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A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational
intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions,
including bipolar fuzzy graph structure (BFGS), strong bipolar fuzzy graph structure, bipolar fuzzy𝑁

𝑖
-cycle, bipolar fuzzy𝑁

𝑖
-tree,

bipolar fuzzy𝑁
𝑖
-cut vertex, and bipolar fuzzy𝑁

𝑖
-bridge, and illustrate these notions by several examples. We study 𝜙-complement,

self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate
some of their interesting properties.

1. Introduction

Concepts of graph theory have applications in many areas of
computer science including data mining, image segmenta-
tion, clustering, image capturing, and networking. A graph
structure, introduced by Sampathkumar [1], is a generaliza-
tion of undirected graph which is quite useful in studying
some structures including graphs, signed graphs, and graphs
in which every edge is labeled or colored. A graph structure
helps to study the various relations and the corresponding
edges simultaneously.

A fuzzy set, introduced by Zadeh [2], gives the degree of
membership of an object in a given set. Zhang [3] initiated
the concept of a bipolar fuzzy set as a generalization of a
fuzzy set. A bipolar fuzzy set is an extension of fuzzy set
whose membership degree range is [−1, 1]. In a bipolar fuzzy
set, the membership degree 0 of an element means that
the element is irrelevant to the corresponding property, the
membership degree (0, 1] of an element indicates that the
element somewhat satisfies the property, and themembership
degree [−1, 0) of an element indicates that the element
somewhat satisfies the implicit counterproperty. Kauffman
defined in [4] a fuzzy graph. Rosenfeld [5] described the
structure of fuzzy graphs obtaining analogs of several graph
theoretical concepts. Bhattacharya [6] gave some remarks
on fuzzy graphs. Several concepts on fuzzy graphs were
introduced by Mordeson et al. [7]. Dinesh [8] introduced the

notion of a fuzzy graph structure and discussed some related
properties. Akram et al. [9–13] have introduced bipolar fuzzy
graphs, regular bipolar fuzzy graphs, irregular bipolar fuzzy
graphs, antipodal bipolar fuzzy graphs, and bipolar fuzzy
hypergraphs. In this paper, we introduce the certain notions
including bipolar fuzzy graph structure (BFGS), strong bipo-
lar fuzzy graph structure, bipolar fuzzy 𝑁

𝑖
-cycle, bipolar

fuzzy 𝑁
𝑖
-tree, bipolar fuzzy 𝑁

𝑖
-cut vertex, and bipolar fuzzy

𝑁
𝑖
-bridge and illustrate these notions by several examples.

We present 𝜙-complement, self-complement, strong self-
complement, and totally strong self-complement in bipolar
fuzzy graph structures, and we investigate some of their
interesting properties.

We have used standard definitions and terminologies in
this paper. For other notations, terminologies, and applica-
tions not mentioned in the paper, the readers are referred to
[1, 5, 7, 14–18].

2. Preliminaries

In this section, we review some definitions that are necessary
for this paper.

A graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
) consists of a

nonempty set 𝑈 together with relations 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
on 𝑈,

which are mutually disjoint such that each 𝐸
𝑖
is irreflexive

and symmetric. If (𝑢, V) ∈ 𝐸
𝑖
for some 𝑖, 1 ≤ 𝑖 ≤ 𝑘,

we call it an 𝐸
𝑖
-edge and write it as “𝑢V.” A graph structure
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𝐺
∗
= (𝑈, 𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑘
) is complete, if (i) each edge 𝐸

𝑖
, 1 ≤

𝑖 ≤ 𝑘, appears at least once in 𝐺∗; (ii) between each pair of
vertices 𝑢V in 𝑈, 𝑢V is an 𝐸

𝑖
-edge for some 𝑖, 1 ≤ 𝑖 ≤ 𝑘. A

graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
) is connected, if the

underlying graph is connected. In a graph structure, 𝐸
𝑖
-path

between two vertices 𝑢 and V, is the path which consists of
only 𝐸

𝑖
-edges for some 𝑖, and similarly, 𝐸

𝑖
-cycle is the cycle

which consists of only 𝐸
𝑖
-edges for some 𝑖. A graph structure

is a tree if it is connected and contains no cycle or equivalently
the underlying graph is a tree.𝐺∗ is an 𝐸

𝑖
-tree, if the subgraph

structure induced by 𝐸
𝑖
-edges is a tree. Similarly, 𝐺∗ is an

𝐸
1
𝐸
2
⋅ ⋅ ⋅ 𝐸
𝑗
-tree, if 𝐺∗ is an 𝐸

𝑖
-tree for each 𝑗, 1 ≤ 𝑗 ≤ 𝑘.

A graph structure is an 𝐸
𝑖
-forest, if the subgraph structure

induced by 𝐸
𝑖
-edges is a forest, that is, if it has no 𝐸

𝑖
-cycles.

Let 𝑆 ⊆ 𝑈; then the subgraph structure ⟨𝑆⟩ induced by 𝑆 has
vertex set 𝑆, where two vertices 𝑢 and V in ⟨𝑆⟩ are joined by
an 𝐸
𝑖
-edge, 1 ≤ 𝑖 ≤ 𝑘, if and only if, they are joined by

an 𝐸
𝑖
-edge in 𝐺

∗. For some 𝑖, 1 ≤ 𝑖 ≤ 𝑘, the 𝐸
𝑖
-subgraph

induced by 𝑆 is denoted by 𝐸
𝑖
-⟨𝑆⟩. It has only those 𝐸

𝑖
-edges

of 𝐺∗, joining vertices in 𝑆. If 𝑇 is a subset of edge set in
𝐺
∗, then subgraph structure ⟨𝑇⟩ induced by 𝑇 has the vertex

set, “the end vertices in 𝑇”, whose edges are those in 𝑇. Let
𝐺
∗
= (𝑈
1
, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑚
) and 𝐻∗ = (𝑈

2
, 𝐸
󸀠

1
, 𝐸
󸀠

2
, . . . , 𝐸

󸀠

𝑛
) be

graph structures.Then𝐺∗ and𝐻∗ are isomorphic, if (i)𝑚 = 𝑛,
(ii) there exist a bijection 𝑓 : 𝑈

1
→ 𝑈

2
and a bijection

𝜙 : {𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
} → {𝐸

󸀠

1
, 𝐸
󸀠

2
, . . . , 𝐸

󸀠

𝑛
}, say 𝐸

𝑖
→ 𝐸

󸀠

𝑗
,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, such that for all 𝑢, V ∈ 𝑈
1
, 𝑢V ∈ 𝐸

𝑖
implies

that 𝑓(𝑢)𝑓(V) ∈ 𝐸󸀠
𝑗
.

Two graph structures 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
) and 𝐻∗ =

(𝑈, 𝐸
󸀠

1
, 𝐸
󸀠

2
, . . . , 𝐸

󸀠

𝑘
), on the same vertex set 𝑈, are identical, if

there exists a bijection𝑓 : 𝑈 → 𝑈, such that for all 𝑢 and V in
𝑈, 𝑢V is an 𝐸

𝑖
-edge in 𝐺∗, then 𝑓(𝑢)𝑓(V) is an 𝐸󸀠

𝑖
-edge in𝐻∗,

where 1 ≤ 𝑖 ≤ 𝑘 and 𝐸
𝑖
≃ 𝐸
󸀠

𝑖
∀𝑖. Let 𝜙 be a permutation on

{𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
}.Then the 𝜙-cyclic complement of𝐺∗, denoted

by (𝐺∗)𝜙𝑐, is obtained by replacing 𝐸
𝑖
by 𝜙(𝐸

𝑖
), 1 ≤ 𝑖 ≤ 𝑘.

Let 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
) be a graph structure and 𝜙 a

permutation on {𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
}; then

(i) 𝐺∗ is 𝜙-self complementary, if 𝐺∗ is isomorphic to
(𝐺
∗
)
𝜙𝑐; the 𝜙-cyclic complement of 𝐺∗ and 𝐺∗ is self-

complement, if 𝜙 ̸= identity permutation.
(ii) 𝐺∗ is strong 𝜙-self complementary, if 𝐺∗ is identical to

(𝐺
∗
)
𝜙𝑐; the 𝜙-complement of 𝐺∗ and 𝐺∗ is strong self-

complement, if 𝜙 ̸= identity permutation.

Definition 1 (see [2]). A fuzzy subset 𝜇 on a set 𝑋 is a map
𝜇 : 𝑋 → [0, 1]. A fuzzy binary relation on𝑋 is a fuzzy subset
𝜇 on𝑋×𝑋. By a fuzzy relationwemean a fuzzy binary relation
given by 𝜇 : 𝑋 × 𝑋 → [0, 1].

Definition 2 (see [8]). Let 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
) be a

graph structure and let ], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
be the fuzzy subsets

of 𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
, respectively, such that

0 ≤ 𝜌
𝑖
(𝑥𝑦) ≤ 𝜇 (𝑥) ∧ 𝜇 (𝑦)

∀𝑥, 𝑦 ∈ 𝑈, 𝑖 = 1, 2, . . . , 𝑘.

(1)

Then 𝐺 = (], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
) is a fuzzy graph structure of 𝐺∗.

Definition 3 (see [8]). Let 𝐺 = (], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
) be a fuzzy

graph structure of a graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
).

Then 𝐹 = (], 𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑘
) is a partial fuzzy spanning

subgraph structure of 𝐺 if 𝜏
𝑖
⊆ 𝜌
𝑖
for 𝑖 = 1, 2, . . . , 𝑘.

Definition 4 (see [8]). Let 𝐺∗ be a graph structure and let 𝐺
be a fuzzy graph structure of 𝐺∗. If 𝑥𝑦 ∈ supp(𝜌

𝑖
), then “𝑥𝑦”

is said to be a 𝜌
𝑖
-edge of 𝐺.

Definition 5 (see [8]). The strength of a 𝜌
𝑖
-path 𝑥

0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑛
of

a fuzzy graph structure 𝐺 is⋀𝑛
𝑗=1
𝜌
𝑖
(𝑥
𝑗−1
𝑥
𝑗
) for 𝑖 = 1, 2, . . . , 𝑘.

Definition 6 (see [8]). In a fuzzy graph structure 𝐺, 𝜌2
𝑖
(𝑥𝑦) =

𝜌
𝑖
∘ 𝜌
𝑖
(𝑥𝑦) = ⋁

𝑧
{𝜌
𝑖
(𝑥𝑧) ∧ 𝜌

𝑖
(𝑧𝑦)}, 𝜌𝑗

𝑖
(𝑥𝑦) = (𝜌

𝑗−1

𝑖
∘ 𝜌
𝑖
)(𝑥𝑦) =

⋁
𝑧
{𝜌
𝑗−1

𝑖
(𝑥𝑧) ∧ 𝜌

𝑖
(𝑧𝑦)}, 𝑗 = 2, 3, . . . , 𝑚, for any 𝑚 ≥ 2. Also

𝜌
∞

𝑖
(𝑥𝑦) = ⋁{𝜌

𝑗

𝑖
(𝑥𝑦), 𝑗 = 1, 2, . . .}.

Definition 7 (see [8]). Let 𝑥𝑦 be a 𝜌
𝑖
-edge of 𝐺 =

(], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑛
). Let (], 𝜌󸀠

1
, 𝜌
󸀠

2
, . . . , 𝜌

󸀠

𝑛
) be a partial fuzzy

spanning subgraph structure obtained by deleting “𝑥𝑦” with
𝜌
󸀠

𝑖
(𝑥𝑦) = 0 and 𝜌󸀠

𝑖
(𝑥
1
𝑦
1
) = 𝜌
𝑖
(𝑥
1
𝑦
1
) ∀𝜌
𝑖
-edges (𝑥

1
𝑦
1
) other

than (𝑥, 𝑦). If 𝜌∞
𝑖
(𝑢V) > 𝜌󸀠∞

𝑖
(𝑢V) for some 𝑢V ∈ supp(𝜌

𝑖
), then

𝑥𝑦 is a 𝜌
𝑖
-bridge.

Definition 8 (see [8]). Let𝐺󸀠 = (], 𝜌󸀠
1
, 𝜌
󸀠

2
, . . . , 𝜌

󸀠

𝑛
) be the partial

fuzzy subgraph structure obtained by deleting vertex 𝑤 of 𝐺,
that is, ]󸀠(𝑤) = 0 and ]󸀠(V) = ](V) ∀V ̸= 𝑤, 𝜌

󸀠

𝑖
(V𝑤) = 0 ∀V ∈

𝑈𝑟 and 𝜌󸀠
𝑖
(𝑢V) = 𝜌

𝑖
(𝑢V) ∀𝑢V ̸= 𝑤V, 𝑖 = 1, 2, . . . , 𝑘. Then a

vertex 𝑤 of 𝐺 is a 𝜌
𝑖
-cut vertex if 𝜌∞

𝑖
(𝑢V) > 𝜌󸀠∞

𝑖
(𝑢V) for some

𝑢, V with 𝑢, V ̸= 𝑤.

Definition 9 (see [8]). 𝐺 = (], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
) is a 𝜌

𝑖
-cycle if

and only if (supp(]), supp(𝜌
1
), supp(𝜌

2
), . . . , supp(𝜌

𝑘
)) is a𝐸

𝑖
-

cycle.

Definition 10 (see [8]). 𝐺 = (], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
) is a fuzzy 𝜌

𝑖
-

cycle if and only if (supp(]), supp(𝜌
1
), supp(𝜌

2
), . . . , supp(𝜌

𝑘
))

is an𝐸
𝑖
-cycle and there exists no unique “𝑥𝑦” in supp(𝜌

𝑖
) such

that 𝜌
𝑖
(𝑥𝑦) = ⋀{𝜌

𝑖
(𝑢V) | 𝑢V ∈ supp(𝜌

𝑖
)}.

Definition 11 (see [8]). 𝐺 = (], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
) is a fuzzy 𝜌

𝑖
-

tree if it has a partial fuzzy spanning subgraph structure,
𝐹
𝑖
= (], 𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑘
), which is a 𝜏

𝑖
-tree where for all 𝜌

𝑖
-edges

not in 𝐹
𝑖
, 𝜌
𝑖
(𝑥𝑦) < 𝜏

∞

𝑖
(𝑥𝑦).

Definition 12 (see [8]). Let 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
) be a

graph structure and let ], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
be the fuzzy subsets

of 𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑘
, respectively, such that

0 ≤ 𝜌
𝑖
(𝑥𝑦) ≤ 𝜇 (𝑥) ∧ 𝜇 (𝑦)

∀𝑥, 𝑦 ∈ 𝑉, 𝑖 = 1, 2, . . . , 𝑘.
(2)

Then 𝐺 = (], 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑘
) is a fuzzy graph structure of 𝐺∗.

Definition 13 (see [3]). Let 𝑋 be a nonempty set. A bipolar
fuzzy set 𝐵 in𝑋 is an object having the form

𝐵 = {(𝑥, 𝜇
𝑃

𝐵
(𝑥) , 𝜇

𝑁

𝐵
(𝑥)) | 𝑥 ∈ 𝑋} , (3)

where 𝜇𝑃
𝐵
: 𝑋 → [0, 1] and 𝜇𝑁

𝐵
: 𝑋 → [−1, 0] are mappings.
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We use the positive membership degree 𝜇𝑃
𝐵
(𝑥) to denote

the satisfaction degree of an element 𝑥 to the property
corresponding to a bipolar fuzzy set 𝐵 and the negativemem-
bership degree 𝜇𝑁

𝐵
(𝑥) to denote the satisfaction degree of an

element 𝑥 to some implicit counterproperty corresponding
to a bipolar fuzzy set 𝐵. If 𝜇𝑃

𝐵
(𝑥) ̸= 0 and 𝜇𝑁

𝐵
(𝑥) = 0, it is the

situation that𝑥 is regarded as having only positive satisfaction
for 𝐵. If 𝜇𝑃

𝐵
(𝑥) = 0 and 𝜇𝑁

𝐵
(𝑥) ̸= 0, it is the situation that 𝑥

does not satisfy the property of 𝐵 but somewhat satisfies the
counter property of 𝐵. It is possible for an element 𝑥 to be
such that 𝜇𝑃

𝐵
(𝑥) ̸= 0 and 𝜇𝑁

𝐵
(𝑥) ̸= 0 when the membership

function of the property overlaps that of its counterproperty
over some portion of𝑋.

For the sake of simplicity, we will use the symbol 𝐵 =

(𝜇
𝑃

𝐵
, 𝜇
𝑁

𝐵
) for the bipolar fuzzy set:

𝐵 = {(𝑥, 𝜇
𝑃

𝐵
(𝑥) , 𝜇

𝑁

𝐵
(𝑥)) | 𝑥 ∈ 𝑋} . (4)

Definition 14 (see [3]). Let𝑋 be a nonempty set.Then we call
a mapping 𝐴 = (𝜇

𝑃

𝐴
, 𝜇
𝑁

𝐴
) : 𝑋 × 𝑋 → [0, 1] × [−1, 0] a bipolar

fuzzy relation on𝑋 such that 𝜇𝑃
𝐴
(𝑥, 𝑦) ∈ [0, 1] and 𝜇𝑁

𝐴
(𝑥, 𝑦) ∈

[−1, 0].

Definition 15 (see [9]). A bipolar fuzzy graph 𝐺 = (𝑉,𝐴, 𝐵)

is a nonempty set 𝑉 together with a pair of functions 𝐴 =

(𝜇
𝑃

𝐴
, 𝜇
𝑁

𝐴
) : 𝑉 → [0, 1] × [−1, 0] and 𝐵 = (𝜇

𝑃

𝐵
, 𝜇
𝑁

𝐵
) : 𝑉 × 𝑉 →

[0, 1] × [−1, 0] such that for all 𝑥, 𝑦 ∈ 𝑉,

𝜇
𝑃

𝐵
(𝑥, 𝑦) ≤ min (𝜇𝑃

𝐴
(𝑥) , 𝜇

𝑃

𝐴
(𝑦)) ,

𝜇
𝑁

𝐵
(𝑥, 𝑦) ≥ max (𝜇𝑁

𝐴
(𝑥) , 𝜇

𝑁

𝐴
(𝑦)) .

(5)

Notice that 𝜇𝑃
𝐵
(𝑥, 𝑦) > 0, 𝜇𝑁

𝐵
(𝑥, 𝑦) < 0 for (𝑥, 𝑦) ∈ 𝑉 × 𝑉,

𝜇
𝑃

𝐵
(𝑥, 𝑦) = 𝜇

𝑁

𝐵
(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∉ 𝑉×𝑉, and𝐵 is symmetric

relation.

3. Bipolar Fuzzy Graph Structures

Definition 16. 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) is called a bipolar

fuzzy graph structure (BFGS) of a graph structure (GS) 𝐺∗ =
(𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) if𝑀 = (𝜇

𝑃

𝑀
, 𝜇
𝑁

𝑀
) is a bipolar fuzzy set on𝑈

and for each 𝑖 = 1, 2, . . . , 𝑛; 𝑁
𝑖
= (𝜇
𝑃

𝑁𝑖
, 𝜇
𝑁

𝑁𝑖
) is a bipolar fuzzy

set on 𝐸
𝑖
such that

𝜇
𝑃

𝑁𝑖
(𝑥𝑦) ≤ 𝜇

𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) ,

𝜇
𝑁

𝑁𝑖
(𝑥𝑦) ≥ 𝜇

𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦)

∀𝑥𝑦 ∈ 𝐸
𝑖
⊂ 𝑈 × 𝑈.

(6)

Note that 𝜇𝑃
𝑁𝑖
(𝑥𝑦) = 0 = 𝜇

𝑁

𝑁𝑖
(𝑥𝑦) for all 𝑥𝑦 ∈ 𝑈 × 𝑈 − 𝐸

𝑖

and 0 < 𝜇
𝑃

𝑁𝑖
(𝑥𝑦) ≤ 1, −1 ≤ 𝜇

𝑁

𝑁𝑖
(𝑥𝑦) < 0 ∀𝑥𝑦 ∈ 𝐸

𝑖
, where

𝑈 and 𝐸
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are called underlying vertex set and

underlying 𝑖-edge set of 𝐺̌
𝑏
, respectively.

Definition 17. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a bipolar fuzzy

graph structure of a graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
).

If 𝐻̌
𝑏
= (𝑀
󸀠
, 𝑁
󸀠

1
, 𝑁
󸀠

2
, . . . , 𝑁

󸀠

𝑛
) is a bipolar fuzzy graph structure

of 𝐺∗ such that

𝜇
𝑃

𝑀
󸀠 (𝑥) ≤ 𝜇

𝑃

𝑀
(𝑥) ,

𝜇
𝑁

𝑀
󸀠 (𝑥) ≥ 𝜇

𝑁

𝑀
(𝑥)

∀𝑥 ∈ 𝑈,

𝜇
𝑃

𝑁
󸀠

𝑖

(𝑥𝑦) ≤ 𝜇
𝑃

𝑁𝑖
(𝑥𝑦) ,

𝜇
𝑁

𝑁
󸀠

𝑖

(𝑥𝑦) ≥ 𝜇
𝑁

𝑁𝑖
(𝑥𝑦)

∀𝑥𝑦 ∈ 𝐸
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(7)

then 𝐻̌
𝑏
is called a bipolar fuzzy subgraph structure of BFGS

𝐺̌
𝑏
.
BFGS 𝐻̌

𝑏
= (𝑀

󸀠
, 𝑁
󸀠

1
, 𝑁
󸀠

2
, . . . , 𝑁

󸀠

𝑛
) is a bipolar fuzzy

induced subgraph structure of 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
), by

a subset𝑊 of 𝑈 if

𝜇
𝑃

𝑀
󸀠 (𝑥) = 𝜇

𝑃

𝑀
(𝑥) ,

𝜇
𝑁

𝑀
󸀠 (𝑥) = 𝜇

𝑁

𝑀
(𝑥)

∀𝑥 ∈ 𝑊,

𝜇
𝑃

𝑁
󸀠

𝑖

(𝑥𝑦) = 𝜇
𝑃

𝑁𝑖
(𝑥𝑦) ,

𝜇
𝑁

𝑁
󸀠

𝑖

(𝑥𝑦) = 𝜇
𝑁

𝑁𝑖
(𝑥𝑦)

∀𝑥, 𝑦 ∈ 𝑊, 𝑖 = 1, 2, . . . , 𝑛.

(8)

Similarly, BFGS 𝐻̌
𝑏
is a bipolar fuzzy spanning subgraph

structure of 𝐺̌
𝑏
if𝑀󸀠 = 𝑀 and

𝜇
𝑃

𝑁
󸀠

𝑖

≤ 𝜇
𝑃

𝑁𝑖
,

𝜇
𝑁

𝑁
󸀠

𝑖

≥ 𝜇
𝑁

𝑁𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(9)

Example 18. Consider a graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
)

such that 𝑈 = {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}, 𝐸
1
= {𝑎
1
𝑎
2
, 𝑎
2
𝑎
4
}, and 𝐸

2
=

{𝑎
3
𝑎
4
, 𝑎
1
𝑎
4
}.

(i) Let 𝑀,𝑁
1
, and 𝑁

2
be bipolar fuzzy subsets of 𝑈, 𝐸

1
,

and 𝐸
2
, respectively, such that

𝑀 = {(𝑎
1
, 0.5, −0.2) , (𝑎

2
, 0.7, −0.3) , (𝑎

3
, 0.4, −0.3) ,

(𝑎
4
, 0.7, −0.3)} ,

𝑁
1
= {(𝑎
1
𝑎
2
, 0.5, −0.2) , (𝑎

2
𝑎
4
, 0.7, −0.3)} ,

𝑁
2
= {(𝑎
3
𝑎
4
, 0.3, −0.2) , (𝑎

1
𝑎
4
, 0.3, −0.1)} .

(10)

Then, by direct calculations, it is easy to see that 𝐺̌
𝑏

=

(𝑀,𝑁
1
, 𝑁
2
) is a BFGS of 𝐺∗ as shown in Figure 1.

(ii) Consider 𝑀
1

= {(𝑎
1
, 0.4, −0.1), (𝑎

2
, 0.5, −0.3), (𝑎

3
,

0.4, −0.2), (𝑎
4
, 0.1, −0.3)}, 𝑁

11
= {(𝑎
1
𝑎
2
, 0.4, −0.1), (𝑎

2
𝑎
4
, 0.1,

−0.2)}, and 𝑁
12

= {(𝑎
3
𝑎
4
, 0.1, −0.2), (𝑎

1
𝑎
4
, 0.1, −0.0)}. Then,
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N
2
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.3
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−
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.7
, −
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Figure 1: 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
).

a1(0.4, −0.1) a2(0.5, −0.3)

a4(0.1, −0.3) a3(0.4, −0.2)

N11(0.4, −0.1)

N
11
(0
.1
, −
0.
2)

N12(0.1, −0.2)

N
1
2
(0
.1
,
−
0
.0
)

Figure 2: Bipolar fuzzy subgraph structure 𝐾̌
𝑏
= (𝑀

1
, 𝑁
11
, 𝑁
12
).

by routine calculations, it is easy to see that 𝐾̌
𝑏

=

(𝑀
1
, 𝑁
11
, 𝑁
12
) is the bipolar fuzzy subgraph structure of 𝐺̌

𝑏

as shown in Figure 2.

Definition 19. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a bipolar fuzzy

graph structure of a graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
).

Then 𝑥𝑦 ∈ 𝐸
𝑖
is called a bipolar fuzzy 𝑁

𝑖
-edge or simply 𝑁

𝑖
-

edge, if

𝜇
𝑃

𝑁𝑖
(𝑥𝑦) > 0 or

𝜇
𝑁

𝑁𝑖
(𝑥𝑦) < 0.

(11)

Then support of𝑁
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, consequently, is

supp (𝑁
𝑖
) = {𝑥𝑦 ∈ 𝐸

𝑖
: 𝜇
𝑃

𝑁𝑖
(𝑥𝑦) > 0, 𝜇

𝑁

𝑁𝑖
(𝑥𝑦) < 0} . (12)

Definition 20. 𝑁
𝑖
-path in a BFGS 𝐺̌

𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
)

of a graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) is a sequence

𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
of distinct vertices (except the choice 𝑎

𝑚
= 𝑎
1
)

in 𝑈, such that 𝑎
𝑗−1
𝑎
𝑗
is a bipolar fuzzy 𝑁

𝑖
-edge for all 𝑗 =

2, 3, . . . , 𝑚.

Definition 21. A BFGS 𝐺̌
𝑏

= (𝑀,𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑛
) with

underlying vertex set 𝑈 is said to be 𝑁
𝑖
-strong for some 𝑖 ∈

{1, 2, 3, . . . , 𝑛} if for all 𝑥𝑦 ∈ supp(𝑁
𝑖
)

𝜇
𝑃

𝑁𝑖
(𝑥𝑦) = 𝜇

𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) ,

𝜇
𝑁

𝑁𝑖
(𝑥𝑦) = 𝜇

𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦) .

(13)

A BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) is said to be strong if it is

𝑁
𝑖
-strong BFGS for all 𝑖 ∈ {1, 2, 3, . . . , 𝑛}.

Example 22. Consider BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) as shown in

Figure 3.
Then 𝐺̌

𝑏
is a strong BFGS since it is both 𝑁

1
- and 𝑁

2
-

strong.

Definition 23. A BFGS 𝐺̌
𝑏

= (𝑀,𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑛
) with

underlying vertex set𝑈 is said to be complete or𝑁
1
𝑁
2
⋅ ⋅ ⋅ 𝑁
𝑛
-

complete, if the following are true:

(i) 𝐺̌
𝑏
a is strong BFGS.

(ii) supp(𝑁
𝑖
) ̸= 0 ∀𝑖 = 1, 2, 3, . . . , 𝑛.

(iii) For each pair of vertices 𝑥, 𝑦 ∈ 𝑈, 𝑥𝑦 is an 𝑁
𝑖
-edge

for some 𝑖.

Example 24. Let 𝐺̌
𝑏

= (𝑀,𝑁
1
, 𝑁
2
) be BFGS of graph

structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
) such that 𝑈 = {𝑎

1
, 𝑎
2
, 𝑎
3
}, 𝐸
1
=

{𝑎
2
𝑎
3
}, and 𝐸

2
= {𝑎
1
𝑎
2
, 𝑎
1
𝑎
3
} as shown in Figure 4. By routine

calculations, it is easy to see that 𝐺̌
𝑏
is a strong BFGS.

Moreover, supp(𝑁
1
) ̸= 0, supp(𝑁

2
) ̸= 0, and every pair of

vertices belonging to 𝑈 is either an 𝑁
1
-edge or an 𝑁

2
-edge.

So 𝐺̌
𝑏
is a complete BFGS, that is,𝑁

1
𝑁
2
-complete BFGS.

Definition 25. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS with

underlying vertex set𝑈.Then positive and negative strengths
of a𝑁

𝑖
-path “𝑃

𝑁𝑖
= 𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑚
” are called gain and loss of that

𝑁
𝑖
-path and denoted by 𝐺.𝑃

𝑁𝑖
and 𝐿.𝑃

𝑁𝑖
, respectively, such

that

𝐺.𝑃
𝑁𝑖
=

𝑚

⋀

𝑗=2

[𝜇
𝑃

𝑁𝑖
(𝑎
𝑗−1
𝑎
𝑗
)] ,

𝐿.𝑃
𝑁𝑖
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

⋁

𝑗=2

𝜇
𝑁

𝑁𝑖
(𝑎
𝑗−1
𝑎
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(14)

Example 26. Consider a BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) as shown

in Figure 4. We note that 𝑃
𝑁2

= 𝑎
1
𝑎
3
𝑎
4
𝑎
1
is an 𝑁

2
-path. So

𝐺.𝑃
𝑁2

= 𝜇
𝑃

𝑁2
(𝑎
3
𝑎
1
) ∧ 𝜇
𝑃

𝑁2
(𝑎
1
𝑎
2
) = 0.5 ∧ 0.4 = 0.4. Consider

𝐿.𝑃
𝑁2

=
󵄨󵄨󵄨󵄨󵄨
𝜇
𝑁

𝑁2
(𝑎
3
𝑎
1
) ∨ 𝜇
𝑁

𝑁2
(𝑎
1
𝑎
2
)
󵄨󵄨󵄨󵄨󵄨
= |−0.4 ∨ −0.4|

= |−0.4| = 0.4.

(15)

Definition 27. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS with

underlying vertex set 𝑈.Then

(i) 𝑁
𝑖
-gain of connectedness between 𝑥 and 𝑦 is defined

by 𝜇∞,+
𝑁𝑖

(𝑥𝑦) = ⋁
𝑗≥1
{𝜇
𝑗,+

𝑁𝑖
(𝑥𝑦)}, such that 𝜇𝑗,+

𝑁𝑖
(𝑥𝑦) =

(𝜇
𝑗−1,+

𝑁𝑖
∘ 𝜇
1,+

𝑁𝑖
)(𝑥𝑦) for 𝑗 ≥ 2 and 𝜇2,+

𝑁𝑖
(𝑥𝑦) = (𝜇

1,+

𝑁𝑖
∘

𝜇
1,+

𝑁𝑖
)(𝑥𝑦) = ⋁

𝑧
{𝜇
1,+

𝑁𝑖
(𝑥𝑧) ∧ 𝜇

1,+

𝑁𝑖
(𝑧𝑦)}, where 𝜇1,+

𝑁𝑖
=

𝜇
𝑃

𝑁𝑖
, ∀𝑖.

(ii) 𝑁
𝑖
-loss of connectedness between 𝑥 and 𝑦 is defined

by 𝜇∞,−
𝑁𝑖

(𝑥𝑦) = ⋁
𝑗≥1
{𝜇
𝑗,−

𝑁𝑖
(𝑥𝑦)}, such that 𝜇𝑗,−

𝑁𝑖
(𝑥𝑦) =

(𝜇
𝑗−1,−

𝑁𝑖
∘ 𝜇
1,−

𝑁𝑖
)(𝑥𝑦) for 𝑗 ≥ 2 and 𝜇2,−

𝑁𝑖
(𝑥𝑦) = (𝜇

1,−

𝑁𝑖
∘
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Figure 3: BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
).
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Figure 4: 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
).

N1(0.5, −0.7)

N
2
(0
.1
,
−
0
.4
)

N
2
(0
.2
,
−
0
.4
)
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Figure 5: 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
).

𝜇
1,−

𝑁𝑖
)(𝑥𝑦) = ⋁

𝑧
{𝜇
1,−

𝑁𝑖
(𝑥𝑧) ∧ 𝜇

1,−

𝑁𝑖
(𝑧𝑦)}, where 𝜇1,−

𝑁𝑖
=

|𝜇
𝑁

𝑁𝑖
|, ∀𝑖.

Example 28. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) be BFGS of graph struc-

ture 𝐺 = (𝑈, 𝐸
1
, 𝐸
2
) such that 𝑈 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
}, 𝐸
1
=

{𝑎
1
𝑎
6
, 𝑎
2
𝑎
3
, 𝑎
2
𝑎
5
, 𝑎
3
𝑎
4
, 𝑎
4
𝑎
5
}, and 𝐸

2
= {𝑎
1
𝑎
3
, 𝑎
1
𝑎
2
, 𝑎
4
𝑎
6
, 𝑎
5
𝑎
6
},

as is shown in Figure 5.
Since 𝜇1,+

𝑁1
(𝑎
2
𝑎
3
) = 0.3, 𝜇1,+

𝑁1
(𝑎
2
𝑎
4
) = 0.0, 𝜇1,+

𝑁1
(𝑎
2
𝑎
5
) = 0.4,

𝜇
1,+

𝑁1
(𝑎
3
𝑎
4
) = 0.5, 𝜇1,+

𝑁1
(𝑎
5
𝑎
3
) = 0.0, 𝜇1,+

𝑁1
(𝑎
4
𝑎
5
) = 0.3, and

𝜇
1,+

𝑁1
(𝑎
1
𝑎
6
) = 0.3, therefore

𝜇
2,+

𝑁1
(𝑎
2
𝑎
3
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
3
)

= [𝜇
1,+

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,+

𝑁1
(𝑎
4
𝑎
3
)]

∨ [𝜇
1,+

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,+

𝑁1
(𝑎
5
𝑎
3
)]

= [0.0 ∧ 0.5] ∨ [0.4 ∧ 0.0] = 0,

𝜇
2,+

𝑁1
(𝑎
2
𝑎
4
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
4
)

= [𝜇
2,+

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,+

𝑁1
(𝑎
3
𝑎
4
)]

∨ [𝜇
1,+

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,+

𝑁1
(𝑎
5
𝑎
4
)]

= [0.3 ∧ 0.5] ∨ [0.4 ∧ 0.3] = 0.3,

𝜇
2,+

𝑁1
(𝑎
2
𝑎
5
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
5
)

= [𝜇
1,+

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,+

𝑁1
(𝑎
3
𝑎
5
)]

∨ [𝜇
1,+

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,+

𝑁1
(𝑎
4
𝑎
5
)]

= [0.3 ∧ 0.0] ∨ [0.0 ∧ 0.3] = 0,

𝜇
2,+

𝑁1
(𝑎
3
𝑎
4
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
3
𝑎
4
)

= [𝜇
1,+

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,+

𝑁1
(𝑎
2
𝑎
4
)]

∨ [𝜇
1,+

𝑁1
(𝑎
3
𝑎
5
) ∧ 𝜇
1,+

𝑁1
(𝑎
5
𝑎
4
)]

= [0.3 ∧ 0.0] ∨ [0.0 ∧ 0.3] = 0,

𝜇
2,+

𝑁1
(𝑎
3
𝑎
5
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
3
𝑎
5
)

= [𝜇
1,+

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,+

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
1,+

𝑁1
(𝑎
3
𝑎
4
) ∧ 𝜇
1,+

𝑁1
(𝑎
4
𝑎
5
)]

= [0.3 ∧ 0.4] ∨ [0.5 ∧ 0.3] = 0.3,

𝜇
2,+

𝑁1
(𝑎
4
𝑎
5
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
4
𝑎
5
)

= [𝜇
1,+

𝑁1
(𝑎
4
𝑎
2
) ∧ 𝜇
1,+

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
1,+

𝑁1
(𝑎
4
𝑎
3
) ∧ 𝜇
1,+

𝑁1
(𝑎
3
𝑎
5
)]

= [0.0 ∧ 0.4] ∨ [0.5 ∧ 0.0] = 0,
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𝜇
2,+

𝑁1
(𝑎
1
𝑎
6
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
1
𝑎
6
) = 0,

𝜇
3,+

𝑁1
(𝑎
2
𝑎
3
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
3
)

= [𝜇
2,+

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,+

𝑁1
(𝑎
4
𝑎
3
)]

∨ [𝜇
2,+

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,+

𝑁1
(𝑎
5
𝑎
3
)]

= [0.3 ∧ 0.5] ∨ [0.0 ∧ 0.0] = 0.3,

𝜇
3,+

𝑁1
(𝑎
2
𝑎
4
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
4
)

= [𝜇
2,+

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,+

𝑁1
(𝑎
3
𝑎
4
)]

∨ [𝜇
2,+

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,+

𝑁1
(𝑎
5
𝑎
4
)]

= [0.0 ∧ 0.5] ∨ [0.0 ∧ 0.3] = 0.0,

𝜇
3,+

𝑁1
(𝑎
2
𝑎
5
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
5
)

= [𝜇
2,+

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,+

𝑁1
(𝑎
3
𝑎
5
)]

∨ [𝜇
2,+

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,+

𝑁1
(𝑎
4
𝑎
5
)]

= [0.0 ∧ 0.0] ∨ [0.3 ∧ 0.3] = 0.3,

𝜇
3,+

𝑁1
(𝑎
3
𝑎
4
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
3
𝑎
4
)

= [𝜇
2,+

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,+

𝑁1
(𝑎
2
𝑎
4
)]

∨ [𝜇
2,+

𝑁1
(𝑎
3
𝑎
5
) ∧ 𝜇
1,+

𝑁1
(𝑎
5
𝑎
4
)]

= [0.0 ∧ 0.0] ∨ [0.3 ∧ 0.3] = 0.3,

𝜇
3,+

𝑁1
(𝑎
3
𝑎
5
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
3
𝑎
5
)

= [𝜇
2,+

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,+

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
2,+

𝑁1
(𝑎
3
𝑎
4
) ∧ 𝜇
1,+

𝑁1
(𝑎
4
𝑎
5
)]

= [0.0 ∧ 0.4] ∨ [0.0 ∧ 0.3] = 0.0,

𝜇
3,+

𝑁1
(𝑎
4
𝑎
5
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
4
𝑎
5
)

= [𝜇
2,+

𝑁1
(𝑎
4
𝑎
2
) ∧ 𝜇
1,+

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
2,+

𝑁1
(𝑎
4
𝑎
3
) ∧ 𝜇
1,+

𝑁1
(𝑎
3
𝑎
5
)]

= [0.3 ∧ 0.4] ∨ [0.0 ∧ 0.0] = 0.3,

𝜇
3,+

𝑁1
(𝑎
1
𝑎
6
) = (𝜇

2,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
1
𝑎
6
) = 0.

(16)

Similarly,

𝜇
4,+

𝑁1
(𝑎
2
𝑎
3
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
3
) = 0,

𝜇
4,+

𝑁1
(𝑎
2
𝑎
4
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
4
) = 0.3,

𝜇
4,+

𝑁1
(𝑎
2
𝑎
5
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
2
𝑎
5
) = 0,

𝜇
4,+

𝑁1
(𝑎
3
𝑎
4
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
3
𝑎
4
) = 0,

𝜇
4,+

𝑁1
(𝑎
3
𝑎
5
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
3
𝑎
5
) = 0.3,

𝜇
4,+

𝑁1
(𝑎
4
𝑎
5
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
4
𝑎
5
) = 0,

𝜇
4,+

𝑁1
(𝑎
1
𝑎
6
) = (𝜇

1,+
𝑛
𝑁1
∘ 𝜇
1,+

𝑁1
) (𝑎
1
𝑎
6
) = 0.

(17)
This implies that

𝜇
∞,+

𝑁1
(𝑎
2
𝑎
3
) = ∨ {0.3, 0.0, 0.3, 0.0} = 0.3,

𝜇
∞,+

𝑁1
(𝑎
2
𝑎
4
) = ∨ {0.0, 0.3, 0.0, 0.3} = 0.3,

𝜇
∞,+

𝑁1
(𝑎
2
𝑎
5
) = ∨ {0.4, 0.0, 0.3, 0.0} = 0.4,

𝜇
∞,+

𝑁1
(𝑎
3
𝑎
4
) = ∨ {0.5, 0.0, 0.3, 0.0} = 0.5,

𝜇
∞,+

𝑁1
(𝑎
3
𝑎
5
) = ∨ {0.0, 0.3, 0.0, 0.3} = 0.3,

𝜇
∞,+

𝑁1
(𝑎
4
𝑎
5
) = ∨ {0.3, 0.0, 0.3, 0.0} = 0.3,

𝜇
∞,+

𝑁1
(𝑎
1
𝑎
6
) = ∨ {0.3, 0.0, 0.0, 0.0} = 0.3.

(18)

Since
𝜇
1,−

𝑁1
(𝑎
2
𝑎
3
) = 0.5,

𝜇
1,−

𝑁1
(𝑎
2
𝑎
4
) = 0.0,

𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
) = 0.4,

𝜇
1,−

𝑁1
(𝑎
3
𝑎
4
) = 0.7,

𝜇
1,−

𝑁1
(𝑎
5
𝑎
3
) = 0.0,

𝜇
1,−

𝑁1
(𝑎
4
𝑎
5
) = 0.3,

𝜇
1,−

𝑁1
(𝑎
1
𝑎
6
) = 0.2,

(19)

we have
𝜇
2,−

𝑁1
(𝑎
2
𝑎
3
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
3
)

= [𝜇
1,−

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,−

𝑁1
(𝑎
4
𝑎
3
)]

∨ [𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,−

𝑁1
(𝑎
5
𝑎
3
)]

= [0.0 ∧ 0.7] ∨ [0.4 ∧ 0.0] = 0.0,

𝜇
2,−

𝑁1
(𝑎
2
𝑎
4
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
4
)

= [𝜇
2,−

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,−

𝑁1
(𝑎
3
𝑎
4
)]

∨ [𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,−

𝑁1
(𝑎
5
𝑎
4
)]

= [0.5 ∧ 0.7] ∨ [0.4 ∧ 0.3] = 0.5,
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𝜇
2,−

𝑁1
(𝑎
2
𝑎
5
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
5
)

= [𝜇
1,−

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,−

𝑁1
(𝑎
3
𝑎
5
)]

∨ [𝜇
1,−

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,−

𝑁1
(𝑎
4
𝑎
5
)]

= [0.5 ∧ 0.0] ∨ [0.0 ∧ 0.3] = 0.0,

𝜇
2,−

𝑁1
(𝑎
3
𝑎
4
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
3
𝑎
4
)

= [𝜇
1,−

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,−

𝑁1
(𝑎
2
𝑎
4
)]

∨ [𝜇
1,−

𝑁1
(𝑎
3
𝑎
5
) ∧ 𝜇
1,−

𝑁1
(𝑎
5
𝑎
4
)]

= [0.5 ∧ 0.0] ∨ [0.0 ∧ 0.3] = 0.0,

𝜇
2,−

𝑁1
(𝑎
3
𝑎
5
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
3
𝑎
5
)

= [𝜇
1,−

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
1,−

𝑁1
(𝑎
3
𝑎
4
) ∧ 𝜇
1,−

𝑁1
(𝑎
4
𝑎
5
)]

= [0.5 ∧ 0.4] ∨ [0.7 ∧ 0.3] = 0.4,

𝜇
2,−

𝑁1
(𝑎
4
𝑎
5
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
4
𝑎
5
)

= [𝜇
1,−

𝑁1
(𝑎
4
𝑎
2
) ∧ 𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
1,−

𝑁1
(𝑎
4
𝑎
3
) ∧ 𝜇
1,−

𝑁1
(𝑎
3
𝑎
5
)]

= [0.0 ∧ 0.4] ∨ [0.7 ∧ 0.0] = 0.0,

𝜇
2,−

𝑁1
(𝑎
1
𝑎
6
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
1
𝑎
6
) = 0,

𝜇
3,−

𝑁1
(𝑎
2
𝑎
3
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
3
)

= [𝜇
2,−

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,−

𝑁1
(𝑎
4
𝑎
3
)]

∨ [𝜇
2,−

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,−

𝑁1
(𝑎
5
𝑎
3
)]

= [0.5 ∧ 0.7] ∨ [0.0 ∧ 0.0] = 0.5,

𝜇
3,−

𝑁1
(𝑎
2
𝑎
4
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
4
)

= [𝜇
2,−

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,−

𝑁1
(𝑎
3
𝑎
4
)]

∨ [𝜇
2,−

𝑁1
(𝑎
2
𝑎
5
) ∧ 𝜇
1,−

𝑁1
(𝑎
5
𝑎
4
)]

= [0.0 ∧ 0.7] ∨ [0.0 ∧ 0.3] = 0.0,

𝜇
3,−

𝑁1
(𝑎
2
𝑎
5
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
5
)

= [𝜇
2,−

𝑁1
(𝑎
2
𝑎
3
) ∧ 𝜇
1,−

𝑁1
(𝑎
3
𝑎
5
)]

∨ [𝜇
2,−

𝑁1
(𝑎
2
𝑎
4
) ∧ 𝜇
1,−

𝑁1
(𝑎
4
𝑎
5
)]

= [0.0 ∧ 0.0] ∨ [0.5 ∧ 0.3] = 0.3,

𝜇
3,−

𝑁1
(𝑎
3
𝑎
4
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
3
𝑎
4
)

= [𝜇
2,−

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,−

𝑁1
(𝑎
2
𝑎
4
)]

∨ [𝜇
2,−

𝑁1
(𝑎
3
𝑎
5
) ∧ 𝜇
1,−

𝑁1
(𝑎
5
𝑎
4
)]

= [0.0 ∧ 0.0] ∨ [0.4 ∧ 0.3] = 0.3,

𝜇
3,−

𝑁1
(𝑎
3
𝑎
5
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
3
𝑎
5
)

= [𝜇
2,−

𝑁1
(𝑎
3
𝑎
2
) ∧ 𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
2,−

𝑁1
(𝑎
3
𝑎
4
) ∧ 𝜇
1,−

𝑁1
(𝑎
4
𝑎
5
)]

= [0.0 ∧ 0.4] ∨ [0.0 ∧ 0.3] = 0.0,

𝜇
3,−

𝑁1
(𝑎
4
𝑎
5
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
4
𝑎
5
)

= [𝜇
2,−

𝑁1
(𝑎
4
𝑎
2
) ∧ 𝜇
1,−

𝑁1
(𝑎
2
𝑎
5
)]

∨ [𝜇
2,−

𝑁1
(𝑎
4
𝑎
3
) ∧ 𝜇
1,−

𝑁1
(𝑎
3
𝑎
5
)]

= [0.5 ∧ 0.4] ∨ [0.0 ∧ 0.0] = 0.4,

𝜇
3,−

𝑁1
(𝑎
1
𝑎
6
) = (𝜇

2,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
1
𝑎
6
) = 0.

(20)

Similarly,

𝜇
4,−

𝑁1
(𝑎
2
𝑎
3
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
3
) = 0,

𝜇
4,−

𝑁1
(𝑎
2
𝑎
4
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
4
) = 0.5,

𝜇
4,−

𝑁1
(𝑎
2
𝑎
5
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
2
𝑎
5
) = 0,

𝜇
4,−

𝑁1
(𝑎
3
𝑎
4
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
3
𝑎
4
) = 0,

𝜇
4,−

𝑁1
(𝑎
3
𝑎
5
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
3
𝑎
5
) = 0.4,

𝜇
4,−

𝑁1
(𝑎
4
𝑎
5
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
4
𝑎
5
) = 0,

𝜇
4,−

𝑁1
(𝑎
1
𝑎
6
) = (𝜇

1,−
𝑛
𝑁1
∘ 𝜇
1,−

𝑁1
) (𝑎
1
𝑎
6
) = 0.

(21)

This implies that

𝜇
∞,−

𝑁1
(𝑎
2
𝑎
3
) = ∨ {0.5, 0.0, 0.5, 0.0} = 0.5,

𝜇
∞,−

𝑁1
(𝑎
2
𝑎
4
) = ∨ {0.0, 0.5, 0.0, 0.5} = 0.5,

𝜇
∞,−

𝑁1
(𝑎
2
𝑎
5
) = ∨ {0.4, 0.0, 0.3, 0.0} = 0.4,

𝜇
∞,−

𝑁1
(𝑎
3
𝑎
4
) = ∨ {0.7, 0.0, 0.3, 0.0} = 0.7,

𝜇
∞,−

𝑁1
(𝑎
3
𝑎
5
) = ∨ {0.0, 0.4, 0.0, 0.4} = 0.4,

𝜇
∞,−

𝑁1
(𝑎
4
𝑎
5
) = ∨ {0.3, 0.0, 0.4, 0.0} = 0.4,

𝜇
∞,−

𝑁1
(𝑎
1
𝑎
6
) = ∨ {0.3, 0.0, 0.0,0.0} = 0.2.

(22)

For all the remaining pairs of vertices, 𝑁
1
-loss and 𝑁

1
-gain

of connectedness are zero.
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Definition 29. A BFGS 𝐺̌
𝑏

= (𝑀,𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑛
) of a

graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) is an 𝑁

𝑖
-cycle if

(supp(𝑀), supp(𝑁
1
), supp(𝑁

2
), . . . , supp(𝑁

𝑛
)) is an 𝐸

𝑖
-cycle.

Definition 30. A BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) of a graph

structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) is a bipolar fuzzy 𝑁

𝑖
-cycle

for some 𝑖 if

(i) 𝐺̌
𝑏
is an𝑁

𝑖
-cycle;

(ii) there is no unique 𝑁
𝑖
-edge 𝑢V in 𝐺̌

𝑏
such that

𝜇
𝑃

𝑁𝑖
(𝑢V) = min{𝜇𝑃

𝑁𝑖
(𝑥𝑦) : 𝑥𝑦 ∈ 𝐸

𝑖
= supp(𝑁

𝑖
)} or

𝜇
𝑁

𝑁𝑖
(𝑢V) = max{𝜇𝑁

𝑁𝑖
(𝑥𝑦) : 𝑥𝑦 ∈ 𝐸

𝑖
= supp(𝑁

𝑖
)}.

Example 31. Consider BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) as shown

in Figure 3. Then 𝐺̌
𝑏
is an 𝑁

1
-cycle as well as bipolar fuzzy

𝑁
1
-cycle, since (supp(𝑀), supp(𝑁

1
), supp(𝑁

2
)) is an𝐸

1
-cycle

and there are two 𝑁
1
-edges with minimum positive degree

and more than one𝑁
1
-edge with maximum negative degree

of all𝑁
1
-edges.

Definition 32. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS of a

graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) and 𝑥 a vertex of 𝐺̌

𝑏
.

Let (𝑀󸀠, 𝑁󸀠
1
, 𝑁
󸀠

2
, . . . , 𝑁

󸀠

𝑛
) be a bipolar fuzy subgraph structure

of 𝐺̌
𝑏
induced by 𝑈 \ {𝑥} such that

𝜇
𝑃

𝑀
󸀠 (𝑥) = 0 = 𝜇

𝑁

𝑀
󸀠 (𝑥) ,

𝜇
𝑃

𝑁
󸀠

𝑖

(𝑥V) = 0 = 𝜇𝑁
𝑁
󸀠

𝑖

(𝑥V)

∀edges 𝑥V ∈ 𝐺̌
𝑏
,

𝜇
𝑃

𝑀
󸀠 (V) = 𝜇𝑃

𝑀
(V) ,

𝜇
𝑁

𝑀
󸀠 (V) = 𝜇𝑁

𝑀
(V) ,

∀V ̸= 𝑥,

𝜇
𝑃

𝑁
󸀠

𝑖

(𝑢V) = 𝜇𝑃
𝑁𝑖
(𝑢V) ,

𝜇
𝑁

𝑁
󸀠

𝑖

(𝑢V) = 𝜇𝑁
𝑁𝑖
(𝑢V)

∀𝑖, such that 𝑢 ̸= 𝑥, V ̸= 𝑥.

(23)

Then 𝑥 is a bipolar fuzzy𝑁
𝑖
-cut vertex for some 𝑖, if

𝜇
∞,+

𝑁𝑖
(𝑢V) > 𝜇∞,+

𝑁
󸀠

𝑖

(𝑢V) ,

𝜇
∞,−

𝑁𝑖
(𝑢V) > 𝜇∞,−

𝑁
󸀠

𝑖

(𝑢V)

for some 𝑢, V ∈ 𝑈 \ {𝑥} .

(24)

And, 𝑥 is an 𝑁
𝑖
-P bipolar fuzzy cut vertex if only the first

condition holds and a 𝑁
𝑖
-N bipolar fuzzy cut vertex if only

the second condition holds.

Example 33. Consider BFSG 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) as considered

in Example 28 and shown in Figure 5; after deleting vertex
𝑎
2
, the resulting bipolar fuzzy subgraph structure will be as

shown in Figure 6.

a1(0.3, −0.6)
a6(0.3, −0.4)

a5(0.4, −0.5)

a4(0.6, −0.9)
a3(0.5, −0.7)

N
󳰀

1
(0
.3
, −
0
.3
)

N
󳰀

1
(0.5, −0.7)

N
󳰀

1
(0.3, −0.2)

N
󳰀
2 (0
.1
, −
0
.4
)

N
󳰀 2
(0
.1
,
−
0
.4
)

N
󳰀 2
(0
.2
,
−
0
.4
)

Figure 6: Bipolar fuzzy subgraph structure (𝑀 \ {𝑎
2
},𝑁
󸀠

1
, 𝑁
󸀠

2
).

Then 𝑎
2
is a bipolar fuzzy𝑁

1
-𝑁 cut vertex since

𝜇
∞,−

𝑁1
(𝑎
3
𝑎
4
) = 0.7 = 𝜇

∞,−

𝑁
󸀠

1

(𝑎
3
𝑎
4
) ,

𝜇
∞,−

𝑁1
(𝑎
3
𝑎
5
) = 0.4 > 0.3 = 𝜇

∞,−

𝑁1
(𝑎
3
𝑎
5
) ,

𝜇
∞,−

𝑁1
(𝑎
4
𝑎
5
) = 0.4 > 0.3 = 𝜇

∞,−

𝑁
󸀠

1

(𝑎
4
𝑎
5
) ,

𝜇
∞,−

𝑁1
(𝑎
1
𝑎
6
) = 0.2 = 𝜇

∞,−

𝑁1
(𝑎
1
𝑎
6
) .

(25)

Definition 34. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS of

a graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) and let 𝑥𝑦 be an

𝑁
𝑖
-edge. Let (𝑀,𝑁

󸀠

1
, 𝑁
󸀠

2
, . . . , 𝑁

󸀠

𝑛
) be a bipolar fuzzy spanning

subgraph structure of 𝐺̌
𝑏
, obtained by taking

𝜇
𝑃

𝑁
󸀠

𝑖

(𝑥𝑦) = 0 = 𝜇
𝑁

𝑁
󸀠

𝑖

(𝑥𝑦) ,

𝜇
𝑃

𝑁
󸀠

𝑖

(𝑢V) = 𝜇𝑃
𝑁𝑖
(𝑢V) ,

𝜇
𝑁

𝑁
󸀠

𝑖

(𝑢V) = 𝜇𝑁
𝑁𝑖
(𝑢V)

∀edges 𝑢V ̸= 𝑥𝑦.

(26)

Then 𝑥𝑦 is a bipolar fuzzy𝑁
𝑖
-bridge if

𝜇
∞,+

𝑁𝑖
(𝑢V) > 𝜇∞,+

𝑁
󸀠

𝑖

(𝑢V) ,

𝜇
∞,−

𝑁𝑖
(𝑢V) > 𝜇∞,−

𝑁
󸀠

𝑖

(𝑢V)

for some 𝑢, V ∈ 𝑈.

(27)

Edge 𝑥𝑦 is an 𝑁
𝑖
-P bipolar fuzzy bridge if only the first

condition holds and an 𝑁
𝑖
-N bipolar fuzzy bridge if only the

second condition holds.

Example 35. Consider the BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) as shown

in Figure 6 and let 𝐺̌
󸀠

𝑏
= (𝑀,𝑁

󸀠

1
, 𝑁
󸀠

2
) be bipolar fuzzy

spanning subgraph structure of 𝐺̌
𝑏
obtained by deleting 𝑁

1
-

edge (𝑎
2
𝑎
5
). Then 𝑎

2
𝑎
5
is a bipolar fuzzy 𝑁

1
-bridge, since

𝜇
∞,+

𝑁1
(𝑎
2
𝑎
5
) = 0.4 > 0.3 = 𝜇

∞,+

𝑁
󸀠

1

(𝑎
2
𝑎
5
) and 𝜇∞,−

𝑁1
(𝑎
2
𝑎
5
) = 0.4 >

0.3 = 𝜇
∞,−

𝑁
󸀠

1

(𝑎
2
𝑎
5
), and also abipolar fuzzy 𝑁

1
-N bridge, since

𝜇
∞,−

𝑁1
(𝑎
3
𝑎
5
) = 0.4 > 0.3 = 𝜇

∞,−

𝑁
󸀠

1

(𝑎
3
𝑎
5
) and 𝜇∞,−

𝑁1
(𝑎
4
𝑎
5
) = 0.4 >

0.3 = 𝜇
∞,−

𝑁
󸀠

1

(𝑎
4
𝑎
5
).
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N
2
(0
.3
,
−
0
.2
)

N2
(0
.2
, −
0.
4)

N
2 (0.2, −

0.6)N
2 (0.1, −0.4)N2

(0
.1
, −
0.4

)

N1(0.3, −0.5)

N1(0.3, −0.3)

N1
(0.
5, −

0.7
)

N
1 (0.2, −0.1)

a4(0.6, −0.9)

a3(0.5, −0.7) a2(0.4, −0.7)

a1(0.3, −0.6)

a6(
0.3,

−0.4
)

a5(0.4, −0.5)

Figure 7: 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
).

N
1 (0.3, −0.2)N1

(0
.2
, −
0.2

)

a1(0.3, −0.3)

a2(0.5, −0.5) a3(0.3, −0.8)N2(0.3, −0.4)

(BFGS ̌Gb1) (BFGS ̌Gb2)

N
󳰀

1
(0.3, −0.4)

b1(0.3, −0.3)

b2(0.5, −0.5) b3(0.3, −0.8)

N
󳰀
2
(0
.2,
−0
.2
)

N 󳰀
2 (0.3, −0.2)

Figure 8: Isomorphic bipolar fuzzy graph structures.

Definition 36. A BFGS 𝐺̌
𝑏

= (𝑀,𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑛
) of a

graph structure 𝐺
∗

= (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) is an 𝑁

𝑖
-tree if

(supp(𝐴), supp(𝑁
1
), supp(𝑁

2
), . . . , supp(𝑁

𝑛
)) is an𝐸

𝑖
-tree. In

other words, 𝐺̌
𝑏
is an𝑁

𝑖
-tree if a subgraph of 𝐺̌

𝑏
, induced by

supp(𝑁
𝑖
), forms a tree.

Definition 37. A BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) of a graph

structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) is a bipolar fuzzy 𝑁

𝑖
-tree

if 𝐺̌
𝑏
has a bipolar fuzzy spanning subgraph structure 𝐻̌

𝑏
=

(𝐴, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
) such that 𝐻̌

𝑏
is a 𝐶

𝑖
-tree and 𝜇

𝑃

𝑁𝑖
(𝑥𝑦) <

𝜇
∞,+

𝐶𝑖
(𝑥𝑦) and |𝜇𝑁

𝑁𝑖
(𝑥𝑦)| < 𝜇

∞,−

𝐶𝑖
(𝑥𝑦) ∀𝑁

𝑖
-edges not in 𝐻̌

𝑏
.

In more concerned view, 𝐺̌
𝑏
is a bipolar fuzzy𝑁

𝑖
-P tree if

only the first condition holds and a bipolar fuzzy𝑁
𝑖
-N tree if

only the second condition holds.

Example 38. Consider BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
) as shown in

Figure 7, which is an𝑁
2
-tree. It is not an𝑁

1
-tree but a bipolar

fuzzy 𝑁
1
-tree since it has a bipolar fuzzy spanning subgraph

structure (𝑀,𝑁
󸀠

1
, 𝑁
󸀠

2
) as an 𝑁

1
-tree, which is obtained by

deleting𝑁
1
-edge 𝑎

2
𝑎
5
from 𝐺̌

𝑏
and

𝜇
𝑃

𝑁1
(𝑎
2
𝑎
5
) = 0.2 < 0.3 = 𝜇

∞,+

𝑁
󸀠

1

(𝑎
2
𝑎
5
) ,

󵄨󵄨󵄨󵄨󵄨
𝜇
𝑁

𝑁1
(𝑎
2
𝑎
5
)
󵄨󵄨󵄨󵄨󵄨
= 0.1 < 0.3 = 𝜇

∞,−

𝑁
󸀠

1

(𝑎
2
𝑎
5
) .

(28)

Definition 39. A BFGS 𝐺̌
𝑠1

= (𝑀
1
, 𝑁
11
, 𝑁
12
, . . . , 𝑁

1𝑛
) of

graph structure 𝐺
∗

1
= (𝑈

1
, 𝐸
11
, 𝐸
12
, . . . , 𝐸

1𝑛
) is isomor-

phic to a BFGS 𝐺̌
𝑠2

= (𝑀
2
, 𝑁
21
, 𝑁
22
, . . . , 𝑁

2𝑛
) of 𝐺∗

2
=

(𝑈
2
, 𝐸
21
, 𝐸
22
, . . . , 𝐸

2𝑛
) if there exists a bijection 𝑓 : 𝑈

1
→ 𝑈
2

and a permutation 𝜙 on the set {1, 2, . . . , 𝑛} such that

𝜇
𝑃

𝑀1
(𝑢
1
) = 𝜇
𝑃

𝑀2
(𝑓 (𝑢
1
)) ,

𝜇
𝑁

𝑀1
(𝑢
1
) = 𝜇
𝑁

𝑀2
(𝑓 (𝑢
1
))

∀𝑢
1
∈ 𝑈
1

(29)

and for 𝜙(𝑖) = 𝑗

𝜇
𝑃

𝑁1𝑖
(𝑢
1
𝑢
2
) = 𝜇
𝑃

𝑁2𝑗
(𝑓 (𝑢
1
) 𝑓 (𝑢

2
)) ,

𝜇
𝑁

𝑁1𝑖
(𝑢
1
𝑢
2
) = 𝜇
𝑁

𝑁2𝑗
(𝑓 (𝑢
1
) 𝑓 (𝑢

2
))

∀𝑢
1
𝑢
2
∈ 𝐸
1𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(30)

Example 40. Let 𝐺̌
𝑏1
= (𝑀,𝑁

1
, 𝑁
2
) and 𝐺̌

𝑏2
= (𝑀

󸀠
, 𝑁
󸀠

1
, 𝑁
󸀠

2
)

be two BFGSs of graph structures 𝐺∗
1
= (𝑈, 𝐸

1
, 𝐸
2
) and 𝐺∗

2
=

(𝑈
󸀠
, 𝐸
󸀠

1
, 𝐸
󸀠

2
), respectively, as shown in Figure 8.

Here 𝐺̌
𝑏1

is isomorphic (not identical) to 𝐺̌
𝑏2

under the
mapping 𝑓 : 𝑈 → 𝑈

󸀠, defined by 𝑓(𝑎
1
) = 𝑏
1
, 𝑓(𝑎
2
) = 𝑏
2
, and

𝑓(𝑎
3
) = 𝑏
3
, and a permutation 𝜙 given by 𝜙(1) = 2, 𝜙(2) = 1,

such that

𝜇
𝑃

𝑀
(𝑎
𝑖
) = 𝜇
𝑃

𝑀
󸀠 (𝑓 (𝑎𝑖)) ,

𝜇
𝑁

𝑀
(𝑎
𝑖
) = 𝜇
𝑁

𝑀
󸀠 (𝑓 (𝑎𝑖))

∀𝑎
𝑖
∈ 𝑈,
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a5(0.4, −0.4) a4(0.1, −0.2)

a6(0.6, −0.6)

a1(0.2, −0.5)

a3(0.2, −0.1)

N
1 (0
.2
, −
0
.1
)

N
2 (0
.4
, −
0
.4
)

N
1
(0
.2
,
−
0
.4
)

N2(0.1, −0.2)
N
1
(0
.2
, −
0
.0
)

N
2
(0
.1
, −
0
.2
)

N 󳰀
1 (0.2, −0.1)

N
󳰀

1
(0.2, 0.0)

N
󳰀
1
(0
.2,

0.0
)

( ̌Gb1) ( ̌Gb2)

b6(0.2, −0.5)

b5(0.1, −0.2)

b4(0.2, −0.1)

b3(0.6, −0.6)

b1(0.4, −0.4)

N
󳰀 1
(0
.2
,
−
0
.4
)

N 󳰀
2 (0.4, −0.4) N

󳰀
2
(0
.1
, −
0.2

)

N
󳰀

2
(0.1, −0.2)

a2(0.9, −0.0)

N1(0.2, −0.0)

b2(0.9, −0.0)

Figure 9: Identical bipolar fuzzy graph structures.

𝜇
𝑃

𝑁𝑘
(𝑎
𝑖
𝑎
𝑗
) = 𝜇
𝑃

𝑁𝜙(𝑘)
(𝑓 (𝑎
𝑖
) 𝑓 (𝑎

𝑗
)) ,

𝜇
𝑁

𝑁𝑘
(𝑎
𝑖
𝑎
𝑗
) = 𝜇
𝑁

𝑁𝜙(𝑘)
(𝑓 (𝑎
𝑖
) 𝑓 (𝑎

𝑗
))

∀𝑎
𝑖
𝑎
𝑗
∈ 𝐸
𝑘
, 𝑘 = 1, 2.

(31)

Definition 41. A BFGS 𝐺̌
𝑠1
= (𝑀

1
, 𝑁
11
, 𝑁
12
, . . . , 𝑁

1𝑛
) of GS

𝐺
∗

1
= (𝑈, 𝐸

11
, 𝐸
12
, . . . , 𝐸

1𝑛
) is identical to a BFGS 𝐺̌

𝑠2
=

(𝑀
2
, 𝑁
21
, 𝑁
22
, . . . , 𝑁

2𝑛
) of GS 𝐺∗

2
= (𝑈, 𝐸

21
, 𝐸
22
, . . . , 𝐸

2𝑛
) if

there exist a bijection 𝑓 : 𝑈 → 𝑈, such that

𝜇
𝑃

𝑀1
(𝑢) = 𝜇

𝑃

𝑀2
(𝑓 (𝑢)) ,

𝜇
𝑁

𝑀1
(𝑢) = 𝜇

𝑁

𝑀2
(𝑓 (𝑢))

∀𝑢 ∈ 𝑈,

𝜇
𝑃

𝑁1𝑖
(𝑢
1
𝑢
2
) = 𝜇
𝑃

𝑁2𝑖
(𝑓 (𝑢
1
) 𝑓 (𝑢

2
)) ,

𝜇
𝑁

𝑁1𝑖
(𝑢
1
𝑢
2
) = 𝜇
𝑁

𝑁2𝑖
(𝑓 (𝑢
1
) 𝑓 (𝑢

2
))

∀𝑢
1
𝑢
2
∈ 𝐸
1𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(32)

Example 42. Let 𝐺̌
𝑏1
= (𝑀,𝑁

1
, 𝑁
2
) and 𝐺̌

𝑏2
= (𝑀

󸀠
, 𝑁
󸀠

1
, 𝑁
󸀠

2
)

be two BFGSs of graph structures 𝐺∗
1
= (𝑈, 𝐸

1
, 𝐸
2
) and 𝐺∗

2
=

(𝑈
󸀠
, 𝐸
󸀠

1
, 𝐸
󸀠

2
), respectively, as shown in Figure 9.

Here 𝐺̌
𝑏1

is identical with 𝐺̌
𝑏2

under the mapping 𝑓 :

𝑈 → 𝑈
󸀠, defined by 𝑓(𝑎

1
) = 𝑏

6
, 𝑓(𝑎
2
) = 𝑏

2
, 𝑓(𝑎
3
) =

𝑏
4
, 𝑓(𝑎
4
) = 𝑏
5
, 𝑓(𝑎
5
) = 𝑏
1
, and 𝑓(𝑎

6
) = 𝑏
3
, such that

𝜇
𝑃

𝑀
(𝑎
𝑖
) = 𝜇
𝑃

𝑀
󸀠 (𝑓 (𝑎𝑖)) ,

𝜇
𝑁

𝑀
(𝑎
𝑖
) = 𝜇
𝑁

𝑀
󸀠 (𝑓 (𝑎𝑖))

∀𝑎
𝑖
∈ 𝑈,

𝜇
𝑃

𝑁𝑘
(𝑎
𝑖
𝑎
𝑗
) = 𝜇
𝑃

𝑁
󸀠

𝑘

(𝑓 (𝑎
𝑖
) 𝑓 (𝑎

𝑗
)) ,

𝜇
𝑁

𝑁𝑘
(𝑎
𝑖
𝑎
𝑗
) = 𝜇
𝑁

𝑁
󸀠

𝑘

(𝑓 (𝑎
𝑖
) 𝑓 (𝑎

𝑗
))

∀𝑎
𝑖
𝑎
𝑗
∈ 𝐸
𝑘
, 𝑘 = 1, 2.

(33)

Definition 43. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS of

a GS 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
). Let 𝜙 be any permutation on

the set {𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
} and the corresponding permutation

on {𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑛
}; that is, 𝜙(𝑁

𝑖
) = 𝑁

𝑗
if and only if 𝜙(𝐸

𝑖
) =

𝐸
𝑗
∀𝑖.

If 𝑥𝑦 ∈ 𝑁
𝑟
for some 𝑟 and

𝜇
𝑃

𝑁
𝜙

𝑖

(𝑥𝑦) = 𝜇
𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) −⋁

𝑗 ̸=𝑖

𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦) ,

𝜇
𝑁

𝑁
𝜙

𝑖

(𝑥𝑦) = 𝜇
𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦) −⋀

𝑗 ̸=𝑖

𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦) ,

𝑖 = 1, 2, . . . , 𝑛,

(34)

then 𝑥𝑦 ∈ 𝐵
𝜙

𝑚
, while 𝑚 is chosen such that 𝜇𝑃

𝑁
𝜙

𝑚

(𝑥𝑦) ≥

𝜇
𝑃

𝑁
𝜙

𝑖

(𝑥𝑦) and 𝜇𝑁
𝑁
𝜙

𝑚

(𝑥𝑦) ≤ 𝜇
𝑁

𝑁
𝜙

𝑖

(𝑥𝑦) ∀𝑖.

AndBFGS (𝑀,𝑁
𝜙

1
, 𝑁
𝜙

2
, . . . , 𝑁

𝜙

𝑛
), denoted by 𝐺̌

𝜙𝑐

𝑏
, is called

the 𝜙-complement of BFGS 𝐺̌
𝑏
.

Example 44. Let 𝑀 = {(𝑎
1
, 0.3, −0.7), (𝑎

2
, 0.5, −0.4),

(𝑎
3
, 0.7, −0.3)}, 𝑁

1
= {(𝑎
1
𝑎
3
, 0.3, −0.3), (𝑎

2
𝑎
3
, 0.5, −0.3)}, and

𝑁
2
= {(𝑎
1
𝑎
2
, 0.3, −0.4)} be bipolar fuzzy subsets of 𝑈, 𝐸

1
, and

𝐸
2
, respectively, so that 𝐺̌

𝑏
= (𝑀,𝑁

1
, 𝑁
2
) is a BFGS of graph

structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
). Let 𝜙 be a permutation on the set

{𝑁
1
, 𝑁
2
} such that 𝜙(𝑁

1
) = 𝑁

2
and 𝜙(𝑁

2
) = 𝑁

1
.
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Now for 𝑎
2
𝑎
3
∈ 𝑁
1
,

𝜇
𝑃

𝑁
𝜙

1

(𝑎
2
𝑎
3
) = 𝜇
𝑃

𝑀
(𝑎
2
) ∧ 𝜇
𝑃

𝑀
(𝑎
3
) − ⋁

𝑗 ̸=1

[𝜇
𝑃

𝜙𝑁𝑗
(𝑎
2
𝑎
3
)]

= 0.5 ∧ 0.7 − [𝜇
𝑃

𝜙𝑁2
(𝑎
2
𝑎
3
)]

= 0.5 − 𝜇
𝑃

𝑁1
(𝑎
2
𝑎
3
) = 0.5 − 0.5 = 0,

𝜇
𝑁

𝑁
𝜙

1

(𝑎
2
𝑎
3
) = 𝜇
𝑁

𝑀
(𝑎
2
) ∨ 𝜇
𝑁

𝑀
(𝑎
3
) − ⋀

𝑗 ̸=1

[𝜇
𝑁

𝜙𝑁𝑗
(𝑎
2
𝑎
3
)]

= −0.4 ∨ −0.3 − [𝜇
𝑁

𝜙𝑁2
(𝑎
2
𝑎
3
)]

= −0.3 − 𝜇
𝑁

𝑁1
(𝑎
2
𝑎
3
) = −0.3 + 0.3 = 0,

𝜇
𝑃

𝑁
𝜙

2

(𝑎
2
𝑎
3
) = 𝜇
𝑃

𝑀
(𝑎
2
) ∧ 𝜇
𝑃

𝑀
(𝑎
3
) − ⋁

𝑗 ̸=2

[𝜇
𝑃

𝜙𝑁𝑗
(𝑎
2
𝑎
3
)]

= 0.5 ∧ 0.7 − [𝜇
𝑃

𝜙𝑁1
(𝑎
2
𝑎
3
)]

= 0.5 − 𝜇
𝑃

𝑁2
(𝑎
2
𝑎
3
) = 0.5 − 0 = 0.5,

𝜇
𝑁

𝑁
𝜙

2

(𝑎
2
𝑎
3
) = 𝜇
𝑁

𝑀
(𝑎
2
) ∨ 𝜇
𝑁

𝑀
(𝑎
3
) − ⋀

𝑗 ̸=2

[𝜇
𝑁

𝜙𝑁𝑗
(𝑎
2
𝑎
3
)]

= −0.4 ∨ −0.3 − [𝜇
𝑁

𝜙𝑁1
(𝑎
2
𝑎
3
)]

= −0.3 − 𝜇
𝑁

𝑁2
(𝑎
2
𝑎
3
) = −0.3 − 0 = −0.3.

(35)

Clearly, 𝜇𝑃
𝜙𝑁2

(𝑎
2
𝑎
3
) = 0.5 > 0 = 𝜇

𝑃

𝜙𝑁1
(𝑎
2
𝑎
3
) and 𝜇𝑁

𝜙𝑁2
(𝑎
2
𝑎
3
) =

−0.3 < 0 = 𝜇
𝑁

𝜙𝑁1
(𝑎
2
𝑎
3
). So 𝑎

2
𝑎
3
∈ 𝑁
𝜙

2
.

Similarly for 𝑎
1
𝑎
3
∈ 𝑁
1
, 𝜇
𝑃

𝑁
𝜙

1

(𝑎
1
𝑎
3
) = 0, 𝜇

𝑁

𝑁
𝜙

1

(𝑎
1
𝑎
3
) =

0, 𝜇
𝑃

𝑁
𝜙

2

(𝑎
1
𝑎
3
) = 0.3, and 𝜇𝑁

𝑁
𝜙

2

(𝑎
1
𝑎
3
) = −0.3.

⇒ 𝜇
𝑃

𝑁
𝜙

2

(𝑎
1
𝑎
3
) = 0.3 > 0 = 𝜇

𝑃

𝑁
𝜙

1

(𝑎
1
𝑎
3
) and 𝜇𝑁

𝑁
𝜙

2

(𝑎
1
𝑎
3
) =

−0.3 < 0 = 𝜇
𝑁

𝑁
𝜙

1

(𝑎
1
𝑎
3
). So 𝑎

1
𝑎
3
∈ 𝑁
𝜙

2
.

And for 𝑎
1
𝑎
2
∈ 𝑁
2
, 𝜇
𝑃

𝑁
𝜙

1

(𝑎
1
𝑎
2
) = 0.3, 𝜇

𝑁

𝑁
𝜙

1

(𝑎
1
𝑎
2
) = −0.4,

𝜇
𝑃

𝑁
𝜙

2

(𝑎
1
𝑎
2
) = 0, and 𝜇𝑁

𝑁
𝜙

2

(𝑎
1
𝑎
2
) = 0.

⇒ 𝜇
𝑃

𝑁
𝜙

1

(𝑎
1
𝑎
2
) = 0.3 > 0 = 𝜇

𝑃

𝑁
𝜙

2

(𝑎
1
𝑎
2
) and 𝜇𝑁

𝑁
𝜙

1

(𝑎
1
𝑎
2
) =

−0.4 < 0 = 𝜇
𝑁

𝑁
𝜙

2

(𝑎
1
𝑎
2
). So 𝑎

1
𝑎
2
∈ 𝑁
𝜙

1
.

This implies that

𝑁
𝜙

1
= {(𝑎
1
𝑎
2
, 0.3, −0.4)} ,

𝑁
𝜙

2
= {(𝑎
2
𝑎
3
, 0.5, −0.3) , (𝑎

1
𝑎
3
, 0.3, −0.3)}

(36)

and 𝐺̌
𝜙𝑐

𝑏
= (𝑀,𝑁

𝜙

1
, 𝑁
𝜙

2
) is the 𝜙-complement of 𝐺̌

𝑏
.

Theorem 45. A 𝜙-complement of a bipolar fuzzy graph
structure is always a strong BFGS. Moreover, if 𝜙(𝑖) = 𝑟

for 𝑟, 𝑖 ∈ {1, 2, . . . , 𝑛}, then all 𝑁
𝑟
-edges in BFGS 𝐺̌

𝑏
=

(𝑀,𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑛
) become 𝐵𝜙

𝑖
-edges in 𝐺̌

𝜙𝑐

𝑏
= (𝐴, 𝐵

𝜙

1
, 𝐵
𝜙

2
,

. . . , 𝐵
𝜙

𝑛
).

Proof. From the definition of 𝜙-complement 𝐺̌
𝜙𝑐

𝑏
,

𝜇
𝑃

𝑁
𝜙

𝑖

(𝑥𝑦) = 𝜇
𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) −⋁

𝑗 ̸=𝑖

𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦) , (37)

𝜇
𝑁

𝑁
𝜙

𝑖

(𝑥𝑦) = 𝜇
𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦) −⋀

𝑗 ̸=𝑖

𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦) , (38)

for 𝑖 = 1, 2, . . . , 𝑛.
Let us consider expression (37) first.
Since 𝜇𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦) ≤ 0 and ⋀

𝑗 ̸=𝑖
𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦) ≤ 0, we can

write

𝜇
𝑁

𝑁
𝜙

𝑖

(𝑥𝑦) = −
󵄨󵄨󵄨󵄨󵄨
𝜇
𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋀

𝑗 ̸=𝑖

𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (39)

Also from the definition of a BFGS 𝜇
𝑁

𝑁𝑗
(𝑥𝑦) ≥ 𝜇

𝑁

𝑀
(𝑥) ∨

𝜇
𝑁

𝑀
(𝑦) ∀𝑁

𝑗

󳨐⇒ ⋀

𝑗 ̸=𝑖

𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦) ≥ 𝜇

𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦) 󳨐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋀

𝑗 ̸=𝑖

𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝜇
𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦)

󵄨󵄨󵄨󵄨󵄨
󳨐⇒

−
󵄨󵄨󵄨󵄨󵄨
𝜇
𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋀

𝑗 ̸=𝑖

𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 0.

(40)

Therefore, 𝜇𝑁
𝑁
𝜙

𝑖

(𝑥𝑦) ≤ 0 ∀𝑖.

Now a requirement is minimum value of 𝜇𝑁
𝑁
𝜙

𝑖

(𝑥𝑦). Since

𝜇
𝑁

𝑁
𝜙

𝑖

(𝑥𝑦) ≤ 0, that is why it is minimumwhen its positive part

|⋀
𝑗 ̸=𝑖
𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦)| is zero. And |⋀

𝑗 ̸=𝑖
𝜇
𝑁

𝜙𝑁𝑗
(𝑥𝑦)| = 0 when 𝜙𝑁

𝑖
=

𝑁
𝑟
and 𝑥𝑦 is an𝑁

𝑟
-edge. So

𝜇
𝑁

𝑁
𝜙

𝑖

(𝑥𝑦) = 𝜇
𝑁

𝑀
(𝑥) ∨ 𝜇

𝑁

𝑀
(𝑦) ,

for 𝑥𝑦 ∈ 𝑁
𝑟
, 𝜙𝑁
𝑖
= 𝑁
𝑟
.

(41)

Similarly for expression (38), a requirement is maximum
value of 𝜇𝑃

𝑁
𝜙

𝑖

(𝑥𝑦). Since 𝜇𝑃
𝑀
(𝑥)∧𝜇

𝑃

𝑀
(𝑦) ≥ 0,⋁

𝑗 ̸=𝑖
𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦) ≥ 0

and 𝜇𝑃
𝑁𝑗
(𝑥𝑦) ≤ 𝜇

𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) ∀𝑁

𝑗

󳨐⇒ ⋁

𝑗 ̸=𝑖

𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦) ≤ 𝜇

𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) 󳨐⇒

𝜇
𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) −⋁

𝑗 ̸=𝑖

𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦) ≥ 0.

(42)

Therefore, 𝜇𝑃
𝑁
𝜙

𝑖

(𝑥𝑦) ≥ 0 ∀𝑖.

Now 𝜇
𝑃

𝑁
𝜙

𝑖

(𝑥𝑦) will be maximum when its negative part

[−⋁
𝑗 ̸=𝑖
𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦)] becomes zero. Clearly, [−⋁

𝑗 ̸=𝑖
𝜇
𝑃

𝜙𝑁𝑗
(𝑥𝑦)] = 0

when 𝜙𝑁
𝑖
= 𝑁
𝑟
and 𝑥𝑦 is an𝑁

𝑟
-edge. So

𝜇
𝑃

𝑁
𝜙

𝑖

(𝑥𝑦) = 𝜇
𝑃

𝑀
(𝑥) ∧ 𝜇

𝑃

𝑀
(𝑦) ,

for 𝑥𝑦 ∈ 𝑁
𝑟
, 𝜙𝑁
𝑖
= 𝑁
𝑟
.

(43)

From (41) and (43), the conclusion is obvious.
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Figure 10: Totally strong self-complement BFGS.

Definition 46. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS and

let 𝜙 be any permutation on the set {1, 2, . . . , 𝑛}.Then

(i) 𝐺̌
𝑏
is self-complement if it is isomorphic to 𝐺̌

𝜙𝑐

𝑏
, the 𝜙-

complement of 𝐺̌
𝑏
;

(ii) 𝐺̌
𝑏
is strong self-complement if it is identical to 𝐺̌

𝜙𝑐

𝑏
.

Definition 47. Let 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) be a BFGS.Then

(i) 𝐺̌
𝑏
is totally self-complement if it is isomorphic to 𝐺̌

𝜙𝑐

𝑏
,

the 𝜙-complement of 𝐺̌
𝑏
, for all permutations 𝜙 on the

set {1, 2, . . . , 𝑛};

(ii) 𝐺̌
𝑏
is totally strong self-complement if it is identical to

𝐺̌
𝜙𝑐

𝑏
, the 𝜙-complement of 𝐺̌

𝑏
, for all permutations 𝜙

on the set {1, 2, . . . , 𝑛}.

Example 48. All strong BFGSs are the only examples of self-
complement or totally self-complement BFGSs.

Example 49. A BFGS 𝐺̌
𝑏

= (𝑀,𝑁
1
, 𝑁
2
, 𝑁
3
) of graph

structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, 𝐸
3
) as shown in Figure 10 is totally

strong self-complement.

Theorem 50. A BFGS 𝐺̌
𝑏
is strong if and only if it is totally

self-complement.

Proof. Let 𝐺̌
𝑏
be a strong BFGS and 𝜙 any permutation on the

set {1, 2, . . . , 𝑛}.
By Theorem 45, 𝐺̌

𝜙𝑐

𝑏
is strong and if 𝜙−1(𝑖) = 𝑗, then all

𝑁
𝑖
-edges in 𝐺̌

𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) become 𝑁𝜙

𝑗
-edges in

𝐺̌
𝜙𝑐

𝑏
= (𝑀,𝑁

𝜙

1
, 𝑁
𝜙

2
, . . . , 𝑁

𝜙

𝑛
)

󳨐⇒ 𝜇
𝑃

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑃

𝑀
(𝑎
1
) ∧ 𝜇
𝑃

𝑀
(𝑎
2
)

= 𝜇
𝑃

𝑁
𝜙

𝑗

(𝑎
1
𝑎
2
) ,

𝜇
𝑁

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑁

𝑀
(𝑎
1
) ∨ 𝜇
𝑁

𝑀
(𝑎
2
) = 𝜇
𝑁

𝑁
𝜙

𝑗

(𝑎
1
𝑎
2
) .

(44)

Hence 𝐺̌
𝑏
is isomorphic to 𝐺̌

𝜙𝑐

𝑏
under the identity mapping

𝑓 : 𝑈 → 𝑈, such that 𝜇𝑃
𝑀
(𝑎) = 𝜇

𝑃

𝑀
(𝑓(𝑎)), 𝜇

𝑁

𝑀
(𝑎) =

𝜇
𝑁

𝑀
(𝑓(𝑎)) ∀𝑎 ∈ 𝑈 and

𝜇
𝑃

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑃

𝑁
𝜙

𝑗

(𝑎
1
𝑎
2
) = 𝜇
𝑃

𝑁
𝜙

𝑗

(𝑓 (𝑎
1
) 𝑓 (𝑎
2
)) ,

𝜇
𝑁

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑁

𝑁
𝜙

𝑗

(𝑎
1
𝑎
2
) = 𝜇
𝑁

𝑁
𝜙

𝑗

(𝑓 (𝑎
1
) 𝑓 (𝑎
2
)) ,

∀𝑎
1
𝑎
2
∈ 𝐸
𝑖
,

(45)

for 𝜙
−1
(𝑖) = 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. This holds for any

permutation on the set {1, 2, . . . , 𝑛}.
Hence 𝐺̌

𝑏
is totally self-complement.

Conversely, let 𝐺̌
𝑏
and 𝐺̌

𝜙𝑐

𝑏
be isomorphic for any permu-

tation 𝜙 on the set {1, 2, . . . , 𝑛}. Then from the definition of
𝜙-complement and isomorphism of BFGSs, we have

𝜇
𝑃

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑃

𝑁
𝜙

𝑗

(𝑓 (𝑎
1
) 𝑓 (𝑎
2
))

= 𝜇
𝑃

𝑀
(𝑓 (𝑎
1
)) ∧ 𝜇

𝑃

𝑀
(𝑓 (𝑎
2
))

= 𝜇
𝑃

𝑀
(𝑎
1
) ∧ 𝜇
𝑃

𝑀
(𝑎
2
) ,

𝜇
𝑁

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑁

𝑁
𝜙

𝑗

(𝑓 (𝑎
1
) 𝑓 (𝑎
2
))

= 𝜇
𝑁

𝑀
(𝑓 (𝑎
1
)) ∨ 𝜇

𝑁

𝑀
(𝑓 (𝑎
2
))

= 𝜇
𝑁

𝑀
(𝑎
1
) ∨ 𝜇
𝑁

𝑀
(𝑎
2
)

(46)

∀𝑎
1
𝑎
2
∈ 𝐸
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Hence, 𝐺̌
𝑏
is a strong BFGS.

Remark 51. Every self-complement BFGS is necessarily totally
self-complement.

Theorem 52. If graph structure 𝐺∗ = (𝑈, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
) is

totally strong self-complement and𝑀 = (𝜇
𝑃

𝑀
, 𝜇
𝑁

𝑀
) is a bipolar

fuzzy set of𝑈 with constant valued functions 𝜇𝑃
𝑀
and 𝜇𝑁

𝑀
, then

a strong BFGS 𝐺̌
𝑏
= (𝑀,𝑁

1
, 𝑁
2
, . . . , 𝑁

𝑛
) of𝐺∗ is totally strong

self-complement.

Proof. Let 𝑠 ∈ [0, 1] and 𝑡 ∈ [−1, 0] be two constants, such
that

𝜇
𝑃

𝑀
(𝑢) = 𝑠,

𝜇
𝑁

𝑀
(𝑢) = 𝑡

∀𝑢 ∈ 𝑈.

(47)

Since 𝐺∗ is totally strong self-complement, so for every per-
mutation𝜙−1 on the set {1, 2, . . . , 𝑛}, there exists a bijection𝑓 :
𝑈 → 𝑈, such that for every 𝐸

𝑖
-edge 𝑎

1
𝑎
2
, “𝑓(𝑎

1
)𝑓(𝑎
2
)” [an

𝐸
𝑗
-edge in 𝐺

∗] is an 𝐸
𝑖
-edge in (𝐺

∗
)
𝜙
−1
𝑐 and, consequently,
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for every 𝑁
𝑖
-edge 𝑎

1
𝑎
2
, “𝑓(𝑎

1
)𝑓(𝑎
2
)” [a 𝑁

𝑗
-edge in 𝐺̌

𝑏
] is a

𝐵
𝜙

𝑖
-edge in 𝐺̌

𝜙𝑐

𝑏
.Moreover 𝐺̌

𝑏
is strong, so we have

𝜇
𝑃

𝑀
(𝑎) = 𝑠 = 𝜇

𝑃

𝑀
(𝑓 (𝑎)) ,

𝜇
𝑁

𝑀
(𝑎) = 𝑡 = 𝜇

𝑁

𝑀
(𝑓 (𝑎))

∀𝑢 ∈ 𝑈,

𝜇
𝑃

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑃

𝑀
(𝑎
1
) ∧ 𝜇
𝑃

𝑀
(𝑎
2
)

= 𝜇
𝑃

𝑀
(𝑓 (𝑎
1
)) ∧ 𝜇

𝑃

𝑀
(𝑓 (𝑎
2
))

= 𝜇
𝑃

𝑁
𝜙

𝑗

(𝑓 (𝑎
1
) 𝑓 (𝑎
2
)) ,

𝜇
𝑁

𝑁𝑖
(𝑎
1
𝑎
2
) = 𝜇
𝑁

𝑀
(𝑎
1
) ∨ 𝜇
𝑁

𝑀
(𝑎
2
)

= 𝜇
𝑁

𝑀
(𝑓 (𝑎
1
)) ∨ 𝜇

𝑁

𝑀
(𝑓 (𝑎
2
))

= 𝜇
𝑁

𝑁
𝜙

𝑗

(𝑓 (𝑎
1
) 𝑓 (𝑎
2
))

(48)

∀𝑎
1
𝑎
2
∈ 𝐸
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

This shows that 𝐺̌
𝑏
is strong self-complement. This holds

for any permutation 𝜙 and 𝜙−1 on the set {1, 2, . . . , 𝑛}; thus 𝐺̌
𝑏

is totally strong self-complement. This completes the proof.

Remark 53. The converse of Theorem 52 is not neces-
sary, since a totally strong self-complement BFGS 𝐺̌

𝑏
=

(𝑀,𝑁
1
, 𝑁
2
, 𝑁
3
), as shown in Figure 10, is strong and has a

totally strong self-complement underlying graph structure, but
𝜇
𝑃

𝑀
and 𝜇𝑁

𝑀
are not constant valued functions.

4. Conclusions

Graph-theoretical concepts are widely used to study and
model various applications in different areas. However, in
many cases, some aspects of a graph-theoretical problemmay
be vague or uncertain. It is natural to deal with the vagueness
and uncertainty using themethods of fuzzy sets. Since bipolar
fuzzy set has shown advantages in handling vagueness and
uncertainty than fuzzy set, we have applied the concept of
bipolar fuzzy sets to graph structures.We have introduced the
concept of bipolar fuzzy graph structures. We are extending
our work to (1) bipolar fuzzy soft graph structures, (2) soft
graph structures, (3) rough fuzzy soft graph structures, and
(4) roughness in fuzzy graph structures.
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