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The track of developing Economic Order Quantity (EOQ) models with uncertainties described as fuzzy numbers has been very
lucrative. In this paper, a fuzzy Economic Production Quantity (EPQ) model is developed to address a specific problem in a
theoretical setting. Not only is the production time finite, but also backorders are allowed. The uncertainties, in the industrial
context, come from the fact that the production availability is uncertain as well as the demand. These uncertainties will be handled
with fuzzy numbers and the analytical solution to the optimization problem will be obtained. A theoretical example from the
process industry is also given to illustrate the new model.

1. Introduction

The earliest models of batch-production were derived from
the basic Economic Order Quantity (EOQ) model in the
early 20th century. During this time, mathematical methods
started emerging to optimize the size of the inventory and
the orders [1], and since then, there have been an increasing
number of contributions that complement the basic model in
different ways. One of them is the extension of finite produc-
tion rate and another one is when backordering is allowed.
The EOQ models are most often used in a continuous-review
setting and it is assumed that the inventory can be monitored
every moment in time.

Decision making under uncertainty is nothing new. In
Liberatore [2], an EOQ model with backorders is derived
through probabilistic means. However, the uncertainties in
many supply chains today are inherent fuzzy [3]. This comes
from the fact that there are seldom statistical data to support
the calculations, but the uncertainty distributions have to be
based on expert opinions only. This is typically the case for
new products, and other products with very large seasonal
variations, for example. In these cases it is often possible
to use fuzzy numbers instead of probabilistic approaches

[4, 5]. There are many research contributions in this line
of research. For instance, Ouyang et al. [6, 7] allowed the
lead times to be decision variables. Salameh and Jaber [8]
introduced a model that captured also the defective rate of
the goods. Chang [9] worked out some fuzzy modifications
of this model. A good review of this research track is found
in [10]. Another set of results in this line of research is found
in Jaber et al. [11], and Khan et al. [12], where the learning
aspect of the inspection of quality was taken explicitly into
consideration and Khan et al. [13], where the inspection
errors (as well as the imperfect items) also were modeled.
There is also a track of solving EOQ models numerically, for
instance, in Chang et al. [14] an EOQ with fuzzy backorder
quantities. However, analytically solutions are desirable if
they are possible to find. Björk and Carlsson [15] and Björk
[16] solved the same model (as Chang et al. [17]) analytically.
In Björk [18], a fuzzy EPQ model with multi-item, shared
production capacity, was introduced and solved analytically.
Other fuzzy EOQ models are, for instance, as in Yao et al. [19]
that presented a model for two replaceable merchandizes. In
order to find analytical solutions for fuzzy EOQ problems,
there is usually a need of defuzzifying the model before
the optimization procedure. Yao and Chiang [20] used the



2 Applied Computational Intelligence and Soft Computing

signed distance method to defuzzify an EOQ model without
backorders. This was found to be a good way of handling the
fuzziness in the models.

The business domain that works as a source of inspi-
ration is found within the Nordic forest industries. For
instance, the paper producing companies are often exposed
to uncertainties in several dimensions. The decisions made
in these supply chains are done under uncertainties that
often cannot be captured by probabilistic measures, (cf. [14],
[15]). Within the business context, the demand is often
uncertain as well as the setup times. There are typically
only a few production lines producing a large number of
products. This leads to a significant number of setups of
the production equipment. The setup times may vary quite
much due to different operating behavior (the plants are
operated 24/7) and sometimes because of the availability of
raw material. These uncertainties can all add up to uncertain
inventory levels (and backorder levels). Earlier work that is
closely related to the work presented in this article is for
instance, the model by Björk [21], which did not allow for
backorders and the uncertainties were found only in the
total cycle time. Björk [16] allowed for backorders but did
not have a finite production rate (i.e., the model was more
tuned towards the distributors in the paper supply chain).
Björk [18] did the same setup, but the demand was assumed
crisp and the triangular fuzzy numbers were assumed to be
symmetrical. Therefore there is a need of a model, where the
setup times (or in fact the backorder level) and the demand is
assumed to be asymmetrical triangular fuzzy numbers. The
corresponding crisp model is part of the basic EOQ literature
and can be found in Cárdenas-Barrón [22–24], for instance.
The work in this paper also extends the excellent work by
Kazemi et al. [25], in the sense that they did not consider
a finite production time. They did, however, perform a very
comprehensive study of a fuzzy EOQ model with backorders.

The analytical solution is desired and therefore the
fuzzy model needs to be defuzzified. The convexity of the
defuzzified objective function needs to be established (as in
Björk [16, 18]). This can be done with the second-order
derivatives (i.e., the Hessian), for instance. The paper is
organized as follows: the crisp model found in the EOQ
literature is presented. Then the fuzzy model relevant to
the Nordic process industry is presented and defuzzified
with the signed distance method, and the analytical solution
is worked out with the first-order derivatives, while the
objective function is proven to be strictly convex. Finally an
example is given as well as a brief discussion and further
research tracks.

2. The Crisp EOQ Model with Backorders and
a Finite Production Rate

The classical EPQ problem (with backorders) formulation
consists of two decision variables, the size of the production
batch and the amount of the allowed backorders. The latter
variable can be exchanged to the maximum amount of
inventory there can be, that is, Imax (cf. Figure 1). Under no
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Figure 1: The representation of the EPQ model with backorders.

uncertainty, the inventory will have strict seesaw behaviour
(cf. Figure 1).

The parameters and variables in the classical EOQ model
are the following (the notations are the same as found in
Cárdenas-Barrón, [22] to make it easier to read this paper):

Q is the production batch size (variable),

K is the fixed cost per production run (parameter),

D is the annual demand of the product (parameter),

B is maximum shortage (just after a production run
starts, variable),

P is the annual production rate (parameter),

h is the unit holding cost per year (parameter),

b is the unit shortage penalty cost per year (parame-
ter),

Imax is the maximum inventory level (just after a
production run ends, variable),

C is the total average annual costs for the system
(objective value).

The total cost function C is given by (as a basic result in the
EOQ-theory)

C(Q,B) = KD

Q
+

B2b

2Qρ
+

(
Qρ− B

)2
h

2Qρ
. (1)

In addition, the well-known EOQ-theory will give the
following relationship:

IMax = Qρ− B, (2)

where

ρ = 1− D

P
. (3)
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All parameters and variables can be assumed to be strictly
greater than 0. In classical theory the maximal inventory level
is given by

Q∗ =
√

2KD
hρ

·
√

h + b

b
. (4)

Classical results give us that the optimal backorder quantity
is

B∗ =
√

2KDhρ
b(h + b)

. (5)

3. The EPQ Model with Backorders and
Fuzzy Setup Times and Demand

Now for the fuzzy uncertainties, we can assume that the setup
time is uncertain but possible to describe with a triangular
fuzzy number (possibly asymmetric). The setup times are
not explicitly in (1). However fuzzy setup times will affect the
maximum backorder quantity B. The ordering quantity, Q, is
assumed to be a crisp number since the production wants to
have an exact number to produce. The reorder point will also
be a fixed inventory level, not affected by the uncertainties.

The setup time is a triangular fuzzy number given by

L̃e =
(
Le − ΔL

l ,Le,Le + ΔL
h

)
. (6)

The maximum backorder level B is

B̃ =
(
B − ΔB

l ,B,B + ΔB
h

)
, (7)

where

ΔB
l = ΔL

h ·D, ΔB
h = ΔL

l ·D. (8)

Since annual demand also is uncertain, but it is assumed to
be captured by a (possibly asymmetric) fuzzy number:

D̃ =
(
D − ΔD

l ,D,D + ΔD
h

)
. (9)

The total annual cost in the fuzzy sense will be

C̃
(
Q, B̃

)
= KD̃

Q
+

B̃2b

2Qρ
+

(
Qρ− B̃

)2
h

2Qρ
. (10)

The strategy in this paper is to first defuzzify the objective
function, (10), and then derive the solution analytically. If

the signed distance method is used as the defuzzification
method, the objective function will be

d
(
C̃, 0̃

)
=

K · d
(
D̃, 0

)

Q
+
d
(
B̃2, 0̃

)
· b

2Qρ

+
d
((

Qρ− B̃
)2

, 0̃
)
h

2Qρ
,

(11)

where, according to (A.4)

d
(
D̃, 0̃

)
= 1

4

[(
D − ΔD

l

)
+ 2D +

(
D + ΔD

h

)]

= D +
1
4
ΔD
h −

1
4
ΔD
l

(12)

and according to (A.4),

d
(
B̃2, 0̃

)

= 1
2

∫ 1

0

[(
B2)

L(α) +
(
B2)

U(α)
]
dα

= 1
2

∫ 1

0

[(
B − ΔB

l + ΔB
l α
)2

+
(
B + ΔB

h − ΔB
hα
)2
]
dα

= 1
2

∫ 1

0
[B2 − BΔB

l + BΔB
l α− BΔB

l + ΔB
l

2 − ΔB
l α + BΔB

l α

− ΔB
l

2
α + ΔB

l
2
α2 + B2 + BΔB

h − BΔB
hα + BΔB

h + ΔB
h

2

− ΔB
h

2
α− BΔB

hα + ΔB
h

2
α + ΔB

h
2
α2 ]dα,

(13)

which finally can be rewritten as

d
(
B̃2, 0̃

)
= B2 − 1

2
BΔB

l +
1
2
BΔB

h +
1
6
ΔB
l

2
+

1
6
ΔB
h

2
. (14)

The third expression to be defuzzified is

d
((

Qρ− B̃
)2

, 0̃
)

= 1
2

∫ 1

0

[(
Qρ− B

)2
L(α) +

(
Qρ− B

)2
U(α)

]
dα

= 1
2

∫ 1

0

[(
Qρ−B+ΔB

l −ΔB
l α
)2

+
(
Qρ− B − ΔB

h + ΔB
hα
)2
]
dα

= ρ2Q2 − 2ρQB + B2 − 1
2
BΔB

l +
1
2
BΔB

h +
1
2
ρQΔB

l −
1
2
ρQΔB

h

+
1
6
ΔB
l

2
+

1
6
ΔB
h

2
.

(15)
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In (15) we need to add a very unrestrictive condition that
Qρ− B − ΔB

h > 0. If the expressions for the defuzzified terms
are inserted into (11), we obtain

C(Q,B) ≡ d
(
C̃, 0̃

)

= KD

Q
+
KΔD

h

4Q
− KΔD

l

4Q
+

B2b

2Qρ
+

ΔB
l

2
b

12Qρ
+

ΔB
h

2
b

12Qρ
+

Qρh

2
− hB+

B2h

2Qρ
+
ΔB
l

2
h

12Qρ
+
ΔB
h

2
h

12Qρ
+
BΔB

hb

4Qρ

−BΔB
l b

4Qρ
+
BΔB

hh

4Qρ
− BΔB

l h

4Qρ
+
ΔB
l h

4
− ΔB

hh

4
.

(16)

For the computation of the Hessian matrix, the derivatives
need first to be computed (first and second grades):

∂C

∂Q
= −KD

Q2
− KΔD

h

4Q2
+
KΔD

l

4Q2
− B2b

2ρQ2
− ΔB

l
2
b

12ρQ2
− ΔB

h
2
b

12ρQ2

+
ρh

2
− B2h

2ρQ2
− ΔB

l
2
h

12ρQ2
− ΔB

h
2
h

12ρQ2
− BΔB

hb

4ρQ2
+
BΔB

l b

4ρQ2

− BΔB
hh

4ρQ2
+
BΔB

l h

4ρQ2
,

∂C

∂B
= Bb

ρQ
− h +

Bh

ρQ
+
ΔB
hb

4ρQ
− ΔB

l b

4ρQ
+
ΔB
hh

4ρQ
− ΔB

l h

4ρQ

∂2C

∂Q2
= 2KD

Q3
+
KΔD

h

2Q3
− KΔD

l

2Q3
+
B2b

ρQ3
+
ΔB
l

2
b

6ρQ3
+
ΔB
h

2
b

6ρQ3

+
B2h

ρQ3
+
ΔB
l

2
h

6ρQ3
+
ΔB
h

2
h

6ρQ3
+
BΔB

hb

2ρQ3
− BΔB

l b

2ρQ3
+
BΔB

hh

2ρQ3

− BΔB
l h

2ρQ3
,

∂2C

∂B2
= h

Qρ
+

b

Qρ
,

∂2C

∂B∂Q
= − Bb

ρQ2
− Bh

ρQ2
− ΔB

hb

4ρQ2
+

ΔB
l b

4ρQ2
− ΔB

hh

4ρQ2
+

ΔB
l h

4ρQ2
.

(17)

Therefore we will obtain the following Hessian matrix

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h

ρQ
+

b

ρQ
− Bh

ρQ2
− Bh

ρQ2
− ΔB

hb

4ρQ2
+

ΔB
l b

4ρQ2
− ΔB

hh

4ρQ2
+

ΔB
l h

4ρQ2

− Bb

ρQ2
− Bh

ρQ2
− ΔB

hb

4ρQ2
+

ΔB
l b

4ρQ2
− ΔB

hh

4ρQ2
+

ΔB
l h

4ρQ2

2KD
Q3

+
KΔD

h

2Q3
− KΔD

l

2Q3
+
B2b

ρQ3
+

ΔB
l

2
b

6ρQ3
+
ΔB
h

2
b

6ρQ3
+
B2h

ρQ3

+
ΔB
l

2
h

6ρQ3
+
ΔB
h

2
h

6ρQ3
+
BΔB

hb

2ρQ3
− BΔB

l b

2ρQ3
+
BΔB

hh

2ρQ3
− BΔB

l h

2ρQ3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

The first determinant is (Det1 = (h/Qρ)+(b/Qρ) > 0),
which is necessary for the convexity requirement. The second
determinant is given by

Det2 = h + b

Qρ

⎛

⎝2KD
Q3

+
KΔD

h

2Q3
− KΔD

l

2Q3
+
B2b

ρQ3
+
ΔB
l

2
b

6ρQ3

+
ΔB
h

2
b

6ρQ3
+
B2h

ρQ3
+
ΔB
l

2
h

6ρQ3
+
ΔB
h

2
h

6ρQ3
+
BΔB

hh

2ρQ3

−BΔB
l h

2ρQ3
+
BΔB

hb

2ρQ3
− BΔB

l b

2ρQ3

)

−
(

− Bb

ρQ2
− Bh

ρQ2
− ΔB

hb

4ρQ2
+

ΔB
l b

4ρQ2
− ΔB

hh

4ρQ2
+

ΔB
l h

4ρQ2

)2

= (h + b)2

ρ2Q4

(
B2 +

1
6

(
ΔB
h

2
+ ΔB

l
2
)

+
B

2

(
ΔB
h − ΔB

l

))

− (h + b)2

ρ2Q4

(
B2 +

1
16

(
ΔB
h − ΔB

l

)2
+
B

2

(
ΔB
h − ΔB

l

))

+
(h + b)
ρQ

(
2KD
Q3

+
KΔD

h

2Q3
− KΔD

l

2Q3

)

,

(19)

which can be simplified into

Det2 = (h + b)2

ρ2Q4

(
5

48
ΔB
l

2
+

5
48

ΔB
h

2
+

1
8
ΔB
l Δ

B
h

)

+
(h + b)
ρQ4

(
2KD +

1
2
KΔD

h −
1
2
KΔD

l

)
.

(20)
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It is obvious that the first term is always greater than 0. Now
if the second term will be greater or equal to zero, we will
have a strictly positive determinant. Thus

Det2 > 0 if

2KD +
1
2
KΔD

h −
1
2
KΔD

l ≥ 0 ⇐⇒ ΔD
l ≤ ΔD

h + 4D.
(21)

It is also obvious that the equation ΔD
l ≤ ΔD

h + 4D holds for
every reasonable values of ΔD

l in the calculations. If, on the
contrary,ΔD

l > ΔD
h +4D there will be highly negative demands

with a high degree of possibility. Therefore, to obtain the
minimum of (16), (given the assumption in (21)) the system
of two equations to be solved is given by

∂C∗

∂Q
= ∂C∗

∂B
= 0. (22)

First we look at the partial derivative in respect to B

∂C∗

∂B

= Bb

ρQ
− b +

Bh

ρQ
+
ΔB
hb

4ρQ
− ΔB

l b

4ρQ
+
ΔB
hh

4ρQ
− ΔB

l h

4ρQ
= 0

⇐⇒B= ρQh−(1/4)ΔB
hb+(1/4)ΔB

l b−(1/4)ΔB
hh+(1/4)ΔB

l h

h + b

=
ρQh− (1/4)

(
ΔB
h − ΔB

l

)
(h + b)

h + b

⇐⇒ B = ρQh

h + b
− 1

4

(
ΔB
h − ΔB

l

)
.

(23)

Then we look at the partial derivative in respect to Q

∂C∗

∂Q
= −KD

Q2
− KΔD

h

4Q2
+
KΔD

l

4Q2
− B2b

2ρQ2
− ΔB

l
2
b

12ρQ2
− ΔB

h
2
b

12ρQ2

+
ρh

2
− B2h

2ρQ2
− ΔB

l
2
h

12ρQ2
− ΔB

h
2
h

12ρQ2

− BΔB
hb

4ρQ2
+
BΔB

l b

4ρQ2
− BΔB

hh

4ρQ2
+
BΔB

l h

4ρQ2
= 0

⇐⇒ − Kρ
(
D +

1
4
ΔD
h −

1
4
ΔD
l

)
− 1

2
B2(h + b)

− 1
12

(
ΔB
h

2 − ΔB
l

2
)

(h + b)

− 1
4
B
(
ΔB
h − ΔB

l

)
(h + b) +

hρ2Q2

2
= 0

(24)

Substituting B in (24) given by (23) will give us

− Kρ
(
D +

1
4
ΔD
h −

1
4
ΔD
l

)

− 1
2

⎛

⎜
⎝

Q2h2

(h + b)2 −
Qh
(
ΔB
h − ΔB

l

)

2(h + b)
+

(
ΔB
h − ΔB

l

)2

16

⎞

⎟
⎠(h + b)

− 1
12

(
ΔB
h

2
+ ΔB

l
2
)

(h + b)

− 1
4

(
Qh

h + b
− 1

4

(
ΔB
h − ΔB

l

))(
ΔB
h − ΔB

l

)
(h + b)

+
hρ2Q2

2
= 0

⇐⇒ −Kρ
(
D +

1
4
ΔD
h −

1
4
ΔD
l

)
− ρ2Q2h2

2(h + b)
+
Qh
(
ΔB
h − ΔB

l

)

4

−
(
ΔB
h − ΔB

l

)2
(h + b)

32
− 1

12

(
ΔB
h

2
+ ΔB

l
2
)

(h + b)

−
Qρh

(
ΔB
h − ΔB

l

)

4
+

1
16

(
ΔB
h − ΔB

l

)2
(h + b)

+
hρ2Q2

2
= 0

⇐⇒ Q2

(
ρ2h

2
− ρ2h2

2(h + b)

)

= Kρ
(
D +

1
4
ΔD
h −

1
4
ΔD
l

)

−
(
ΔB
h − ΔB

l

)2
(h + b)

32
+

1
12

(
ΔB
h

2
+ ΔB

l
2
)

(h + b)

⇐⇒ Q2

(
hpρ2

2(h + b)

)

= Kρ
(
D +

1
4
ΔD
h −

1
4
ΔD
l

)

+
(h + b)

96

(
5ΔB

h
2

+ 5ΔB
l

2
+ 6ΔB

hΔ
B
l

)

⇐⇒ Q2 =
(
Kρ
(
D +

1
4
ΔD
h −

1
4
ΔD
l

)

+
(h+b)

96

(
5ΔB

h
2
+5ΔB

l
2
+6ΔB

hΔ
B
l

))(2(h+b)
hpρ2

)

(25)

It is worth noticing that Q2 > 0 under the conditions given
by the definition. Equation (25) collapses into

Q∗f =
√
√√
√ 2KD

ρb
+

2KD
ρh

+
KΔD

h

2ρb
+
KΔD

h

2ρh
− KΔD

l

2ρb
− KΔD

l

2ρh
+

5ΔB
h

2
h

48ρ2b
+

5ΔB
h

2

24ρ2 +
5ΔB

h
2
b

48ρ2h
+

5ΔB
l

2
h

48ρ2b
+

5ΔB
l

2

24ρ2 +
5ΔB

l
2
b

48ρ2h
+

6ΔB
hΔ

B
l h

48ρ2b
+

6ΔB
hΔ

B
l

24ρ2 +
6ΔB

hΔ
B
l b

48ρ2h
. (26)
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Finally (26) can be rewritten into

Q∗f

=
√

2KD
hρ

· h + b

b
+

K

2ρh
· h + b

b
·
(
ΔD
h − ΔD

l

)
+

h + b

48ρ2h
· h + b

b
·
(

5ΔB
h

2
+ 5ΔB

l
2

+ 6ΔB
hΔ

B
l

)
. (27)

It is worth noticing that terms 3–13 in (26) or the second
two terms in (27) all origin from the uncertainties in the
demand and the setup times. It is also worth noticing that
the fuzzy optimal order quantity always increases with the
uncertaintiesin the setup times, whereas the uncertainties
in the demand may have a different impact on the order
quantity. This is similar to the results found by Björk [16]. Let
us investigate what happens with (26) and (27) given a zero
distribution in the fuzzy numbers (i.e., all fuzzy numbers are
crisp). Equation (26) will then collapse into

Q∗c =
√

2KD
ρb

+
2KD
ρh

=
√

2bKD + 2hKD
bhρ

=
√

2KD
hρ

·
√

h + b

b
.

(28)

This can also be seen directly from (27). It is worth noticing

that (28) is identical to the crisp solution given in the basic

EOQ literature (Cárdenas-Barrón, [22] for instance). From

(23) we also find that

B∗f

= ρh

h + b
·Q∗F −

1
4

(
ΔB
h − ΔB

l

)
, (29)

which will ultimately give

B∗f =
ρh

h + b

√
2KD
hρ

· h + b

b
+

K

2ρh
· h + b

b
·
(
ΔD
h − ΔD

l

)
+

h + b

48ρ2h
· h + b

b
·
(

5ΔB
h

2
+ 5ΔB

l
2

+ 6ΔB
hΔ

B
l

)
− 1

4

(
ΔB
h − ΔB

l

)
. (30)

In (30), we can also find that if all uncertainties are 0, then
the optimal B will be

B∗c =
ρh

h + b

√
2KD
ρh

· h + b

b
=
√

2KDρh
b(h + b)

, (31)

which is the crisp solution according to basic EOQ literature.

4. Numerical Example

Let us assume that we have a paper producer that wants
to determine how much should be produced of a certain
product (at each production run). The total annual demand
is assumed to be at 800000 kg (D) with a ΔD

l of 20000 kg and
a ΔD

h of 40000 kg. The total production capacity per year is
2000000 kg (P). The paper cost is 1 euro/kg. There is a fixed
cost at each production setup: 2000 euro. The holding costs
are 25% of the purchase price, that is, 0.25 euro per kg and
annum (h). The penalty costs are 5 euro per kg and annum
(b). This penalty cost represents a service level about 95% (if
a simple normal distributed stochastic demand is assumed),
but as stated earlier, we assume fuzzy demand in this model
and the service level equivalence is given as a comparison

only. The uncertainty in the setup times (from the setups and
also from the uncertain raw material availability) is typically
two days in the lower direction and 5 days in the upper
direction. Therefore, ΔB

l is 4383.56 kg (or 2 days demand)
and a ΔB

h of 10958.90 kg (or 5 days demand). Given these
parameters, the optimization results for this example are
given in Table 1.

Note that the results in Table 1 indicate that the order size
would increase with 3.1% if the uncertainties are accounted
for in appropriate manner. This would require an increased
total cost of 3.1%, when the backorder level is decreased
35%. The decrease in the backorder level comes from
the asymmetric triangular fuzzy ΔB and ΔD. Given these
parameters, the solution does not seem very sensitive to the
batch size or backorder level, which is also quite expected.
In addition, if the crisp solution for the batch size and
backorder level is used instead of the fuzzy optimal solutions,
the fuzzy objective value would only increase from 22037.37
to 22126.44. This is only an increase in 0.4%. These figures
also support the claim that the solution is not so sensitive (in
the parameter settings used in the example). However, the
model is generic and can be used in many different situations
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Table 1: The result from the example calculations.

Q∗ B∗ C∗

Crisp 149666.30 4276.18 21380.90

Fuzzy 154261.62 2763.64 22037.37

change 3.07% −35.37% 3.07%

in other industrial environments. For these settings, the
impact of fuzzy setup times may be more significant. In the
following, a short sensitivity analysis is conducted. Each of
the Δ,s is changed (either halved or doubled) and the changes
(in percentage) from the original fuzzy solution values are
calculated. From Table 2, it can be seen that the change
in the solution is very marginal if the ΔD parameters are
changed. This is natural from the definition of the fuzzy
demand in the model: for instance, symmetrical triangular
fuzzy demand will not have any impact on the solution; that
is, the upper distribution will eliminate the effect of the lower
distribution. The changes in theΔB parameters will, however,
have a greater impact on the fuzzy solution values. Therefore
it may be more important for managers to focus on reducing
the uncertainties in the setup times than the uncertainties in
the demand.

5. Discussion and Further Research

Making the right decision in a production-distribution
network may be the key to success. There have been
many contributions regarding the replenishment decisions
under the continuous-review policy. Still it is necessary
to make certain improvement to this track of research
in order to meet the inherent fuzzy uncertainties in the
applications. This paper contributes to the theory in this
field by presenting the analytical solution for a case, where
backorders are allowed, the production rate is finite, and
the production setup times as well as the demand rates are
inherent fuzzy numbers. The fuzzy numbers are allowed to
be asymmetric, which complicates the analytical solution
compared to the solution of the model found in Björk [18].
The results from the research consist of the proof of convexity
and the analytical solution after the fuzzy model has been
defuzzified with the signed difference method. The analytical
solution is coherent with the previous findings within the
EOQ literature; for instance, the fuzzy solution collapses to
the crisp solution, if the uncertainties are assumed to be zero.
The model is also tested with a theoretical case example from
a paper-producer. The process industry applications have
served as a source of inspiration in solving the fuzzy EPQ
problems, even if the results in this paper are theoretical.
The model is concluded with a brief sensitivity analysis of
the model, where it was concluded that it is likely that it
would be more crucial to reduce the uncertainty in the setup
times than the uncertainty in the demand (for the parameter
settings given in the example).

The model could, in the future, be extended to cover
more membership functions than the triangular one. In
addition, different case studies that give rise to a systematic

Table 2: The results from the sensitivity analysis, that is, the changes
in the fuzzy solution values, given some changes in the fuzzy
parameters ΔB and ΔD .

Parameter change Q∗ B∗ C∗

2 ΔD
L −0.29% −0.47% −0.29%

0.5 ΔD
L 0.15% 0.23% 0.15%

2 ΔD
h 0.59% 0.94% 0.59%

0.5 ΔD
h −0.29% −0.47% −0.29%

2 ΔB
L 1.53% 42.10% 1.53%

0.5 ΔB
L −0.58% −20.75% −0.58%

2 ΔB
h 5.45% −90.44% 5.45%

0.5 ΔB
h −1.61% 47.00% −1.61%

way of obtaining the membership functions could be consid-
ered. Finally, the safety stock should be quantified under the
fuzzy uncertainties in order to obtain a complete inventory
decision model for the proposed problem.

Appendix

In this appendix, the basics of fuzzy numbers as well as
the signed distance method are given in order to make the
modeling effort self-contained.

Definition 1. Consider the fuzzy set Ã = (a, b, c) where a <
b < c and defined on R, which is called a triangular fuzzy
number, if the membership function of Ã is given by

μÃ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x − a)
(b− a)

, a ≤ x ≤ b,

(c − x)
(c − b)

, b ≤ x ≤ c,

0, otherwise.

(A.1)

Definition 2. Let B̃ be a fuzzy set on R and 0 ≤ α ≤ 1. The
α-cut of B̃ is all the points x such that μB̃(x) ≥ α, that is,

B(α) =
{
x | μB̃(x) ≥ α

}
. (A.2)

In order to find non-fuzzy values for the model in the next
section we need to use some distance measures, and as in
Chang [9] we will use the signed distance (Yao and Wu [26]).

Definition 3. For any a and 0 ∈ R, the signed distance from
a to 0 is d0(a, 0) = a. And if a < 0, the distance from a to 0 is
−a = −d0(a, 0).

Let Ω be the family of all fuzzy sets B̃ defined on R for
which the α-cut B(α) = [BL(α),BU(α)] exists for every α ∈
[0, 1], and both BL(α) and BU(α) are continuous functions
on α ∈ [0, 1]. Then, for any B̃ ∈ Ω, we have (see Chang, [9])

B̃ =
⋃

0≤α≤1

[BL(α)α,BU(α)α]. (A.3)

From Chang [9], it can be finally stated (originally by results
from Yao and Wu [26]) how to calculate the signed distances.
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Definition 4. For B̃ ∈ Ω define the signed distance of B̃ to 0̃1

as

d
(
B̃, 0̃1

)
= 1

2

∫ 1

0
[BL(α) + BU(α)]dα. (A.4)
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