}’1 - yz)
LN
Yi= N 1; Yis
(22)

where ¥, is the mean value taken over N, y; is the observed
value, ¥; is the forecasted value, and N is the number of data
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points. The coefficient of determination measures the degree
of association among the observed and predicted values. The
higher the value of R?> (with 1 being the highest possible
value), the better the performance of the model

E
The Root Mean Squared Error (RMSE) = , /%, (23)

where SSE is the sum of squared errors and N is the number
of data points used. SSE is given by

N
SSE=> (yi— )’ (24)
i=1
with the variables already having been defined. The RMSE
evaluates the variance of errors independently of the sample
size

N A~
The Mean Absolute Error (MAE) = Z |)/1N7yl| (25)
i=1

The MAE is used to measure how close forecasted values are
to the observed values. It is the average of the absolute errors.

5. Results and Discussion

For each subbasin of the Awash River Basin, the station that
showed the best performance results for each data driven
model are presented below. In this study, SPI 3 and SPI 12
were forecast over lead times of 1 and 6 months to determine
the effectiveness of the data-driven models over short- and
long-term lead times.

As shown in Table 3(a), the best data-driven model in the
Upper Awash Basin for forecasts of SPI 3 and 12 is the WN
model. All the models exhibited better results for forecasts of
a 1-month lead time (L1) compared to forecasts of 6-months
lead time (L6). Forecasts of SPI 12, for all the data-driven
models, had better performance results than forecasts of SPI
3 in terms of R?, RMSE, and MAE, regardless of forecast lead
time. The best 1-month lead time WN forecast of SPI 12 had
results of 0.9534, 0.0600, and 0.0536 in terms of R, RMSE,
and MAE, respectively. The second best results were from
ANN models with results of 0.9451, 0.0610, and 0.0603 in
terms of R?, RMSE and MAE, respectively. Figures 3 and 4
show the ANN and WN 1-month forecast results for SPI 12
at the Ejersalele station.

The performance of both these models is quite similar,
as indicated by Figures 3 and 4. Both models adequately
represent the periods of abundant and acute precipitation as
indicated by the peaks and valleys in the figures.

Similar to the results for the Upper Awash Basin, the best
forecast results in the Middle Awash Basin were from WN
models. The WN models had the best results for both SPI
3 and SPI 12, for forecast lead times of 1 and 6 months,
respectively (Table 3(b)). The forecast results of all the data-
driven models deteriorated when the forecast lead time was
increased from 1 to 6 months.

Figure 5 illustrates the relationship between the observed
SPI 12 and the predicted SPI 12 from the ANN model at

Observed versus predicted SPI at Ejersalele station
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FiGURE 3: SPI 12 forecast results for the best ANN model at the
Ejersalele station (1-month lead time).
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F1GURE 4: SPI 12 forecast results for the best WA-ANN model at the
Ejersalele station (1-month lead time).

the Nazereth station. The ANN model underestimates the
severity of the drought period at 112 months. In contrast,
the WN model for SPI 12 at the Nazereth station displays
improved results with respect to the drought period at 112
months (Figure 6).

In the Lower Awash Basin, the forecast results exhibited
the same trend shown in the Upper and Middle sub-basins.
The WN models had the best results for both SPI 3 and SPI
12, for forecast lead times of 1 and 6 months, respectively.
Figures 7 and 8 illustrate the best SPI 12 forecasts at the
Dubti station where both ANN and WN models predict
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TaBLE 3: (a) Performance results for the Ejersalele station, Upper Awash Basin, (b) Performance results of Nazereth Station, Middle Awash
Basin, (c) Performance results of Dubti Station, Lower Awash Basin.

(a)

Model-Lead time SPI3 SPL12

R? RMSE MAE R? RMSE MAE
ANN-L1 0.7694 0.1574 0.1433 0.9451 0.0610 0.0603
ANN-L6 0.6232 0.1744 0.1567 0.8614 0.1011 0.0885
WN-L1 0.8829 0.0700 0.0352 0.9534 0.0600 0.0536
WN-L6 0.6433 0.1070 0.0356 0.8731 0.0790 0.0662
SVR-L1 0.7219 0.1046 0.0915 0.7611 0.1312 0.1129
SVR-L6 0.6647 0.1118 0.1042 0.6941 0.1341 0.1247

(b)

Model-Lead time SPI 3 SPI12

R? RMSE MAE R? RMSE MAE
ANN-L1 0.7319 0.1170 0.1016 0.9158 0.1003 0.0911
ANN-L6 0.6546 0.1240 0.1142 0.7542 0.1104 0.0919
WN-L1 0.9483 0.0510 0.0441 0.9167 0.0753 0.0629
WN-L6 0.8641 0.0727 0.0512 0.8012 0.1072 0.0802
SVR-L1 0.7114 0.1216 0.1114 0.7713 0.1147 0.1130
SVR-L6 0.6540 0.1320 0.1217 0.7326 0.1244 0.1215

(c)

Model-Lead time SPI 3 SPL12

R? RMSE MAE R? RMSE MAE
ANN-L1 0.7368 0.1175 0.1095 0.9188 0.0710 0.0648
ANN-L6 0.6806 0.1302 0.1147 0.7135 0.0938 0.0836
WN-L1 0.9018 0.0652 0.0581 0.9473 0.0648 0.0560
WN-L6 0.8119 0.0706 0.0642 0.8641 0.0846 0.0747
SVR-L1 0.6990 0.1146 0.1022 0.7041 0.1102 0.1009
SVR-L6 0.6331 0.1309 0.1242 0.6705 0.1107 0.1025

Observed versus predicted SPI at Nazereth station

Observed versus predicted SPI at Nazereth station
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FIGURE 5: SPI 12 forecast results for the best ANN model at the Fiure 6: SPI 12 forecast results for the best WN model at the
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FiGUre 7: SPI 12 forecast results for the best ANN model at the
Dubti station (1-month lead time).

the periods of abundant and acute precipitation quite well.
When the forecast lead time was increased, the performance
of all the models deteriorated, especially with respect to R?.
Data-driven models in the Upper and Lower Awash basins
exhibited their best results for forecasts of SPI 12, indicating
that data-driven models are more effective in predicting
long-term drought conditions in those two basins, while in
the Middle Awash Basin most models also exhibited their
best results for forecasts of SPI 12 except WN models, which
exhibited their best results for forecasts of SPI 3. This trend
could be due to the fact that long-term SPI, which is a
cumulative of short-term time scales, tend toward zero unless
a specific trend is taking place. The exception regarding the
WN models in the Middle Awash Basin may be due to the
fact that the precipitation record at this station is relatively
stable, meaning there are not many changes from one month
to the next and the SPI 3 is not sensitive to those changes.

Overall, all three data-driven models forecast SPI 3 and
SPI 12 well for forecast lead times of 1 and 6 months.
The results indicate that ANN models are more effective
than SVR models at forecasting in this study. The use
of wavelet analysis improved the forecast results of ANN
models, specifically in predicting extreme events as shown in
Figure 6. Indeed, using a measure for peak relative error as
shown by

Z — 100 qS(peak) B qo(peak) , (26)

9o

it was determined that the relative error of the ANN model,
95%, was reduced to 88% when a WN model was used.

The fact that wavelet analysis is an effective tool at
revealing local discontinuities helps explain why it was more
effective in predicting the extreme events in the Middle
Awash Basin. Wavelet analysis may help de-noise the original
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F1GURE 8: SPI 12 forecast results for the best WN model at the Dubti
station (1-month lead time).

SPI time series compared to a traditional ANN model. The
forecast of this de-noised signal may further explain the fact
that extreme events are forecast better using wavelet analysis.

An increase in forecast lead time results in a deterioration
of performance in all the models. However, this deterioration
does not result in poor models, indicating the stability of
these data-driven models in predicting the SPI. The results in
terms of RMSE and MAE do not deteriorate drastically with
an increase of lead time. For example, for the Dubti station,
the RMSE and MAE of SVR models deteriorate by 0.05 and
0.26%, respectively.

There is variability with regards to the best forecasts of
both SPI 3 and SPI 12 amongst the three subbasins. For
example, the best forecast of SPI 3 at a 1-month lead time
occurred in the Middle Awash Basin (WN model), while the
best forecast of SPI 12 at a 1-month lead time occurred in the
Upper Awash Basin (WN model). While each subbasin has a
different climatology, there does not seem to be a clear trend
linking climatology with forecast accuracy. It seems that the
reason behind the best models for each data-driven method
being in various subbasins is linked with the characteristics
of the individual station and not the characteristics of the
subbasin as a whole.

In addition, the forecast results for SPI 12 are better than
the forecast results for SPI 3 in almost all cases. For SPI 3 and
other short-term SPI, each new month has a large impact on
the period sum of precipitation [6]. As a result, the SPI 3 is
sensitive to any change in precipitation from one month to
another. In the case of SPI 12, each individual month has
less impact on the total and the index is not as sensitive to
changes in precipitation from one month to the next. The
fact that SPI 3 is more sensitive to changes in precipitation
results in less accurate forecast results than SPI 12. However,
the effects of wavelet analysis are more significant for SPI
3 than for SPI 12, especially for forecast lead times of 6
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months. As stated previously, the ANN forecasts of SPI 12
are not as sensitive to changes in precipitation and thus
good results are obtained. The ability of wavelet analysis to
improve these results exists as shown but is not as high as the
improvement seen in SPI 3 forecasts because ANN forecasts
of SPI 3 suffer due to the sensitivity of SPI 3 to slight changes
in precipitation over the long-term record.

All three subbasins had a different climatology. The
forecast results have all shown that WN models are the most
effective at forecasting the SPI in all the sub-basins in terms
of R?, RMSE and MAE. Whether this is the case in all climatic
zones needs to be explored in future studies.

6. Conclusion

This study tried to determine the most effective data-driven
model for forecasts of the SPI drought index in the Awash
River Basin of Ethiopia. WN models were shown to be the
most effective model for forecasts of SPI 3 and 12 in all three
subbasins. WN models showed greater correlation between
observed and predicted SPI compared to simple ANNs and
SVR models. WN models also consistently showed lower
values of RMSE and MAE compared to the other data driven
models explored in this study. All the data-driven models
showed increased forecast results for SPI 12 compared to
SPI 3. Forecast results deteriorated as the forecast lead time
increased for all the models. Of the two machine learning
techniques, ANNs are more effective in forecasting the
SPI compared to SVR models. This trend occurs in all three
subbasins and should be studied in other regions to deter-
mine if ANNs are more effective tools for drought forecasting
compared to SVR models. It is thought that WN models
provide more accurate results because preprocessing the
original SPI time series with wavelet decompositions “de-
noises” the data. Future studies should attempt to explore
WSVR models, ensemble WN and WSVR models, and
explore SPI forecasts using these new methods in other
regions with different characteristics. Future studies should
also attempt to quantify time shift error as it is a part of
forecasting problems with regression models.

Acknowledgments

An NSERC Discovery Grant and a FQRNT New Researcher
Grant held by Jan Adamowski were used to fund this
research.

References

[1] E.Mershaand V. K. Boken, “Agricultural drought in Ethiopia,”
in Monitoring and Predicting Agricultural Drought: A Global
Study, V. K. Boken, A. P. Cracknell, and R. L. Heathcote, Eds.,
Oxford University Press, 2005.

[2] A. K. Mishra and V. P. Singh, “A review of drought concepts,”
Journal of Hydrology, vol. 391, no. 1-2, pp. 202-216, 2010.

[3] T. Ross and N. Lott, “A climatology of 1980-2003 extreme
weather and climate events,” National Climatic Data Center
Technical Report No. 2003-01. NOAA/ NESDIS, National
Climatic Data Center, Asheville, NC, USA.

Applied Computational Intelligence and Soft Computing

[4] A. Cancelliere, G. di Mauro, B. Bonaccorso, and G. Rossi,
“Stochastic forecasting of drought indices,” in Methods and
Tools For Drought Analysis and Management, G. Rossi, T. Vega,
and B. Bonaccorso, Eds., Springer, 2007.

[5] W. J. Gibbs and J. V. Maher, Rainfall Deciles as Drought
Indicators, vol. 48 of Bulletin (Commonwealth Bureau of
Meteorology, Australia), Bureau of Meteorology, Melbourne,
Australia, 1967.

[6] T. B. McKee, N. J. Doesken, and J. Kleist, “The relationship of
drought frequency and duration to time scales,” in Proceedings
of the 8th Conference on Applied Climatology, American
Meteorological Society, Anaheim, Calif, USA, 1993.

[7] H. R. Byun and D. A. Wilhite, “Objective quantification of
drought severity and duration,” Journal of Climate, vol. 12, no.
9, pp. 2747-2756, 1999.

[8] W. Palmer, “Meteorological drought,” Tech. Rep. 45, U.S.
Weather Bureau, Washington, DC, USA, 1965.

[9] H.K. Ntale and T. Y. Gan, “Drought indices and their applica-
tion to East Africa,” International Journal of Climatology, vol.
23, no. 11, pp. 1335-1357, 2003.

[10] A.K.Mishraand V. R. Desai, “Drought forecasting using feed-
forward recursive neural network,” Ecological Modelling, vol.
198, no. 1-2, pp. 127-138, 2006.

[11] S. Morid, V. Smakhtin, and K. Bagherzadeh, “Drought fore-
casting using artificial neural networks and time series of
drought indices,” International Journal of Climatology, vol. 27,
no. 15, pp. 2103-2111, 2007.

[12] U. G. Bacanli, M. Firat, and E. Dikbas, “Adaptive Neuro-
Fuzzy inference system for drought forecasting,” Stochastic
Environmental Research and Risk Assessment, vol. 23, no. 8, pp.
1143-1154, 2009.

[13] A.P. Barros and G. J. Bowden, “Toward long-lead operational
forecasts of drought: an experimental study in the Murray-
Darling River Basin,” Journal of Hydrology, vol. 357, no. 3-4,
Pp. 349-367, 2008.

[14] P. Cutore, G. Di Mauro, and A. Cancelliere, “Forecasting
palmer index using neural networks and climatic indexes,”
Journal of Hydrologic Engineering, vol. 14, no. 6, pp. 588-595,
2009.

[15] M. Karamouz, K. Rasouli, and S. Nazif, “Development of a
hybrid Index for drought prediction: case study,” Journal of
Hydrologic Engineering, vol. 14, no. 6, pp. 617—627, 2009.

[16] A. E Marj and A. M. J. Meijerink, “Agricultural drought
forecasting using satellite images, climate indices and artificial
neural network,” International Journal of Remote Sensing, vol.
32, no. 24, pp. 9707-9719, 2011.

[17] D. Labat, R. Ababou, and A. Mangin, “Wavelet analysis
in karstic hydrology. 2nd part: rainfall-runoff cross-wavelet
analysis,” Comptes Rendus de I’Academie de Sciences, vol. 329,
no. 12, pp. 881-887, 1999.

[18] P. Saco and P. Kumar, “Coherent modes in multiscale vari-
ability of streamflow over the United States,” Water Resources
Research, vol. 36, no. 4, pp. 1049-1067, 2000.

[19] L. C. Smith, D. L. Turcotte, and B. L. Isacks, “Stream flow
characterization and feature detection using a discrete wavelet
transform,” Hydrological Processes, vol. 12, no. 2, pp. 233-249,
1998.

[20] P. Coulibaly, F. Anctil, and B. Bobée, “Daily reservoir inflow
forecasting using artificial neural networks with stopped
training approach,” Journal of Hydrology, vol. 230, no. 3-4, pp.
244-257, 2000.

[21] S.N. Lane, “Assessment of rainfall-runoff models based upon
wavelet analysis,” Hydrological Processes, vol. 21, no. 5, pp. 586—
607, 2007.



Applied Computational Intelligence and Soft Computing

[22] J. E Adamowski, “Development of a short-term river flood
forecasting method for snowmelt driven floods based on
wavelet and cross-wavelet analysis,” Journal of Hydrology, vol.
353, no. 3-4, pp. 247-266, 2008.

[23] J. Adamowski and K. Sun, “Development of a coupled wavelet
transform and neural network method for flow forecasting
of non-perennial rivers in semi-arid watersheds,” Journal of
Hydrology, vol. 390, no. 1-2, pp. 85-91, 2010.

[24] M. Ozger, A. K. Mishra, and V. P. Singh, “Long lead
time drought forecasting using a wavelet and fuzzy logic
combination model: a case study in Texas,” Journal of Hydrom-
eteorology, vol. 13, no. 1, pp. 284-297, 2012.

[25] T. Partal and O. Kisi, “Wavelet and neuro-fuzzy conjunction
model for precipitation forecasting,” Journal of Hydrology, vol.
342, no. 1-2, pp. 199-212, 2007.

[26] T. W. Kim and J. B. Valdes, “Nonlinear model for drought
forecasting based on a conjunction of wavelet transforms and
neural networks,” Journal of Hydrologic Engineering, vol. 8, no.
6, pp. 319-328, 2003.

[27] V. Vapnik, The Nature of Statistical Learning Theory, Springer,
New York, NY, USA, 1995.

[28] J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown, “A
probabilistic framework for SVM regression and error bar
estimation,” Machine Learning, vol. 46, no. 1-3, pp. 71-89,
2002.

[29] M. S. Khan and P. Coulibaly, “Application of support vector
machine in lake water level prediction,” Journal of Hydrologic
Engineering, vol. 11, no. 3, pp. 199-205, 2006.

[30] S. Rajasekaran, S. Gayathri, and T.-L. Lee, “Support vector
regression methodology for storm surge predictions,” Journal
of Ocean Engineering, vol. 35, no. 16, pp. 1578-1587, 2008.

[31] O. Kisi and M. Cimen, “Evapotranspiration modelling using
support vector machines,” Hydrological Sciences Journal, vol.
54, no. 5, pp. 918-928, 2009.

[32] O. Kisi and M. Cimen, “A wavelet-support vector machine
conjunction model for monthly streamflow forecasting,”
Journal of Hydrology, vol. 399, no. 1-2, pp. 132-140, 2011.

[33] T. Asefa, M. Kemblowski, M. McKee, and A. Khalil, “Multi-
time scale stream flow predictions: the support vector
machines approach,” Journal of Hydrology, vol. 318, no. 1-4,
pp. 716, 2006.

[34] W. C. Wang, K. W. Chau, C. T. Cheng, and L. Qiu, “A

comparison of performance of several artificial intelligence

methods for forecasting monthly discharge time series,”

Journal of Hydrology, vol. 374, no. 3-4, pp. 294-306, 2009.

R. Maity, P. P. Bhagwat, and A. Bhatnagar, “Potential of sup-

port vector regression for prediction of monthly streamflow

using endogenous property,” Hydrological Processes, vol. 24,

no. 7, pp. 917-923, 2010.

[36] Z. M. Yuan and X. S. Tan, “Nonlinear screening indicators of
drought resistance at seedling stage of rice based on support
vector machine,” Acta Agronomica Sinica, vol. 36, no. 7, pp.
1176-1182, 2010.

[37] C. Cacciamani, A. Morgillo, S. Marchesi, and V. Pavan,

“Monitoring and forecasting drought on a regional scale:

emilia-romagna region,” Water Science and Technology Library,

vol. 62, part 1, pp. 29-48, 2007.

L. Bordi and A. Sutera, “Drought monitoring and forecasting

at large-scale,” in Methods and Tools For Drought Analysis and

Management, G. Rossi, T. Vega, and B. Bonaccorso, Eds., pp.

3-27, Springer, New York, NY, USA, 2007.

[39] N. B. Guttman, “Accepting the standardized precipitation
index: a calculation algorithm,” Journal of the American Water
Resources Association, vol. 35, no. 2, pp. 311-322, 1999.

[35

(38

13

[40] H. C. S. Thom, “A note on gamma distribution,” Monthly
Weather Review, vol. 86, pp. 117-122, 1958.

[41] D. C. Edwards and T. B. McKee, “Characteristics of 20th
century drought in the United States at multiple scales,”
Atmospheric Science Paper 634, 1997.

[42] D. S. Wilks, Statistical Methods in the Atmospheric Sciences an
Introduction, Academic Press, San Diego, Calif, USA, 1995.

[43] M. Abramowitz and A. Stegun, Eds., Handbook of Mathe-
matical Formulas, Graphs, and Mathematical Tables, Dover
Publications, New York, NY, USA, 1965.

[44] S. Morid, V. Smakhtin, and M. Moghaddasi, “Comparison of
seven meteorological indices for drought monitoring in Iran,”
International Journal of Climatology, vol. 26, no. 7, pp. 971—
985, 2006.

[45] J. Adamowski and H. F. Chan, “A wavelet neural network
conjunction model for groundwater level forecasting,” Journal
of Hydrology, vol. 407, no. 1-4, pp. 28-40, 2011.

[46] M. Cimen, “Estimation of daily suspended sediments using
support vector machines,” Hydrological Sciences Journal, vol.
53, no. 3, pp. 656-666, 2008.

[47] A.J.Smola, Regression Estimation with Support Vector Learning
Machines [M.S. thesis], Technische Universitat Munchen,
Munich, Germany, 1996.

[48] S. Gunn, “Support vector machines for classification and
regression,” ISIS Technical Report, Department of Electronics
and Computer Science, University of Southampton, 1998.

[49] B. Cannas, A. Fanni, G. Sias, S. Tronci, and M. K. Zedda, “River
flow forecasting using neural networks and wavelet analysis,”
in Proceedings of the European Geosciences Union, 2006.

[50] S. G. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, San Diego, Calif, USA, 1998.

[51] E Murtagh, J. L. Starck, and O. Renuad, “On neuro-wavelet
modeling,” Decision Support Systems, vol. 37, no. 4, pp. 475—
484, 2004.

[52] O. Renaud, J. Starck, and F. Murtagh, Wavelet-Based Forecast-
ing of Short and Long Memory Time Series, Department of
Economics, University of Geneve, 2002.

[53] C. E. Desalegn, M. S. Babel, A. Das Gupta, B. A. Seleshi, and
D. Merrey, “Farmers’ perception of water management under
drought conditions in the upper Awash Basin, Ethiopia,”
International Journal of Water Resources Development, vol. 22,
no. 4, pp. 589-602, 2006.

[54] D. C. Edossa, M. S. Babel, and A. D. Gupta, “Drought
analysis in the Awash River Basin, Ethiopia,” Water Resources
Management, vol. 24, no. 7, pp. 1441-1460, 2010.

[55] M. K. Tiwari and C. Chatterjee, “Development of an accurate
and reliable hourly flood forecasting model using wavelet-
bootstrap-ANN (WBANN) hybrid approach,” Journal of
Hydrology, vol. 394, no. 3-4, pp. 458-470, 2010.

[56] N. Wanas, G. Auda, M. S. Kamel, and F. Karray, “On the
optimal number of hidden nodes in a neural network,” in
Proceedings of the 11th IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE °98), pp. 918-921, May
1998.

[57] J. C. Principe, N. R. Euliano, and W. Curt Lefebvre, Neural and
Adaptive Systems, John Wiley & Sons, 2000.

[58] T. Partal, “Modelling evapotranspiration using discrete wav-
elet transform and neural networks,” Hydrological Processes,
vol. 23, no. 25, pp. 3545-3555, 2009.

[59] E Parrella, Online support vector regression [M.S. thesis],
University of Genoa, 2007.



Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering




