
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2013, Article ID 756719, 7 pages
http://dx.doi.org/10.1155/2013/756719

Research Article
Parallel Swarms Oriented Particle Swarm Optimization

Tad Gonsalves and Akira Egashira

Department of Information and Communication Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho,
Chiyoda-ku, Tokyo 102-8554, Japan

Correspondence should be addressed to Tad Gonsalves; tad-gonsal@sophia.jp

Received 29 August 2013; Accepted 9 September 2013

Academic Editor: Baoding Liu

Copyright © 2013 T. Gonsalves and A. Egashira.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

The particle swarm optimization (PSO) is a recently invented evolutionary computation technique which is gaining popularity
owing to its simplicity in implementation and rapid convergence. In the case of single-peak functions, PSO rapidly converges to the
peak; however, in the case of multimodal functions, the PSO particles are known to get trapped in the local optima. In this paper,
we propose a variation of the algorithm called parallel swarms oriented particle swarm optimization (PSO-PSO) which consists of
a multistage and a single stage of evolution. In the multi-stage of evolution, individual subswarms evolve independently in parallel,
and in the single stage of evolution, the sub-swarms exchange information to search for the global-best.The two interweaved stages
of evolution demonstrate better performance on test functions, especially of higher dimensions. The attractive feature of the PSO-
PSO version of the algorithm is that it does not introduce any new parameters to improve its convergence performance.The strategy
maintains the simple and intuitive structure as well as the implemental and computational advantages of the basic PSO.

1. Introduction

Evolutionary algorithms (EAs) are increasingly being applied
to solve the problems in diverse domains. These meta-
heuristic algorithms are found to be successful in many
domains chiefly because of their domain-independent evo-
lutionary mechanisms. Evolutionary computation is inspired
by biological processes which are at work in nature. Genetic
algorithm (GA) [1] modeled on the Darwinian evolutionary
paradigm is the oldest and the best known evolutionary
algorithm. It mimics the natural processes of selection,
crossover, and mutation to search for optimum solutions in
massive search spaces.

Particle swarm optimization (PSO) is a recently devel-
oped algorithm belonging to the class of biologically inspired
methods [2–9]. PSO imitates the social behavior of insects,
birds, or fish swarming together to hunt for food. PSO is a
population-based approach that maintains a set of candidate
solutions, called particles, which move within the search
space. During the exploration of the search space, each
particle maintains a memory of two pieces of information:
the best solution (pbest) that it has encountered so far and the
best solution (gbest) encountered by the swarm as a whole.
This information is used to direct the search.

Researchers have found that PSO has the following
advantages over the other biologically inspired evolutionary
algorithms: (1) its operational principle is very simple and
intuitive; (2) it relies on very few external control parameters;
(3) it can be easily implemented; and (4) it has rapid
convergence. PSO has developed very fast, has obtained very
good applications in wide variety of areas [10–12], and has
become one of the intelligent computing study hotspots in the
recent years [12–14].

In the case of single-peak functions, PSO rapidly con-
verges to the peak; however, in the case of multi-modal
functions, the PSO particles are known to get trapped in the
local optima. A significant number of variations are being
made to the standard PSO to avoid the particles from getting
trapped in the local optima [15–25]. Other methods which
restart the particles trapped at the local optima have also been
proposed [18, 19, 22]. In these methods, when the velocity
of a particle falls below a given threshold, it is reinitialized
to a randomly selected large value to avoid stagnation. The
risk of stagnation is reduced by randomly accelerating the
flying particles. Some of the more recent methods utilize
multiswarms to search for the global optimumwhile avoiding
getting trapped in the local optima [26–30].



2 Applied Computational Intelligence and Soft Computing

However, in all the studies mentioned above, a number
of new parameters are introduced in the original PSO.
This destroys the simplicity of the algorithm and leads to
an undesirable computational overhead. In this study, we
introduce another variation to the evolution of the standard
PSO but without resorting to additional new parameters.The
strategy maintains the simple and intuitive structure as well
as the implemental and computational advantages of the basic
PSO.Thus, the contribution of this study is the improvement
of the performance of the basic PSO without increasing the
complexity of the algorithm.

This paper is organized as follows. In Section 2,we present
the original PSO as proposed by Kennedy and Eberhart in
1948 [6]. In Section 3, we explain the working of the standard
PSO and some of the variations found in the literature
on PSO. In Section 4, we present our new parallel swarm
oriented (PSO) and demonstrate the performance results in
Section 5. We conclude the paper in Section 6 and propose
some ideas for further research.

2. Original Particle Swarm Optimization

The population-based PSO conducts a search using a pop-
ulation of individuals. The individual in the population is
called the particle, and the population is called the swarm.
The performance of each particle is measured according to
a predefined fitness function. Particles are assumed to “fly”
over the search space in order to find promising regions of
the landscape. In theminimization case, such regions possess
lower functional values than other regions visited previously.
Each particle is treated as a point in a 𝑑-dimensional space
which adjusts its own “flying” according to its flying experi-
ence as well as the flying experience of the other companion
particles. By making adjustments to the flying based on the
local best (pbest) and the global best (gbest) found so far, the
swarm as a whole converges to the optimum point, or at least
to a near-optimal point, in the search space.

The notations used in PSO are as follows. The 𝑖th part-
icle of the swarm in iteration 𝑡 is represented by the 𝑑-
dimensional vector, 𝑥

𝑖
(𝑡) = (𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑑
). Each particle

also has a position change known as velocity, which for the
𝑖th particle in iteration 𝑡 is V

𝑖
(𝑡) = (V

𝑖1
, V
𝑖2
, . . . , V

𝑖𝑑
). The best

previous position (the position with the best fitness value) of
the 𝑖th particle is𝑝

𝑖
(𝑡−1) = (𝑝

𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑑
).Thebest particle

in the swarm, that is, the particle with the smallest function
value found in all the previous iterations, is denoted by the
index 𝑔. In a given iteration 𝑡, the velocity and position of
each particle are updated using the following equations:

V
𝑖 (𝑡) = 𝑤V𝑖 (𝑡 − 1) + 𝑐1𝑟1 (𝑝𝑖 (𝑡 − 1) − 𝑥𝑖 (𝑡 − 1))

+ 𝑐
2
𝑟
2
(𝑝
𝑔 (𝑡 − 1) − 𝑥𝑖 (𝑡 − 1)) ,

(1)

𝑥
𝑖 (𝑡) = 𝑥𝑖 (𝑡 − 1) + V𝑖 (𝑡) , (2)

where 𝑖 = 1, 2, . . . ,NP; 𝑡 = 1, 2, . . . , 𝑇. NP is the size of
the swarm, and 𝑇 is the iteration limit; 𝑐

1
and 𝑐
2
are positive

constants (called “social factors”); 𝑟
1
and 𝑟

2
are random

numbers between 0 and 1; and 𝑤 is the inertia weight that

controls the impact of the previous history of the velocities
on the current velocity, influencing the tradeoff between the
global and local experiences. A large inertia weight facilitates
global exploration (searching new areas), while a small one
tends to facilitate local exploration (fine-tuning the current
search area). Equation (1) is used to compute a particle’s
new velocity, based on its previous velocity and the distances
from its current position to its local best and to the global
best positions. The new velocity is then used to compute the
particle’s new position (2).

3. Standard PSO and Its Variations

Any successful meta-heuristic algorithmmaintains a delicate
balance between exploration (diversifying the search to wider
areas of the search space) and exploitation (intensifying the
search in narrow promising areas). Shi and Eberhart later
introduced the inertia weight 𝜔 in the original PSO to
improve the PSO search [31]. A high value of the inertial
weight favors exploration, while a low value favors exploita-
tion. The inertia weight is defined as

𝜔 = (𝜔
1
− 𝜔
2
) ×

(MaxIter − Iter)
MaxIter

+ 𝜔
2
, (3)

where 𝜔
1
and 𝜔

2
are, respectively, the initial and the final

values of the inertia weight, Iter is the current iteration
number, and MaxIter is the maximum number of iterations.
Many studies have shown that the PSO performance is
improved by decreasing 𝜔 linearly from 0.9 to 0.4 using the
above equation.

Eberhart and Shi have further proposed a random mod-
ification for the inertia weight to make the standard PSO
applicable to dynamic problems [4]. The inertia weight 𝜔 is
randomly modified according to the following equation:

𝜔 = 0.5 +
rand (0,1)

2
. (4)

As opposed to the above linear decrement, Jie et al. [32]
have proposed a nonlinear modification of the inertia weight
over time given by

𝜔 = (𝜔
1
− 𝜔
2
) sin [(MaxIter − Iter)

MaxIter
×
𝜋

2
] + 𝜔
2
. (5)

This inertia weight varies slowly in the initial stages but more
rapidly in the final stages. This implies that the algorithm
makes a wider global search in the early stages and narrower
local search in the final stages.

Generally, the very same velocity and position update for-
mulae are applied to each and every flying particle. Moreover,
the very same inertia weight is applied to each particle in
a given iteration. However, Yang et al. [33] have proposed a
modified PSO algorithm with dynamic adaptation, in which
a modified velocity updating formula of the particle is used,
where the randomness in the course of updating the particle
velocity is relatively decreased and each particle has a different
inertia weight applied to it in a given iteration. Further,
this algorithm introduces two new parameters describing the



Applied Computational Intelligence and Soft Computing 3

evolving state of the algorithm, the evolution speed factor and
the aggregation degree factor. In the new strategy, the inertia
weight is dynamically adjusted according to the evolution
speed and the aggregation degree.The evolution speed factor
is given by

ℎ
𝑡

𝑖
=



min (𝐹 (𝑝𝑏𝑒𝑠𝑡𝑡−1
𝑖
) , 𝐹 (𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖
))

max (𝐹 (𝑝𝑏𝑒𝑠𝑡𝑡−1
𝑖
) , 𝐹 (𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖
))



, (6)

where 𝐹(𝑝𝑏𝑒𝑠𝑡𝑡
𝑖
) is the fitness value of 𝑝𝑏𝑒𝑠𝑡𝑡

𝑖
. The parameter

ℎ (0 < ℎ ≤ 1) reflects the evolutionary speed of each particle.
The smaller the value of ℎ is, the faster the speed is.

The aggregation degree is given by

𝑠 =



min (𝐹
𝑡𝑏𝑒𝑠𝑡
, 𝐹
𝑡
)

max (𝐹
𝑡𝑏𝑒𝑠𝑡
, 𝐹
𝑡
)



, (7)

where 𝐹
𝑡
is the mean fitness of all the particles in the swarm

and 𝐹
𝑡𝑏𝑒𝑠𝑡

is the optimal value found in the 𝑡th iteration.
The inertia weight is updated as

𝜔
𝑡

𝑖
= 𝜔ini − 𝛼 (1 − ℎ

𝑡

𝑖
) + 𝛽𝑠, (8)

where𝜔ini is the initial inertia weight.The choice of𝛼 and𝛽 is
typically in the range [0, 1].

Another variation is the introduction of a constriction
coefficient to replace 𝜔 to ensure the quick convergence of
PSO [34]. The velocity update is given by

V
𝑖 (𝑡) = 𝜒 (V𝑖 (𝑡 − 1) + 𝑐1𝑟1 (𝑝𝑖 (𝑡 − 1) − 𝑥𝑖 (𝑡 − 1))

+𝑐
2
𝑟
2
(𝑝
𝑔 (𝑡 − 1) − 𝑥𝑖 (𝑡 − 1)))

𝜒 =
2


2 − 𝜑 − √𝜑2 − 4𝜑



,

(9)

where 𝜒 is the constriction coefficient, 𝜑 = 𝑐
1
+ 𝑐
2
, and 𝜑 > 4.

4. Parallel Swarm Oriented PSO

In all the PSO variationsmentioned in the preceding sections,
a number of new parameters are introduced in the original
PSO. This destroys the simplicity of the algorithm and leads
to an undesirable computational overhead. In this section,
we describe our novel approach called the parallel swarms
oriented PSO (PSO-PSO). This version of the PSO does
not introduce any new algorithm parameters to improve
its convergence performance. The strategy maintains the
simple and intuitive structure as well as the implemental and
computational advantages of the basic PSO.

The algorithm consists of a multievolutionary phase and
a single-evolutionary phase. In the multi-evolutionary phase,
initially a number of sub-swarms are randomly generated
so as to uniformly cover the decision space. The multiple
sub-swarms are then allowed to evolve independently, each
onemaintaining its own particle-best (pbest) and swarm-best
(sbest). The latter is a new term that we have introduced to

represent the best particle in a given swarm in its history
of evolution. After a predetermined number of evolutionary
cycles, the multi-evolutionary phase ends and the single-
evolutionary phase begins. The sub-swarms exchange infor-
mation and record the global-best (gbest) of the entire col-
lection of the sub-swarms. In the single-evolutionary phase
all the subswarms merge and continue to evolve using the
individual sub-swarm particle-best and swarm-best and the
overall global-best.The sub-swarms then return to the multi-
evolutionary phase and continue the search. The algorithm
flow chart of the PSO-PSO algorithm is shown in Figure 1.

Multievolutionary Phase. 𝐾 number of independent swarms
evolve in parallel.

Step 1. Randomly generate𝐾 number of independent swarm
populations so as to be uniformly distributed over the entire
decision space.

Step 2. Evaluate the fitness of the particles in each individual
swarm. In theminimization problems, the fitness of a particle
is inversely proportional to the value of the function.

Step 3. Determine the particle-best (pbest) and the swarm-
best (sbest) of each individual swarm.

Step 4. Update the velocity and position of each particle in
each swarm according to (1) and (2).

Step 5. Allow the individual swarms to evolve independently
through𝑁 iterations (i.e., repeat Steps 2 through 4).

Single-Evolutionary Phase. The individual swarms exchange
information.

Step 6. Determine the global-best (gbest) by comparing the
swarm-best (sbest) of all the swarms. For minimization
problems, the gbest in a given iteration is given by the
following equation:

𝑔𝑏𝑒𝑠𝑡 = min (𝑠𝑏𝑒𝑠𝑡
1
, 𝑠𝑏𝑒𝑠𝑡

2
, 𝑠𝑏𝑒𝑠𝑡

3
, . . . , 𝑠𝑏𝑒𝑠𝑡

𝑘
) . (10)

Step 7. The individual swarms start interacting by using the
gbest as reference. Update the velocities of all the particles
according to the following equation:

V
𝑖𝑗 (𝑡) = 𝑤V𝑖𝑗 (𝑡 − 1) + 𝑐1𝑟1 (𝑝𝑖𝑗 (𝑡 − 1) − 𝑥𝑖𝑗 (𝑡 − 1))

+ 𝑐
2
𝑟
2
(𝑝
𝑠𝑗 (𝑡 − 1) − 𝑥𝑖𝑗 (𝑡 − 1))

+ 𝑐
3
𝑟
3
(𝑝
𝑔 (𝑡 − 1) − 𝑥𝑖𝑗 (𝑡 − 1)) ,

(11)

where 𝑥
𝑖𝑗
is the position of the 𝑖th particle in the 𝑗th swarm,

V
𝑖𝑗
is the velocity of the 𝑖th particle in the 𝑗th swarm, 𝑝

𝑖𝑗

is the pbest of the 𝑖th particle in the 𝑗th swarm, 𝑝
𝑠𝑗
is the

sbest of the 𝑗th swarm, and 𝑝
𝑔
is the global-best of the entire

information-exchanging collection of sub-swarms. 𝑐
1
, 𝑐
2
, 𝑐
3

are the acceleration parameters, and 𝑟
1
, 𝑟
2
, 𝑟
3
are uniform

random numbers.



4 Applied Computational Intelligence and Soft Computing

Randomly generate K subswarms

Evolve
single PSO

N iterations?

Evolve 
single PSO

No

Yes

Global-best

Swarm-best

Update positions

Update velocities

M iterations?
Yes

No

· · ·

Figure 1: Parallel swarms oriented PSO algorithm flowchart.

0

2

4

6

8

10

12

Av
er

ag
e f

un
ct

io
n 

va
lu

e

Number of swarms (number of particles)
(Single) Rosenbrock
(Multi-) Rosenbrock

1 (1000) 2 (2000) 3 (3000) 4 (4000) 5 (5000) 6 (6000)

(a)

0

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e f

un
ct

io
n 

va
lu

e

Number of swarms (number of particles)
(Single) Rastrigin
(Multi-) Rastrigin

1 (1000) 2 (2000) 3 (3000) 4 (4000) 5 (5000) 6 (6000)

(b)

Figure 2: (a) 10D Rosenberg and (b) 10D Rastrigin.



Applied Computational Intelligence and Soft Computing 5

0

5

10

15

20

25

30

35

40

Av
er

ag
e f

un
ct

io
n 

va
lu

e

Number of swarms (number of particles)
(Single) Rosenbrock
(Multi-) Rosenbrock

1 (1000) 2 (2000) 3 (3000) 4 (4000) 5 (5000) 6 (6000)

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e f

un
ct

io
n 

va
lu

e

Number of swarms (number of particles)
(Single) Rastrigin
(Multi-) Rastrigin

1 (1000) 2 (2000) 3 (3000) 4 (4000) 5 (5000) 6 (6000)

(b)

Figure 3: (a) 20D Rosenbrock and (b) 20D Rastrigin.

0

10

20

30

40

50

60

70

80

Av
er

ag
e f

un
ct

io
n 

va
lu

e

Number of swarms (number of particles)
(Single) Rosenbrock
(Multi-) Rosenbrock

1 (1000) 2 (2000) 3 (3000) 4 (4000) 5 (5000) 6 (6000)

(a)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Av
er

ag
e f

un
ct

io
n 

va
lu

e

Number of swarms (number of particles)
(Single) Rastrigin
(Multi-) Rastrigin

1 (1000) 2 (2000) 3(3000) 4 (4000) 5 (5000) 6 (6000)

(b)

Figure 4: (a) 30D Rosenbrock and (b) 30D Rastrigin.



6 Applied Computational Intelligence and Soft Computing

Step 8. Update the positions of all the particles according to
the following equation:

𝑥
𝑖𝑗 (𝑡) = 𝑥𝑖𝑗 (𝑡 − 1) + V𝑖𝑗 (𝑡) . (12)

Step 9. Repeat Steps 2–8 through𝑀 iterations and output the
global-best.

5. Performance Comparison of Single and
Multiswarm PSO

The PSO-PSO algorithm is implemented in MATLAB on
a 24-core server with 256GB RAM. Each CPU core is
dedicated to the evolution of a single sub-swarm in themulti-
stage computational phase of the algorithm. The results are
presented in Figures 2, 3, and 4. For smaller dimensions, there
is no appreciable difference between the performance of the
ordinary (single) PSO and the multi-swarm PSO-PSO. This
can be seen in the optimization results of the 10-dimensional
Rosenbrock and Rastrigin functions (Figures 2(a) and 2(b)).
However, the superior performance of themulti-swarmPSO-
PSO approach is evident in higher dimensions. This can be
seen in the optimization of the 20- (Figures 3(a) and 3(b)) and
30-dimensional Rosenbrock andRastrigin functions (Figures
4(a) and 4(b)).

6. Conclusion

The particle swarm optimization (PSO) is increasingly
becoming widespread in a variety of applications as a reliable
and robust optimization algorithm. The attractive features of
this evolutionary algorithm is that it has very few control
parameters, is simple to program, and is rapidly converging.
The only drawback reported so far is that at times it gets
trapped in local optima. Many researchers have addressed
this issue but by introducing a number of new parameters in
the original PSO.This destroys the simplicity of the algorithm
and leads to an undesirable computational overhead. In this
study, we have proposed a variation of the algorithm called
parallel swarms oriented PSO (PSO-PSO) which consists
of a multi-stage and a single stage of evolution. The two
interweaved stages of evolution demonstrate better perfor-
mance on test functions, especially of higher dimensions.
The attractive feature of PSO-PSO version of the algorithm is
that it does not introduce any new parameters to improve its
convergence performance. The PSO-PSO strategy maintains
the simple and intuitive structure as well as the implemental
and computational advantages of the basic PSO. Thus, the
contribution of this study is the improvement of the perfor-
mance of the basic PSO without increasing the complexity of
the algorithm.

References

[1] J. Holland, Adaptation in Natural and Artificial Systems, MIT
Press, Cambridge, Mass, USA, 1992.

[2] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, October
1995.

[3] R. C. Eberhart and Y. Shi, “Comparing inertia weights and con-
striction factors in particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC ’00), pp. 84–
88, July 2000.

[4] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the Congress on
Evolutionary Computation (CEC ’01), pp. 94–100, San Francisco,
Cailf, USA, May 2001.

[5] R. C. Eberhart and Y. Shi, “Particle swarm optimization:
developments, applications and resources,” in Proceedings of the
Congress on Evolutionary Computation (CEC ’01), pp. 81–86,
May 2001.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 1–6, pp. 1942–1948, December 1995.

[7] J. Kennedy and R. Eberhart, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, October
1995.

[8] J. Kennedy and R. C. Eberhart, “Discrete binary version of the
particle swarm algorithm,” in Proceedings of the IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, pp. 4104–
4108, October 1997.

[9] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence,
Morgan Kaufmann, 2001.

[10] M. R. Alrashidi and M. E. El-Hawary, “A survey of particle
swarm optimization applications in power system operations,”
Electric Power Components and Systems, vol. 34, no. 12, pp. 1349–
1357, 2006.

[11] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm
optimization in wireless-sensor networks: a brief survey,” IEEE
Transactions on Systems, Man and Cybernetics Part C, vol. 41,
no. 2, pp. 262–267, 2011.

[12] L. Wang, J. Shen, and J. Yong, “A survey on bio-inspired algo-
rithms for web service composition,” in Proceedings of the
IEEE 16th International Conference on Computer Supported
Cooperative Work in Design (CSCWD ’12), pp. 569–574, 2012.

[13] F. van den Bergh andA. P. Engelbrecht, “A cooperative approach
to participle swam optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 8, no. 3, pp. 225–239, 2004.

[14] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Com-
prehensive learning particle swarm optimizer for global opti-
mization of multimodal functions,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[15] G. M. Chen, J. Y. Jia, and Q. Han, “Study on the strategy
of decreasing inertia weight in particle swarm optimization
algorithm,” Journal of Xi’an JiaotongUniversity, vol. 40, pp. 1039–
1042, 2006.

[16] Z.-S. Lu and Z.-R. Hou, “Particle swarm optimization with
adaptive mutation,” Acta Electronica Sinica, vol. 32, no. 3, pp.
416–420, 2004.

[17] F. Pan, X. Tu, J. Chen, and J. Fu, “A harmonious particle swarm
optimizer—HPSO,” Computer Engineering, vol. 31, no. 1, pp.
169–171, 2005.

[18] S. Pasupuleti and R. Battiti, “The gregarious particle swarm
optimizer—G-PSO,” in Proceedings of the 8th Annual Genetic
and Evolutionary Computation Conference (CEC ’06), pp. 67–74,
July 2006.

[19] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-
organizing hierarchical particle swarm optimizer with time-
varying acceleration coefficients,” IEEE Transactions on Evolu-
tionary Computation, vol. 8, no. 3, pp. 240–255, 2004.



Applied Computational Intelligence and Soft Computing 7

[20] J. F. Schutte and A. A. Groenwold, “A study of global optimiza-
tion using particle swarms,” Journal of Global Optimization, vol.
31, no. 1, pp. 93–108, 2005.

[21] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation, pp. 101–106, Seoul, Republic of Korea, May 2001.

[22] K. Tatsumi, T. Yukami, and T. Tanino, “Restarting multi-type
particle swarmoptimization using an adaptive selection of part-
icle type,” in Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (SMC ’09), pp. 923–928, October
2009.

[23] Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian, “On the
convergence analysis and parameter selection in particle swarm
optimization,” in Proceedings of the International Conference
on Machine Learning and Cybernetics, pp. 1802–1807, Zhejiang
University, Hangzhou, China, November 2003.

[24] L. P. Zhang, H. J. Yu, D. Z. Chen, and S. X. Hu, “Analysis and
improvement of particle swarm optimization algorithm,” Info-
rmation and Control, vol. 33, pp. 513–517, 2004.

[25] X. Zhang, Y. Du, G. Qin, and Z. Qin, “Adaptive particle swarm
algorithmwith dynamically changing inertia weight,” Journal of
Xi’an Jiaotong University, vol. 39, no. 10, pp. 1039–1042, 2005.

[26] T. M. Blackwell and J. Branke, “Multi-Swarm optimization in
dynamic environment,” in Lecture Notes in Computer Science,
vol. 3005, pp. 489–500, Springer, Berlin, Germany, 2004.

[27] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[28] K. Chen, T. Li, and T. Cao, “Tribe-PSO: a novel global opti-
mization algorithm and its application in molecular docking,”
Chemometrics and Intelligent Laboratory Systems, vol. 82, no. 1-
2, pp. 248–259, 2006.

[29] B. Niu, Y. Zhu, X. He, and H. Wu, “MCPSO: a multi-swarm
cooperative particle swarm optimizer,” Applied Mathematics
and Computation, vol. 185, no. 2, pp. 1050–1062, 2007.

[30] L.-Y. Wu, H. Sun, and M. Bai, “Particle swarm optimization
algorithm of two sub-swarms exchange based on different
evolvementmodel,” Journal of Nanchang Institute of Technology,
vol. 4, pp. 1–4, 2008.

[31] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation (CEC ’99), pp. 1945–1950, IEEE Service Center,
Piscataway, NJ, USA, 1999.

[32] J. Jie, W. Wang, C. Liu, and B. Hou, “Multi-swarm particle
swarm optimization based on mixed search behavior,” in Pro-
ceedings of the 5th IEEE Conference on Industrial Electronics and
Applications (ICIEA ’10), pp. 605–610, June 2010.

[33] X. Yang, J. Yuan, J. Yuan, and H. Mao, “A modified particle
swarm optimizer with dynamic adaptation,”AppliedMathemat-
ics and Computation, vol. 189, no. 2, pp. 1205–1213, 2007.

[34] M. Clerc, Particle Swarm Optimization, ISTE Publishing Com-
pany, London, UK, 2006.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


