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Malware detection done at the network infrastructure level is still an open research problem ,considering the evolution of malwares
and high detection accuracy needed to detect these threats. Content based classification techniques have been proven capable of
detecting malware without matching for malware signatures. However, the performance of the classification techniques depends
on observed training samples. In this paper, a new detection method that incorporates Snort malware signatures into Naive Bayes
model training is proposed. Through experimental work, we prove that the proposed work results in low features search space for
effective detection at the packet level. This paper also demonstrates the viability of detecting malware at the stateless level (using
packets) as well as at the stateful level (using TCP byte stream). The result shows that it is feasible to detect malware at the stateless
level with similar accuracy to the stateful level, thus requiring minimal resource for implementation on middleboxes. Stateless
detection can give a better protection to end users by detecting malware on middleboxes without having to reconstruct stateful
sessions and before malwares reach the end users.

1. Introduction

Content basedmalware detection can be done using antivirus
solution at the user’s end station. This requires the codes (as
packets payloads) to be fully constructed into files at the end
station for malware detection. Even if partial codes could
be detected by the antivirus, the codes have already reached
the end station. Detection at this level has its limitations
since complete observability; that is, reassembly and stateful
detection on the Internet byte streams are required [1]. As net-
work speed increases, reassembly inside network nodes, even
on network boundaries, requires increasing computational
resources in terms of computation overhead [2]. Therefore,
stateless detection is a better alternative to detect malware
whilst the codes are in transit between the source (router or
gateway) and destination to relax stateful restrictions such
as packets buffering and reassembling. This provides early
detection and the possibility of not having to construct the
whole flow for malware detection.

The use of intrusion detection system (IDS) [3] and intru-
sion prevention system (IPS) [4] is a popular retrofit strategy
to complement the limitations of malware detection at end

stations. However, the evolution of today’s modern malware
makes these signature based methods ineffective in detect-
ing fast spreading sophisticated malware (e.g., polymorphic
malware [2]). Machine learning technique has the potential
to successfully detect zero-day malware [5, 6].This technique
commonly needs feature extraction, feature selection, and
classification. Instead of using plain text data, n-gram is
commonly used [5, 6] to represent informative features. This
n-gram technique has the ability to capture implicit features
of the malware contents that are difficult to detect explicitly.
However, the issues when using n-gram features are compu-
tational overhead and feature search space. Therefore, newer
approaches are needed to overcome the stated shortcomings.

This paper proposes the incorporation of Naive Bayes
training with Snort signatures [7] to detect malware at the
packet level. The signatures are applied to the machine
learning technique to potentially complement the protection
of network using exact pattern matching techniques such
as IDS, IPS, and the method proposed by Varghese et al.
[1]. Comparison with the detection at the stateful level is
also included to assess the effectiveness of the proposed
work. Based on offline traffic, the measurement of detection
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accuracy at the stateless level is around 2% lower compared
to the stateful level. This finding shows the viability of the
proposed approach to detect malware in transit.

2. Related Works

Malware strings can be detected at the network infrastructure
level as well at the host level. Network security operators
today have deployed security middleboxes such as IDS and
IPS to protect networks against incoming and outgoing
malware traffic [3, 4]. IDS has been deployed by almost every
major organization motivated by the security awareness. IDS
such as open source tool Snort [7] usually associates detection
with alerts to the administrator. However, the emergence of
fast-moving attacks (such as worms) can cause considerable
damage while the IDS is raising an alert, well before the
human administrators can respond. This caused the IDS
market to morph into the so-called IPS market. IPS allows
necessary action to drop any packet that matches any rule,
while IDS can simply tap the data to generate alerts.

The problem with IDS/IPS is the evasion attacks [8].
Attackers change the contents of the attacks using fragmented
packets scenario which can bypass the pattern matching
process. This problem is studied and tackled by Varghese
et al. [1]. The work suggested a new detection scheme
called Split-Detect to complement the traditional IDS/IPS
in detecting evasion attacks successfully. The basic idea is
to provide a fast detection by splitting IDS/IPS signatures
into signature substrings, using exact string match and two
processing paths, fast path and slow path. The signature
pieces are used to detect the presence of attacks in packets
payload in the fast path. If the packets are not detected, the
fast path processor releases the packets as benign packets.
If the packets contain plausible evidence (e.g., contain a
signature piece), the suspicious packets are diverted to the
slow path processor for further action either to forward the
packets to the receiver or drop the packets and reset the
TCP connection. The Split-Detect scheme has been proven
capable of detecting all byte streams evasions. However, the
requirement of two processor paths may seem too high in
terms of the operational cost on middleboxes.

Content based classification by [5, 6] was host based
malware detection where they observed byte n-gram of
malware executables at end stations. Classification based on
contents especially when using n-gram features requires huge
training features which need large search space and high
computational overhead [9]. High computational overhead is
not appropriate for network based detection especially when
the model needs to be retrained over time to reflect the
changing trends of traffic in a network. This paper proposes
the use of n-gram and machine learning techniques to detect
unknownmalware.The reasons of using byte n-grams are the
following. First, n-gram has the capability to extract malware
bytes implicitly fromnetwork traffic in formof packets or byte
stream. Therefore, the possibility to detect malware contents
in unexpected patterns is higher than in plain text patterns.
Second, detection on byte n-grams allows the detection of
malware at the network level (e.g., middleboxes) instead of
at the host level only. The detection can be done on the fly

by extracting malware packet payload whilst the packet is
transmitted in the network.

Based on the ideas of splitting signatures into pieces to
detect attacks by Varghese et al. [1], similar idea is applied
in this paper. The new approach proposed here is for Snort
signatures [7] to be extracted as signatures n-gram (fixed
length and overlapping n-gram). The main reason of using
these signatures is to limit features to be trained to address
the issue of computational overhead practically. Second, the
use of known malware signatures as the features to generate
model will likely detect malware more frequently. Therefore,
the use of signatures n-gram and aggregation (classification)
technique potentially does not require separate processing
paths (fast and slow paths) and is expected to be able to detect
zero-day malware.

3. Snort Signatures Assisted
Classification Methodology

3.1. Deployment of GenerativeModel. Data transmission (e.g.,
TCP traffic) occurs between hosts after the connection is
established through a three-way handshake process [10].
TCP packets that belong to the same flow (e.g., a flow p)
during the transmission between the two machines will be
reassembled to the original flow at the destination machine.
The stateful data are observed as a complete byte stream (e.g.,
packets payload after being reassembled at the destination
host), whilst the stateless data as individual packets payload
(e.g., packets payload before reassembly) [10]. The difference
of classification process of payload at the stateful and the
stateless level is illustrated in Figure 1.

At the stateful level, complete byte streams are classified
either as malware or normal as illustrated in Figure 1(a). For
example, a flow that contains payload with the size of 2 Kb
is observed by generative model to determine whether the
flow is malware or normal. In contrast, at the stateless level,
the same payload remains as individual packets payload as
illustrated in Figure 1(b). The payloads with the size of 1 Kb,
500 b, and 500 b are carried by separate packet and classified
independently by the generative model.

Compared to the stateful level, stateless detection is
different in the sense that all packets are partially classified
whilst the packets are transmitted through the network. In
other words, stateless detection is done without the need for
packets reassembly.

Figure 2 shows the top level learning process incorpo-
rating Snort signatures [7] to generate the model (Naive
Bayes).The generativemodel is generated after learning some
samples traffic (training set). In this supervised learning
approach, samples traffic is correctly labeled and kept in
their respective classes. The samples are preprocessed for
each class by only extracting the payload (excluding the
header information) to n-gram features. For example, a
payload sequence, of dd 25 64 fe 69 d3 a3 1f, generates the
corresponding 4 grams of dd2564fe, 2564fe69, and 64fe69d3
as illustrated in Figure 3. We set n-gram of size four since our
study in [5, 6] observed this number as the optimum feature
size for text classification. The extraction process produces
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Figure 3: Extract 4-gram features from traffic payload in training
set.

million numbers of features (e.g., for n size of 4, the number
of features is 24∗8 [11]).

Feature selection selects the most informative features to
be trained. In this paper, the number of features is pruned
based on the Snort signatures.The original signatures consist
of variable length of signature string. The same feature
extraction process is applied to the signatures strings to
produce 4-gram signatures. Signatures strings shorter than
4 grams are eliminated. After eliminating duplicate 4 grams,
only 91,127 4-gram signatures are used to assist the feature
selection as shown in Figure 2. Figure 4 shows the process of
generating the generative model with the assistance of Snort
signatures. Only 4-gram features that are subset to the Snort
signatures are selected. Nevertheless, certain features out of
the 91,127 features can be further reduced using other feature
selection techniques such as information gain (IG) [12]. IG is
a statistical measure and it is computed separately for each
feature. IG value is always nonnegative, and higher scores
indicate more discriminative features. It ranks the features
that are common in both malware and normal class lower
and ranks the features effective discriminators for a class
higher. Although IG computation time is not negligible, the
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Figure 4: Training dataset based on selected features (subset of
Snort signatures) with high IG.

IG feature selection does not have to be in real time.The final
selected features (shown by the shaded color) are trained to
generate Naive Bayes model. Since the overlapping n-gram is
used, the occurrence of these n-gram features is considered
as independent.

3.2. Classification of Stateless Payload Using Naive Bayes with
Snort Signatures. Our previous work in [13] has shown that
Naive Bayes has a processing time and accuracy tradeoff
compared to other classifiers, that is, J48 and SMO. Since the
future aim is to deploy the malware detection as hardware
implementation, Naive Bayes model is a good candidate to
be applied to our proposed method in this work.

Using the generated Naive Bayes model, payloads at the
stateful and stateless level are classified to either normal
or attack classes (see Figure 1). Based on the Naive Bayes
theorem, the a posteriori probability of a flow or packet 𝑑
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𝑃(𝑐
𝑗
) is the a priori probability of a flow or packet being in

class 𝑐
𝑗
where 𝑗 ∈ {0, 1} for a 2-class classification.

From (1), we can write the a posteriori probability of a
flow occurring in class 𝑐
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in the training set. By assuming feature independence, the
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𝑗
, 𝑃(𝑥 | 𝑐

𝑗
),

is given by

𝑃 (𝑥 | 𝑐
𝑗
) =

V

∏

𝑖=1

𝑃 (𝑥
𝑖
| 𝑐
𝑗
) . (3)

Basically, at this level, the detection is done only after all the
transmitted packets have arrived at the destination host and
have been reconstructed into the original flow.

At the stateless level, features are selected uniformly
in each packet. A flow that consists of w packets can be
approximated by w feature arrays as follows:
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2
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(4)

Equation (4) represents 𝑤 feature arrays, each from an
individual packet. The feature array for a packet, 𝑥

𝑖
, is
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where |𝑥
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events 𝑥

𝑖
occurring in class, 𝑐

𝑗
, 𝑃(𝑥
𝑖
| 𝑐
𝑗
), is given by

𝑃 (𝑥
𝑖
| 𝑐
𝑗
) =

|𝑥𝑖|

∏

𝑘=1

𝑃 (𝑥
𝑖,𝑘
| 𝑐
𝑗
) . (6)

Inserting (6) into (2), we can calculate the probability score
for each packet and classify the packet either as malware
or normal. These classified packets that belong to a flow
are reassembled to the original flow at the destination with
the class of the flow being determined based on the packets
classes. For example, a flow contains classified packets 𝑝1, 𝑝2,
and 𝑝3. When at least one of these packets is an attack packet,
then the flow is determined as an attack.

The decision making process that is done by the model
for classifying a flow or packet is described in Algorithm 1.

In Algorithm 1, the classification process is divided into a
few parts. The first part (lines 1 to 6) describes the extraction
of important information such as features frequency and
probability from the Naive Bayes model. The second part
(lines 7 to 9) describes the extraction of n-gram features
in each testing flow. The last part (lines 10 to 21) describes
the overall classification steps including matching n-gram
features between the model and the testing flow, determining
the testing flow probability value, and determining the testing
flow class.

(1) for all selected features do
(2) features, fre norm, pb norm, fre att,

pb att => splitFlow
(3) push (feature) => field1
(4) push (pb norm) => field3
(5) push (pb att) => field5
(6) end for
(7) for each captured flow do
(8) extract payload => allFlow
(9) end for
(10) for allFlow rows do
(11) split row
(12) if test feature eachrow = field1 then
(13) accumulate differ field5, field3
(14) end if
(15) count Probability (Pb) using (2)
(16) if Pb > threshold then
(17) flow =>malware
(18) else
(19) flow => normal
(20) end if
(21) end for

Algorithm 1: Flow/packet classification.

4. Experimental Design

4.1. Dataset Collection. Since this work uses 2-class machine
learning classification, both normal andmalware datasets are
needed. To obtain a reliable generative model, malware and
normal traffic should be taken from the same place at the
same time to sample traffic with the same trend. Here, the
traffic is captured from our campus network in the way as
shown in Figure 5(a). This section explains the method used
to capture the training and classification datasets. Tools such
as Snort [7] and Tcpdump [15] are used in the capturing
process. Snort is applied to sniff the malicious traffic that
propagates in the academic network, whilst Tcpdump is
executed to capture the background traffic to extract the
nonmalware traffic.

Figure 5(b) shows the process to sample the malware
and nonmalware traffic. When a packet matches Snort’s
signatures, Snort will produce an alert. This alert will trigger
Tcpdump to store packets just before and after the time (e.g.,
𝑡
𝑖
) of the alert. When no alert comes, no action will be taken

until another alert is triggered at another time (e.g., 𝑡
𝑖+1

), in
which the same action will be taken. By doing so, both traffic
classes are collected at the same time and place.

4.2. Evaluation Criteria. For the purpose of evaluating the
results obtained from the classification, the following metrics
are described in Table 1:

𝑛
𝑤→𝑤

: number of correctly identified malware payload;
𝑛
𝑙→𝑤

: number of wrongly identified normal payload;
𝑛
𝑙→ 𝑙

: number of correctly identified normal payload;
𝑛
𝑤→ 𝑙

: number of wrongly identified malware payload.



Applied Computational Intelligence and Soft Computing 5

Snort

Tcpdump

Academic
network

Linux
server

Malware
set

Normal
set

Training set

(a) Capturing traffic from campus network

Time

. . . Snort and Tcpdump continue running

Alerts captured
by Snort

Period i

Packet
traces

Period i + 1

Alert i at ti Alert i + 1 at ti+1

i+1

Malware
set

Normal
set

Stored to

Stored to

Ti T

(b) Sampling traffic

Figure 5: Dataset preparation.

Table 1: Verification criteria.
Criteria Symbol Expression

Recall Rec
𝑛
𝑤→𝑤

𝑛
𝑤→𝑤
+ 𝑛
𝑤→𝑙

False positive FP
𝑛
𝑙→𝑤

𝑛
𝑙→𝑤
+ 𝑛
𝑙→ 𝑙

False negative FN
𝑛
𝑤→ 𝑙

𝑛
𝑤→𝑤
+ 𝑛
𝑤→𝑙

Precision Pre
𝑛
𝑤→𝑤

𝑛
𝑙→𝑤
+ 𝑛
𝑤→𝑤

Since the focus of this work is to detect malware at
the stateless level, recall and false negative are the most
important measurements from the classification. Security
aspect is concerned to has higher priority and should not be
compromised. False positive and precision reflect the number
of normal traffic classified as malware. These measurements
also play an important role in our verification since we need
to reduce the number of normal packets that were wrongly
classified as attacks. End users may feel unhappy when
their valid traffic (packets), wrongly classified as malware,
is blocked by the security devices although they browsed a
legitimate website without any malware threats. Comparable
ratio of thesemeasurements between the stateless and stateful
levels can show the feasibility of detection inside network.The
simulation also produces log file that contains IP addresses
and the classification class result of classified traffic.

4.3. Experimental Setup. Since detection accuracy was the
main focus and not the actual detection time, all experiments
in this paper were done offline using existing machine
learning algorithm (Naive Bayes) by improving the method
of selecting features (using Snort signatures). This work is

Table 2: Number of training and testing set used in the experiment.

Dataset T1 T2
Stateful Stateful Stateless

Malware 693 flows 336 flows 549 packets
Normal 26798 flows 16965 flows 34762 packets

to prove the concept that assisted machine learning can be
applied to the stateless malware detection. Detection at the
stateful level is used as the benchmark. Figure 6 shows the
entire malware detection method proposed in this paper.
Payloads from the previous time (from offline traffic for slot
𝑡
𝑖
) are trained to generatemodel.Themodel is used to classify

incoming payloads (from offline traffic for slot 𝑡
𝑖+1

) into their
classes.

Table 2 presents the datasets used to analyze the detection
at the stateful and stateless level. Based on Figure 6, T1 is
used as the training set to generate Naive Bayes model with
the assistance of Snort signatures. T1 remains in the form
of complete flows (reconstructed flows), since the reliability
of the generated model is considered. T2 is used as the
testing set which consists of two forms: complete flows and
corresponding chunk of packets. Let us assume that L3 is the
stateless level whilst L4 is the stateful level. The evaluation
begins by reviewing the payloads in the classification process
for both levels using Naive Bayes model. The differences in
accuracy when detecting partial payload at L3 and complete
payload at L4 are observed.

5. Results and Discussion

5.1. Stateful versus Stateless Classifications. The simulation
produces the false rate, precision, recall, and a log file that
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Table 3: Detection accuracy for the stateless level versus stateful
level.

Level FN FP Pre Rec
Stateless 0.042 0.091 0.173 0.958
Stateful 0.042 0.070 0.213 0.958

contains the list of traffic flows/packets with information for-
mat as addresses><indexnumber><classtype><classresult>.
To obtain comparable result of detection for L3 and L4,
the measurement of false negative (FN), false positive (FP),
precision, and recall is done based on the number of flows and
not the number of packets. Therefore, for L3, the classified
packets must be reassembled to the original flow before
calculating those values.

Table 3 presents the classification result for the detection
at L3 and L4. Overall, the detection accuracy is found similar
(accuracy difference of around 2%) at L3 and L4. FP is higher
for L3, whilst FN does not change for both abstraction levels.
The results show that normal traffic is misclassified more
frequently at L3.

5.2. Analysis of Malware Trojan Packets and Normal HTTP
Packets. This section describes and explains the results from
the classification between L4 and L3. Figures 7(a) and 7(b)
show the L3 and L4 malware detection results. The IP and
port addresses of malware and normal traffic are listed with
their classes. Verification is done with labelled traffic. For L3,
the classified packets are reassembled to the original flows
before determiningwhether the flows aremalware or normal.
If one or more packets that belong to the flow are correctly
classified asmalware, then the flowwill be defined asmalware
flow.This is based on the signature based method when most
antivirus programs only look for a partial match in files when
scanning [16].

For example, a Trojan flow with source address
of 161:139:220:91 62412 and destination address of
66:220:151:77 80 contains 2 packets as shown in Figure 7(a).
Both of the packets are correctly classified as malware

and, thus, the flow is classified as malware. Otherwise, if
all the packets that belong to the flow are misclassified as
normal, then the flow will be misclassified as normal. Similar
approach is used to determine the class for normal traffic.
If one of the packets is misclassified as malware packet,
then the flow is misclassified as malware flow. For example,
normal HTTP flowwith source address of 161:139:21:101 8080
and destination address of 125:78:192:180 50677 contains 4
packets as shown in Figure 7(b). Three packets are correctly
classified as normal except one packet from the flow is
misclassified as malware and, thus, the flow is misclassified
as a malware flow. Afterwards, the class of flows at L3 is
compared with the class of the same flows at L4.

Based on the available dataset, it is observed that normal
traffic contains longer payload (e.g., 10 Kb) compared to
malware traffic (1 Kb).Therefore, within themaximum trans-
mission unit (MTU) for the Ethernet, that is, 1.5 Kb [17], the
normal payload is distributed and carried by a few packets,
whilst the malware payload is carried by a single packet. For
L3, each packet is detected based onpartial payload compared
to the complete payload for L4. The misclassification of the
normal packets is caused by the lack of information that
can be observed in the partial payload which contributes
to the lower detection accuracy for L3 as compared for L4.
Nevertheless, for the malware packets, the detection result
remains similar for L3 and L4 since the malware payload is
typically shorter (e.g., Slammer worm) to ensure faster time
to spread [18]. Thus, the malware payload remains in a single
packet whether for L3 or L4.

Based on this finding, there is a potential to apply content
based detection on middlebox. The use of Snort signatures
n-gram helped the generative model to immediately and
accurately detect malware at the packet level without the
need for the two-path processing, as done by Varghese
et al. [1]. The detected malware packets can be dropped
earlier while in transit.Therefore, packet buffering and packet
reassembling are not required. This technique can reduce
the overall detection time. Thus, detection at the stateless
level using machine learning technique seems feasible to be
implemented as a way to control the malware in the network.
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Stateful Stateless

Packets are 
classified as 
attack flow

Packets

FlowsFlows

Prelabeled 
normal flows with 

number ‘‘1’’

Class result 
from the 
classifier

Stateless

161.139.21.101-8080 125.167.131.39-2797.1.txt⇒ Normal
161.139.21.101-8080 125.27.174.104-26665.1.txt⇒ Normal
161.139.21.101-8080 125.78.192.180-50677.1.txt⇒ Normal
161.139.21.101-8080 125.87.2.246-2291.1.txt⇒ Normal
161.139.21.101-8080 14.42.180.146-1256.1.txt⇒ Normal

161.139.21.101-8080 125.167.131.39-2797.1.txt⇒ Normal
161.139.21.101-8080 125.27.174.104-26665.1.txt⇒ Normal
161.139.21.101-8080 125.78.192.180-50677.1.txt⇒ Attack
161.139.21.101-8080 125.87.2.246-2291.1.txt⇒ Normal
161.139.21.101-8080 14.42.180.146-1256.1.txt⇒ Normal

161.139.21.101-8080 125.167.131.39-2797–14572.1.txt⇒ Normal
161.139.21.101-8080 125.27.174.104-26665–18665.1.txt⇒ Normal
161.139.21.101-8080 125.78.192.180-50677–34095.1.txt⇒ Normal
161.139.21.101-8080 125.78.192.180-50677–34097.1.txt⇒ Attack
161.139.21.101-8080 125.78.192.180-50677–34098.1.txt⇒ Normal
161.139.21.101-8080 125.78.192.180-50677–34099.1.txt⇒ Normal
161.139.21.101-8080 125.87.2.246-2291–26402.1.txt⇒ Normal

(b) Determine class of normal HTTP payloads at the stateful and stateless level

Figure 7: Determination of class for payload at stateful and stateless level.
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6. Conclusion

Malware detection is observed best at the byte streams
level mainly due to the limited payload information seen
at the packet level. However, this will not allow malware
detection in transit. The finding of the work has proven
that detection accuracy at the packet level is comparable
to the full byte stream level. This paper demonstrated that
malware detection at the stateless level (partial payload)
is feasible to be implemented. Malware detection at the
stateless level promises better malware detection, possibly
on security middleboxes inside the network since malware
detection at the lower abstraction can relax the stateful
implementation restriction.Moreover, stateless detection can
further increase the effectiveness of malware control such as
increasing detection speed (e.g., detect malware near to the
sources such as routers and gateways). Preventing the spread
of malware at the early stage can prevent outbreaks at the end
systems.

Since the proposed approach in this paper is still at the
exploratory stage, the testing was done offline and not in real
time. In the future, the viability of the approach on a real
network especially for a fast speed network can be assessed.
We also plan to further investigate malware detection at the
packet level and how it performs under incomplete features,
fragmentation, insertion, and evasion attacks.
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