
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2012, Article ID 963917, 9 pages
doi:10.1155/2012/963917

Research Article

Neural Oscillators Programming Simplified

Patrick McDowell and Theresa Beaubouef

Department of Computer Science and Industrial Technology, Southeastern Louisiana University, Hammond, LA 70402, USA

Correspondence should be addressed to Theresa Beaubouef, tbeaubouef@selu.edu

Received 10 October 2011; Revised 29 December 2011; Accepted 2 January 2012

Academic Editor: Sebastian Ventura

Copyright © 2012 P. McDowell and T. Beaubouef. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing
has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects
of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking
robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural
oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and
examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics
applications.

1. Introduction

Scientists have long employed neural oscillators as a method
to study neuron/ganglia-based processes that serve as central
pattern generators for various organisms and as a method to
generate control and coordination signals for various robotic
mechanisms. For example, significant work has been done
in trying to understand the functions of various neurons
and components of such biological neural networks [1, 2],
developing properties general to all networks of neural oscil-
lators [3], and the modeling of processes such as locomotion
in simple animals [4–8]. Associative neural network models
with behavior similar to central path generators have also
been developed [9].

Computer scientists have researched and developed sev-
eral varieties of artificial neural networks that model natural
neural networks to some extent. Artificial neural network is a
well-developed field, and the literature in this general area is
quite vast; however, literature related to neural oscillators and
central pattern generators using these computerized neural
network models, such as in [10], is not so prevalent. Even so,
the use of such models in controlling the motion of robots
has been well established [11–13]. For researchers wanting to
apply the techniques of neural oscillators and/or central path
generators for the programming robotic controls, modeling

rhythmic patterns, and so forth, without the necessity of
understanding complex theoretical mathematical models or
learning how simple invertebrates swim, there appears to be
no single source of basic information available. Many articles
provide basic diagrams of oscillators and occasionally some
tuning parameters, but most do not provide discussions
concerning the general nature of the mechanism, conceptual
overviews, or implementation information. To help remedy
this situation, this paper provides a basic nonbiological
background on neural oscillators from a programmer’s
perspective and discusses the design and coding of neural
oscillators.

The paper is organized as follows. Section 2, Neural Os-
cillator Fundamentals, provides a basic introduction to the
neural oscillator with an algorithm snippet for a simple saw-
tooth waveform. Building upon that, Section 3, Developing
Symmetric Semicontinuous Waveforms, describes how to
incorporate a proportional control strategy into the system
so that the waveform is constructed with a series of con-
tinuous curves. Next, Section 4, Symmetric Waveform Oscil-
lator with Four States, shows how to smooth the falling
edge of the waveform so that continuous patterns can be
generated. Section 5, General Structure of Code for Basic
Neural Oscillators, provides the algorithm from which all
neural oscillators described in the paper are based upon,

mailto:tbeaubouef@selu.edu


2 Applied Computational Intelligence and Soft Computing

Basic 2-state neural oscillator

Exciter state Inhibitor state

WE2I

WI2E

Figure 1: Basic 2-state oscillator. When the output of the system has
reached the maximum, value control moves to the Inhibitor state,
after the final value is multiplied by the Exciter to Inhibitor weight
WE2I. The reverse happens in the Inhibitor state.

accompanied by a brief descriptive narrative. Next, Section 6,
Waveform Tuning, describes how to adjust the various
parameters of the neural oscillator in order to shape the
waveform. And, finally, Section 7, Conclusions, provides a
brief summary of the paper.

2. Neural Oscillator Fundamentals

The purpose of a neural oscillator is to generate a repeating
output that ranges between a maximum and minimum
value given constant input. This is different from other
transformation functions, such as a neural network, because
most transformations generate a unique output that is
specific to each input. Said another way, a neural oscillator
generates a unique pattern of outputs over time for each
unique input set. To illustrate the point, think of the process
of walking. A person may think “walk slowly,” but what
comes out of his brain is a set of rhythmic patterns that
move the legs through a walking gait. To walk faster, one
generally thinks “walk faster” and the part of the brain that
controls walking increases the frequency and/or amplitude
of the signals being sent to the leg muscles. Thus, the input
“walk” produces a pattern of outputs that repeat over time
controlling the leg muscles.

Neural oscillators have two or more nodes connected by
weights. In a typical two state oscillator, one state can be
thought of as an Exciter state and the other as an Inhibitor
state. Figure 1 illustrates a typical two-state oscillator.

The general functioning of the oscillator is as follows.
Starting the output value Vm at initial value Vstable in the
Exciter state, the oscillator circulates through the Exciter
state, adding to Vm until the oscillator’s maximum value
Vmax is obtained. When this occurs, control transfers to the
Inhibitor state with the value of Vm multiplied by the weight
WE2I. For now, assume that Vm is passed to the Inhibitor
state unchanged, that is WE2I = 1. Once in the Inhibitor
state, control remains there, diminishing Vm until it reaches
the oscillator’s minimum value Vmin. At that point control
returns to the Exciter state, with Vm being multiplied by
the weight WI2E. As before, assume for now that WI2E = 1.
The pattern will repeat indefinitely as long as the weights
connecting the Exciter and Inhibitor states remain 1. If they
are less than 1, the pattern will eventually diminish; however,
if the weights are greater than 1, the system will become
unstable. It becomes unstable because each time control is

Basic neural oscillator (saw tooth)

0

2

4

6

1 10 19 28 37 46 55 64 73 82 91 100

x
−6

−4

−2

V
m

Figure 2: Output of a neural oscillator created by adding a constant
(C = 1) in the Exciter state and subtracting a constant (C = 1) in
the Inhibitor state.

0
1
2
3
4
5
6

1 48 95 142 189 236 283 330 377 424 471

−4
−3
−2
−1

x

V
m

Basic neural oscillator (saw tooth, WE2I =WI2E = 0.65)

Figure 3: Output of a neural oscillator created by adding a constant
(C = .1) in the Exciter state and subtracting a constant (C = .1) in
the Inhibitor state with weights WE2I and WI2E less than 1.

passed from the Exciter state to the Inhibitor state, Vmax

grows by a factor of WE2I, and the converse is true for Vmin.
One of the most basic patterns that can be generated

is the saw-tooth pattern. It is created by adding a constant
value to Vm in the Exciter state and subtracting a constant
value from Vm in the Inhibitor state. Figure 2 illustrates the
pattern with adding a constant C = 1 to the pattern. Notice
that the pattern is not diminishing, that is, the amplitude
remains constant, due to the interstate weights being equal to
1. Figure 3, however, shows the result of making the Exciter
to Inhibitor and Inhibitor to Exciter state weights less than 1.
Here, the pattern diminishes because WE2I and WI2E are less
than one. (for the above example, see Algorithm 1).

3. Developing Symmetric
Semicontinuous Waveforms

While the saw-tooth pattern illustrates the arrangement of
the states and connecting weights, the waveform it generates
is not what is typically found to be desirable in the literature.
Most of the waveforms shown are much more continuous
in nature, many times appearing not too dissimilar from a
sine wave. One of the most simple, semicontinuous wave
forms that can be generated is the “Shark Fin” waveform, as
can be seen in Figure 4. This waveform is created by using a
proportional controller [2] in the Exciter state to achieve the
maximum desired value, and then once this value is reached,



Applied Computational Intelligence and Soft Computing 3

/∗ Initialize variables. ∗/
j = 0 // j is the time variable (x-axis)
V stable = (Vmax + Vmin)/2.0f // Vstable is set as the midpoint between Vmax

and Vmin

Vm = V stable // Vm is the output of the system
Vd work = Vmax // the current max value for Vm

V0 work = Vmin // the current min min value for Vm

state = “e” // state “e” is for exciter, i for inhibitor
T = tolerence // Set T to the tolerence value, we want to reach

Vd work and V0 work within tolerance
value T.

C = increment value // Set C to the value that Vm is
increment/decremented by

/∗ Generate patterns. ∗/
While (running) {
/∗ Excite state. ∗/
/∗ In the excite state, Vm is incremented until it reaches Vmax. ∗/
if (state is excite) {

increment Vm by amount C;
/∗ If Vm exceeds the current max value for Vm, Vd work,

transiton to the inhibit state. ∗/
if (Vm >= (Vd work−T)) {

/∗ Set the state to inhibit. ∗/
state = “i”
/∗ Diminish the current min value for Vm, V0 work,

by the weight from Exciter to Inhibitor, WE2I. ∗/
V0 work = V0 work ∗wE2I

}
}
/∗ Inhibit state. ∗/
else if (state == “i”) {

decrement Vm by amount C;
/∗ If Vm is less than the current min value for Vm, V0 work,

transiton to the excite state. ∗/
if (Vm <= (V0 work + T)) {

/∗ Set the state to excite. ∗/
state = “e”
/∗ Increase the current max value for Vm, Vd work,

by the weight from Inhibitor to Excitor, wI2E. ∗/
Vd work = Vd work ∗wI2E

}
}
/∗ Output data. ∗/
print(j, Vm)
/∗ Increment count. ∗/
j = j + 1

}

Algorithm 1

the control is handed off to the Inhibiter state, which in
turn uses a proportional controller to diminish the value to
the minimum desired value. Figure 5 illustrates the effects
of increasing the gain of the controller. By increasing the
gain, the frequency of the waveform is increased. Using the
gain to tune, the waveform is more thoroughly discussed in
Section 6.

Observing the shape of the waveforms, it can be seen that
the falling side of the waveform is inversely symmetrical to
the rising side. This is due to the fact that both the Exciter and

Inhibitor states use the same type of proportional controller
strategy and that the gains and interstate weights are set equal
to one another.

As we stated earlier, the approach that the Shark Fin oscil-
lator uses is derived from the standpoint of a proportional
closed loop control system. This means that the output value
of the system, Vm, is incremented based on the difference
between the current value of Vm and the requested value,
which is Vmax in the case of the Exciter state and Vmin in the
case of the Inhibitor state. The system gain functions, gE and



4 Applied Computational Intelligence and Soft Computing

0

2

4

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

−6

−4

−2

x

V
m

Basic Shark Fin (gains = 0.4, Ws = 1)

Figure 4: Output of the basic Shark Fin neural oscillator. Here, the
waveform is continuous and non-diminishing.

0

2

4

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

−6

−4

−2

x

Basic Shark Fin (gains = 0.8, Ws = 1)

V
m

Figure 5: Output of the basic Shark Fin neural oscillator. Here the
frequency of the waveform has been slightly more than doubled by
doubling the gain parameter.

gI (gains for the Exciter state and Inhibitor state) control the
rate at which Vm approaches Vmax and Vmin. The equations
below, along with Figure 6, detail the computing processes
of the Shark Fin oscillator. Figure 7 illustrates the effect of
setting the interstate weights to less than 1; it creates a
waveform that dissipates over time. Figure 8 shows the effect
of setting the interstate weights to greater than 1, creating an
unstable growth of the waveform.

(i) Vmin—minimum value of waveform.

(ii) Ve—error.

(a) Ve = Vmax −Vm (Exciter state).

(b) Ve = Vmin −Vm (Inhibitor state).

(iii) g—gain.

(a) gE (gain Exciter state).

(b) gI (gain Inhibitor state).

(iv) Vc—next requested value of waveform.

(a) Vc = g ∗Ve.

(1) Here, the gain and error are specific to the
current state, Exciter, or Inhibitor.

(v) Vm—measured value of waveform.

(a) Vm = Vm + Vc.

(b) Here, the assumption is that there is no load
on the system. By this we mean that when we
ask the system to increment the value of the
waveform by Vc amount, we get the full amount
added to the system. In a physical system, such
as a truck going up a hill, when we request Vc

more speed for the truck, we may or may not
get the desired result, depending on the truck’s
load and mechanical characteristics.

(vi) T–the tolerance value. Notice that the target values,
Vmax or Vmin, can never be realized due to the nature
of the equations below. Vm approaches Vmax or Vmin

so, in order to trigger the comparison that causes
the oscillator to change states, the value of Vm is
compared to the target value less a tolerance value.
For this application, T is set to 0.01.

(a) Vm= Vm + (g ∗ (Vd −Vm)).

(1) Vd is the desired value, either Vmax or Vmin.
(2) g is the gain, either gE or gI.

4. Symmetric Waveform Oscillator
with Four States

While the Shark Fin oscillator’s waveform correlates well
with the shape of several rhythmic biologic processes,
including that of capnographic waveforms [14] (breathing
patterns associated with bronchial spasms), many applica-
tions require a waveform with a smoother falling side. For
example, the oscillatory patterns required to control the
segments of a swimming robot or salamander such as that
discussed by Hoppensteadt and Izhikevich [3] are smooth on
both the rising and falling sides of the waveform.

In order to produce a waveform of this nature, the
transition from the Exciter phase to the Inhibitor phase has to
be seamless. To extend the basic oscillator model to accom-
modate these requirements, from an intuitive standpoint,
two solutions come to mind:

(i) immediately upon the transition from Exciter state to
Inhibitor state, lower the gain,

(ii) select a new target value that is much closer to Vmax

than the original Vmin. That is, work towards Vmin

using a series of “waypoints” in order to smooth the
curve.

Shown in Figure 9 is the output of the “smooth4”
oscillator, the enhanced version of the Shark Fin oscillator
model. The key to making the transition smooth is the
creation of a substate in each of the two primary states of
the model and the creation of a stable point of the waveform.
The wording “stable point” in this context refers to a central
location which can be used as a reference point during the
migration of control between the states and substates of the
oscillator model. To illustrate the operation of the system,
consider the situation when Vm has just exceeded Vmax − T .
In this case, control is transitioning from the Exciter state to



Applied Computational Intelligence and Soft Computing 5

User

input

Actuators Sensor
display

Exciter state

Sensor

User

input

Actuators Sensor
display

Environ-

Inhibitor state

Sensor

IsNo

IsNo

Return to Exciter state

Yes

Go to Inhibitor state

Yes

ment

Environ-
ment

WE2I WI2E

Ve =
Vmin −Vm

Vmin

VmVcVe

Vm < (Vmin + T)?

Vc =
g∗Ve

Ve =
Vmax−Vm

Vmax

Vc =
g∗Ve

VcVe

Vm > (Vmax T)?−

Vm

Figure 6: This figure shows an algorithm/data flow diagram for the Shark Fin neural oscillator. Note the proportional controllers used in
each of the two states. Recall that, when state transitions are made, the target values (either Vmax or Vmin) are multiplied by the weights that
connect the states. That is, the current Vmax will be multiplied by WI2E when control moves from the Inhibitor state to the Exciter state and
vice versa. This is the mechanism in which a dissipating or increasing waveform is created.

0
1
2
3
4
5
6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

x
−4
−3
−2
−1

V
m

Dissipating Shark Fin (gains = 0.8, Ws = 0.7)

Figure 7: This figure illustrates the effect of setting the interstate
weights to less than 1; it creates a waveform that dissipates over time.

the Inhibitor state. Immediately upon entering the Inhibitor
state, the Inhibitor’s substate takes control. Instead of using
the quantity Vmin to calculate the error (Vmin−Vm), the error
is calculated by negating Vmax −Vm. Remember, Vm is much

0

5

10

15

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

x
−15

−10

−5

V
m

Increasing Shark Fin (gains = 0.8, Ws = 1.1)

Figure 8: This figure shows the effect of setting the interstate
weights to greater than 1, creating unbounded growth in the
waveform, thus an unstable condition.

closer to Vmax at this point than it is to Vmin, and this is what
lets the system come down smoothly from its peak value.



6 Applied Computational Intelligence and Soft Computing

0

2

4

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

x

V
m

−6

−4

−2

Smooth4 (gains = 0.65, Ws = 1)

Figure 9: Output of the smooth4 neural oscillator. Here, the
waveform is continuous and nondiminishing. Notice the smooth
transitions on both sides of the peaks and troughs of the waveform.

Exciter state

Inhibitor state

WE2I WI2E

Vm ≥ V stable

Ve = Vmax −Vm

Vc = gE∗Ve

Vm < V stable

Ve = Vmin −Vm

Vc = gE∗ (-1f∗Ve)

Vm > V stable

Vm = Vm + Vc

Vm = Vm + Vc

Ve = Vmax −Vm

Vc = gI∗ (-1f∗Ve) Vc = gI∗Ve

Ve = Vmin −Vm

Vm ≤ V stable

Figure 10: This figure shows an algorithm/data flow diagram for
the smooth4 neural oscillator. As before, proportional controllers
are used to generate values for Vm. However, this time two substates
are contained in each of the primary states.

So, in essence, the second bullet from above is being used,
but instead of looking forward to the target value, the system
looks backward to the previous target value and negates the
result. As soon as Vm dips below the stable value (Vstable), the
error is calculated in the same manner as that of the Shark Fin
oscillator. Figure 10 illustrates the relationships between Vm,
the stable point (Vstable), and the substates within the Excite
and Inhibit states.

5. General Structure of Code
for Basic Neural Oscillators

In the following we show the general structure for the al-
gorithm for each of oscillators discussed in this paper.

In order to begin the neural oscillator procedure outlined
above, several input values must be determined. First of all,
it is necessary to set the target maximum and minimum
output values (Vmax and Vmin), the weights between the
states (normally these are equal), and the gains for each
state (again, these are equal for many waveforms, but not
all). The output value Vm will be calculated at each iteration
until it either reaches a fixed number of iterations, for a
stable waveform, or when some stopping criteria are realized.
For dissipating waveforms, the output will reach a midpoint
between Vmax and Vmin, at which point it will “flatline” and
can be terminated. For increasing waveforms, a limit on
the maximum amplitude of the output must be specified
or an iteration limit given to end the oscillations before the
waveform diverges too much.

The neural oscillator code begins by setting the current
state to the Excite state. It will continually loop in this state,
incrementing the output value Vm (in a way based on the
desired waveform type) until it reaches its limit. At this point
Vm is multiplied by the Excite-to-Inhibit weight and control
is passed to the Inhibit state. It will continually loop in the
Inhibit state, where output value Vm is decremented each
iteration (in a way based on the desired waveform type)
until its limit is reached. Then, the output is multiplied by
the Inhibit-to-Excite weight, and control is returned again to
the Excite state. The output at each iteration throughout the
oscillation procedure can be output to a data file and/or fed
into a graphical display procedure for real-time observation
of the waveform and its behavior. The way that the outputVm

is calculated within the states determines the overall shape
of the waveform and is the subject of the next section. The
values specified for the gains and interneuron weights further
shape the waveform in terms of its frequency and determine
whether it will dissipate or increase in amplitude.

6. Waveform Tuning

As can be seen from Figures 2, 4, and 9, the shape of the
waveform can be highly dependent upon the implementation
of the neural oscillator. In this section, the effects of the
various parameters on the shape, frequency, and amplitude
of the symmetric 4 state oscillator’s waveform are illustrated.
Curiously, this type of oscillator can produce surprisingly
good approximations of the saw-tooth, Shark Fin, and other
waveforms, given the correct parameters. In Figure 11, the
symmetric 4 state oscillator was used to produce a sine-like
waveform (the line in blue), an approximation of a square
wave (the pink waveform), and a waveform masquerading
as saw-tooth or Shark Fin. The key to changing the shape of
the waveform lies in the manipulation of the gain parameters
and T (the tolerance parameter).

The key to making the peaks and troughs of the waveform
smooth, like those in a sine curve, lies in the T parameter.



Applied Computational Intelligence and Soft Computing 7

Inputs: Vmin, Vmax, inter-state weights, gains for each state
Outputs: Vm

state = excite
while (oscillating) {
if (state is excite) {

Vm = Calculate new value of system
if (Based on Vm it is time to move to Inhibit state) {

modify Vmax based on Excite to Inhibit weights
set state to Inhibit

}
}/∗ End excite. ∗/
if (state is inhibit) {

Vm = Calculate new value of system
if (Based on Vm it is time to move to Excite state) {

modify Vmin based on Inhibit to Excite weights
set state to Excite

}
}/∗ End inhibit ∗/
determine if it is time to stop oscillating based on:

number of iterations
closeness of Vmax and Vmin to (Vmax + Vmin)/2
Set oscillating variable appropriately.

}/∗ End while ∗/

Algorithm 2

0

2

4

6

8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Time
−8

−6

−4

−2

Waveform tuning changing waveform shape

T = 0.2, g = 0.5,w = 1
T = 0.005, g = 0.99,w = 1
T = 1, g = 0.7, 0.99,w = 1

V
m

Figure 11: Various types of waveforms generated the symmetric 4
state oscillator. The different shapes are arrived at by manipulating
the tolerance (T) and the gain (g). Of special note is the “saw-tooth
like” waveform shown in yellow. It is the only one in which the gain
for the rising side and falling side of the waveform are not equal.

By makingT large, the oscillator will transition states quickly,
because the gain multiplied by the error can exceed the
desired value (Vmax or Vmin) minus a large tolerance in fewer
time steps than it can if T were small. Remember the current
oscillator output, Vm, is not adjusted by a constant at each
time step (as in the saw-tooth oscillator) but by a portion
of the error, Ve (the difference between Vm and the target
value). By setting T to a large value, the state transition is
achieved while the error is relatively large. Conversely, by
making T small, it will hold the oscillator very close to the

Waveform tuning frequency

0

2

4

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

T = 0.2, g = 0.1,w = 1
T = 0.2, g = 0.3,w = 1
T = 0.2, g = 0.6,w = 1

x−6

−4

−2

V
m

Figure 12: Frequency tuning using the gain parameter. Note that
doubling the gain does not exactly double the frequency. This can
be seen by counting crests of the pink and green curves.

transition point for an extended period of time, while Vm

slowly edges up on Vmax −T or Vmin +T . This can be seen in
Figure 11. Notice how many more points there are across the
top of the pink waveform than the blue or yellow waveforms.
By combining a small tolerance with a large gain, the rising
and falling sides are steep, but the crests and troughs are long
and flat because they take many time steps to whittle the error
down enough to cause a state transition.

Changing the frequency is achieved by adjusting the gain
parameter. Figure 12 below shows three “sine-like” curves of
progressively higher frequency. All parameters for the curves
are the same, except the gain.

Figure 13 illustrates how the amplitude can be manip-
ulated by adjusting the desired value parameters, Vmax and



8 Applied Computational Intelligence and Soft Computing

Waveform tuning amplitude

0

2

4

6
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

−6

−4

−2

x

T = 0.2, g = 0.5, w = 1,
T = 0.2, g = 0.5, w = 1,

Vd = 5.5
Vd = 2.5

V
d

Figure 13: This figure shows the effect of changing the desired value
(Vmax and Vmin) on the amplitude.

Vmin (Vd in Figure 13). Both curves have all parameters the
same, except their maximum and minimum values. This did
cause a frequency shift, because it takes slightly less time to
reach the state transition as the amplitude decreases. In the
literature, this parameter is analogous to the “tonic” input.

In summary, the waveform’s shape, frequency, and
amplitude are easily adjusted using three types of parameters:
the tolerance T , the gain g, and the desired value Vmax and
Vmin. The values Vmax and Vmin are determined by the system
that is being modeled. These two parameters, in conjunction
with the T parameter, will determine the amplitude of
the waveform. The T parameter also helps determine how
smooth the waveform is by helping to generate more points
at the peaks and valleys. Another point to note is that the
tolerance value will be proportional to the range of the
waveform. For example, if the tolerance value is 25% of the
range of the waveform, the transition from excite state to
inhibit will be much more abrupt than if the tolerance value
is 1% of the range. That is, if the range of the waveform is
2, a tolerance value of .5 will cause a much abrupt transition
than a tolerance value of .5 in a waveform whose range is 50.
And, finally, the gain parameter directly affects the frequency
of the system. The code used to produce these pictures was
set up so that each state had its own gain and desired value,
but the tolerance is shared. While the majority of the curves
presented in this paper do not take advantage of this ability,
it is still a valuable feature (the “saw-tooth like waveform” of
Figure 11 relies on it) for creating various shapes.

7. Conclusions

Neural oscillators are a fundamental component of robotics
programming where robotic movement mimicking some
form of natural rhythmic behavior is desired. There are
numerous such models in the literature, varying in terms of
the application, and even if their functionality is adequately
explained, it is often the case that the actual programming of
such models is not, often leaving the programmer at a loss as
to where to begin.

The approach of this work was to detail the modeling
of neural oscillators from a programmer’s point of view.
Here, the basic components of the neural oscillator were
presented and discussed in terms of the parts they play in the
generation of the output signal. Variation of certain control
variables, such as the interneuron weights or gains, or in the
number of states, results in differently shaped waveforms.
The basic saw-tooth waveform, a Shark Fin wave form, and
a smooth curve waveform resulting as output from various
neural oscillators were presented. Techniques for causing the
waveform to dissipate in amplitude or to increasingly diverge
were also discussed.

A generic procedure for programming a neural oscillator
was presented, with information for varying the primary
components to achieve the desired waveform shapes and
strengths. Armed with this basic knowledge, the programmer
can code from simple to more complex neural oscillators
for use in robotics, pattern generation, and modeling ap-
plications.

References

[1] A. I. Selverston, “Are central pattern generators understand-
able,” Behavioral and Brain Sciences, vol. 3, no. 4, pp. 535–571,
1980.

[2] D. M. Wilson, “The central nervous control of flight in a
locust,” The Journal of Experimental Biology, vol. 38, no. 2, pp.
471–490, 1961.

[3] F. C. Hoppensteadt and E. M. Izhikevich, “Synaptic orga-
nizations and dynamical properties of weakly connected
neural oscillators. I. Analysis of a canonical model,” Biological
Cybernetics, vol. 75, no. 2, pp. 117–127, 1996.

[4] P. Getting, “Reconstruction of small neural networks,” in
Methods in Neural Modeling, C. Koch, Ed., pp. 171–196, MIT
Press, Cambridge, Mass, USA, 1989.

[5] A. J. Ijspeert, “A connectionist central pattern generator for
the aquatic and terrestrial gaits of a simulated salamander,”
Biological Cybernetics, vol. 84, no. 5, pp. 331–348, 2001.

[6] A. J. Ijspeert and J. Kodjabachian, “Evolution and develop-
ment of a central pattern generator for the swimming of a
lamprey,” Artificial Life, vol. 5, no. 3, pp. 247–269, 1999.

[7] S. R. Lockery and T. J. Sejnowski, “The computational leech,”
Trends in Neurosciences, vol. 16, no. 7, pp. 283–290, 1993.

[8] A. Roberts and M. J. Tunstall, “Mutual re-excitation with post-
inhibitory rebound: a simulation study on the mechanisms for
locomotor rhythm generation in the spinal cord of Xenopus
embryos,” European Journal of Neuroscience, vol. 2, no. 1, pp.
11–23, 1990.

[9] D. Kleinfeld and H. Sompolinsky, “Associative neural network
model for the generation of temporal patterns. Theory and
application to central pattern generators,” Biophysical Journal,
vol. 54, no. 6, pp. 1039–1051, 1988.

[10] D. Meunier and H. Paugam-Moisy, “Neural networks for com-
putational neuroscience,” in Proceedings of the European
Symposium on Artificial Neural Networks—Advances in Com-
putational Intelligence and Learning, pp. 367–378, Bruges,
Belgium, April 2008.

[11] H. J. Chiel, R. D. Beer, and J. C. Gallagher, “Evolution and
analysis of model CPGs for walking—I. Dynamical modules,”
Journal of Computational Neuroscience, vol. 7, no. 2, pp. 99–
118, 1999.



Applied Computational Intelligence and Soft Computing 9

[12] H. Inada and K. Ishii, “Behavior generation of bipedal robot
using central pattern generator(CPG),” in Proceedings of
the IEEE International Conference on Intelligent Robots and
Systems, vol. 3, pp. 2179–2184, Las Vegas, Nev, USA, October
2003.

[13] Y. Nakamura, T. Mori, M. A. Sato, and S. Ishii, “Reinforcement
learning for a biped robot based on a CPG-actor-critic
method,” Neural Networks, vol. 20, no. 6, pp. 723–735, 2007.

[14] B. You, R. Peslin, C. Duvivier, V. D. Vu, and J. P. Grilliat,
“Expiratory capnography in asthma: evaluation of various
shape indices,” European Respiratory Journal, vol. 7, no. 2, pp.
318–323, 1994.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


